1
|
Cai H, Yan J, Zhao W, Ma S, Wu J, Zhao Z, Deng H. Injectable interface-bonded fiber-reinforced thiolated chitosan hydrogels for enhanced cellular activities and cartilage regeneration. Carbohydr Polym 2025; 347:122643. [PMID: 39486918 DOI: 10.1016/j.carbpol.2024.122643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 11/04/2024]
Abstract
Injectable hydrogels with heterogeneous fibrous structures possessing good mechanical and biological characteristics are attracting increasing research interest in cartilage repair. The integration of nanofibers into hydrogel would largely enhance mechanical property, but impedes the gelation process and formation of hydrogel structures. Construction of biocompatible and mechanical supporting hydrogel with low fiber content remains a challenge. In this study, we developed a chemical cross-linked fibrous hydrogel, namely Thiol chitosan-Poly (lactic-co-glycolic acid)-Polydopamine (CSSH-PP), for facilitating cell proliferation and promoting cartilage tissues regeneration. Compared to conventional CSSH hydrogels, the compressive strength of CSSH-PP scaffolds exhibited a significant increase percentage of 100 %. Incorporation of CSSH-PP upgraded the cell migration with a four-fold increase. Besides, the infiltration of host cells and the formation of new blood vessels were observed in rat models when implanted with CSSH-PP, enhancing the native tissue microenvironmental reconstruction and leading a sustained repair in articular cartilage.
Collapse
Affiliation(s)
- Haoxin Cai
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Jiaojiao Yan
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Weiguang Zhao
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Shuai Ma
- Department of Orthopedic Surgery, Affiliated Renhe Hospital of China Three Gorges University, College of Basic Medical Science, China Three Gorges University, Yichang 443000, China
| | - Jun Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Ze Zhao
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers, China
| | - Hongbing Deng
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China; Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers, China.
| |
Collapse
|
2
|
Naghib SM, Matini A, Amiri S, Ahmadi B, Mozafari MR. Exploring the potential of polysaccharides-based injectable self-healing hydrogels for wound healing applications: A review. Int J Biol Macromol 2024:137209. [PMID: 39505164 DOI: 10.1016/j.ijbiomac.2024.137209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 09/14/2024] [Accepted: 10/31/2024] [Indexed: 11/08/2024]
Abstract
In recent decades, significant advancements have been made in wound healing treatments, mainly due to the development of biopolymer-based hydrogels. These injectable self-healing hydrogels have attracted considerable interest because of their unique attributes, including reversible chemistry, injectability, and printability. Unlike traditional hydrogels, injectable polysaccharide-based self-healing hydrogels offer numerous benefits. They can be tailored to fit individual patients, significantly advancing personalized medicine. Upon injection, these hydrogels transform in situ into a substance that effectively covers the entire lesion in all three dimensions, reaching irregular and deep lesions. Injectable self-healing hydrogels also play a pivotal role in promoting tissue regeneration. Their diffusive and viscoelastic properties allow for the controlled delivery of cells or therapeutics in a spatiotemporal manner, provide mechanical support, and facilitate the local recruitment and modulation of host cells. Consequently, these hydrogels have revolutionized innovative approaches to tissue regeneration and are ideally suited for managing chronic wounds. This review paper presents a comprehensive classification of injectable self-healing hydrogels commonly used in chronic wound repair and provides a detailed analysis of the various applications of injectable self-healing hydrogels in treating chronic wounds, thereby illuminating this rapidly evolving field.
Collapse
Affiliation(s)
- Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran.
| | - Amir Matini
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran; Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Saba Amiri
- Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran; Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran
| | - Bahar Ahmadi
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| |
Collapse
|
3
|
Chen Q, Steinmetz K, Oh JK, Travaš-Sejdić J, Domigan LJ. Engineering an Extracellular Matrix Mimic Using Hemoglobin Protein Nanofibrils. ACS APPLIED BIO MATERIALS 2024; 7:6089-6100. [PMID: 39183644 DOI: 10.1021/acsabm.4c00713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Extracellular matrix (ECM) is essential for tissue development, providing structural support and a microenvironment that is necessary for cells. As tissue engineering advances, there is a growing demand for ECM mimics. Polycaprolactone (PCL) is a commonly used synthetic polymer for ECM mimic materials. However, its biologically inactive surface limits its direct application in tissue engineering. Our study aimed to improve the biocompatibility of PCL by incorporating hemoglobin nanofibrils (HbFs) into PCL using an electrospinning technique. HbFs were formed from bovine hemoglobin (Hb) extracted from industrial byproducts and designed to offer PCL an improved cell adhesion property. The fabricated HbFs@PCL electrospun scaffold exhibits improved fibroblast adherence, proliferation, and deeper fibroblast infiltration into the scaffold compared with the pure PCL scaffold, indicating its potential to be an ECM mimic. This study represents the pioneering utilization of Hb-sourced nanofibrils in the electrospun PCL scaffolds for tissue engineering applications.
Collapse
Affiliation(s)
- Qun Chen
- Chemical and Materials Engineering, The University of Auckland, 5 Grafton Road, Auckland 1010, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Kai Steinmetz
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
- The Riddet Institute-Advancing Frontiers in Food Science, Palmerston North 4410, New Zealand
- New Harvest, California 95811, United States
| | - Jin Kyo Oh
- Chemical and Materials Engineering, The University of Auckland, 5 Grafton Road, Auckland 1010, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Jadranka Travaš-Sejdić
- Centre for Innovative Materials for Health, School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1023, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Laura J Domigan
- Chemical and Materials Engineering, The University of Auckland, 5 Grafton Road, Auckland 1010, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
- The Riddet Institute-Advancing Frontiers in Food Science, Palmerston North 4410, New Zealand
| |
Collapse
|
4
|
Zhu R, Liao HY, Huang YC, Shen HL. Application of Injectable Hydrogels as Delivery Systems in Osteoarthritis and Rheumatoid Arthritis. Br J Hosp Med (Lond) 2024; 85:1-41. [PMID: 39212571 DOI: 10.12968/hmed.2024.0347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Osteoarthritis and rheumatoid arthritis, though etiologically distinct, are both inflammatory joint diseases that cause progressive joint injury, chronic pain, and loss of function. Therefore, long-term treatment with a focus on relieving symptoms is needed. At present, the primary treatment for arthritis is drug therapy, both oral and intravenous. Although significant progress has been achieved for these treatment methods in alleviating symptoms, certain prominent drawbacks such as the substantial side effects and limited absorption of medications call for an urgent need for improved drug delivery methods. Injected hydrogels can be used as a delivery system to deliver drugs to the joint cavity in a controlled manner and continuously release them, thereby enhancing drug retention in the joint cavity to improve therapeutic effectiveness, which is attributed to the desirable attributes of the delivery system such as low immunogenicity, good biodegradability and biocompatibility. This review summarizes the types of injectable hydrogels and analyzes their applications as delivery systems in arthritis treatment. We also explored how hydrogels counteract inflammation, bone and cartilage degradation, and oxidative stress, while promoting joint cartilage regeneration in the treatment of osteoarthritis (OA) and rheumatoid arthritis (RA). This review also highlights new approaches to developing injectable hydrogels as delivery systems for OA and RA.
Collapse
Affiliation(s)
- Rong Zhu
- Department of Rheumatology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
| | - Hai-Yang Liao
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Yi-Chen Huang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Hai-Li Shen
- Department of Rheumatology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
5
|
Cui M, Sun Y, Zhang X, Yang P, Jiang W. Osteochondral tissue engineering in translational practice: histological assessments and scoring systems. Front Bioeng Biotechnol 2024; 12:1434323. [PMID: 39157444 PMCID: PMC11327087 DOI: 10.3389/fbioe.2024.1434323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/15/2024] [Indexed: 08/20/2024] Open
Abstract
Osteochondral lesions are common pathological alterations in synovial joints. Different techniques have been designed to achieve osteochondral repair, and tissue-engineered osteochondral grafts have shown the most promise. Histological assessments and related scoring systems are crucial for evaluating the quality of regenerated tissue, and the interpretation and comparison of various repair techniques require the establishment of a reliable and widely accepted histological method. To date, there is still no consensus on the type of histological assessment and scoring system that should be used for osteochondral repair. In this review, we summarize common osteochondral staining methods, discuss the criteria regarding high-quality histological images, and assess the current histological scoring systems for osteochondral regeneration. Safranin O/Fast green is the most widely used staining method for the cartilage layer, whereas Gomori and Van Gieson staining detect new bone formation. We suggest including the graft-host interface and more sections together with the basic histological information for images. An ideal scoring system should analyze both the cartilage and bone regions, especially for the subchondral bone plate. Furthermore, histological assessments should be performed over a longer period of time to minimize discrepancies caused by defect size and animal species.
Collapse
Affiliation(s)
- Mengying Cui
- The Second Hospital of Jilin University, Jilin, China
| | - Yang Sun
- Orthopedic Medical Center, The Second Hospital of Jilin University, Jilin, China
| | | | - Pengju Yang
- Orthopedic Medical Center, The Second Hospital of Jilin University, Jilin, China
| | - Weibo Jiang
- Orthopedic Medical Center, The Second Hospital of Jilin University, Jilin, China
| |
Collapse
|
6
|
Puiggalí-Jou A, Rizzo R, Bonato A, Fisch P, Ponta S, Weber DM, Zenobi-Wong M. FLight Biofabrication Supports Maturation of Articular Cartilage with Anisotropic Properties. Adv Healthc Mater 2024; 13:e2302179. [PMID: 37867457 DOI: 10.1002/adhm.202302179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Indexed: 10/24/2023]
Abstract
Tissue engineering approaches that recapitulate cartilage biomechanical properties are emerging as promising methods to restore the function of injured or degenerated tissue. However, despite significant progress in this research area, the generation of engineered cartilage constructs akin to native counterparts still represents an unmet challenge. In particular, the inability to accurately reproduce cartilage zonal architecture with different collagen fibril orientations is a significant limitation. The arrangement of the extracellular matrix (ECM) plays a fundamental role in determining the mechanical and biological functions of the tissue. In this study, it is shown that a novel light-based approach, Filamented Light (FLight) biofabrication, can be used to generate highly porous, 3D cell-instructive anisotropic constructs that lead to directional collagen deposition. Using a photoclick-based photoresin optimized for cartilage tissue engineering, a significantly improved maturation of the cartilaginous tissues with zonal architecture and remarkable native-like mechanical properties is demonstrated.
Collapse
Affiliation(s)
- Anna Puiggalí-Jou
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences & Technology, ETH Zürich, Otto-Stern-Weg 7, Zürich, 8093, Switzerland
| | - Riccardo Rizzo
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences & Technology, ETH Zürich, Otto-Stern-Weg 7, Zürich, 8093, Switzerland
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, 52 Oxford Street, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Angela Bonato
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences & Technology, ETH Zürich, Otto-Stern-Weg 7, Zürich, 8093, Switzerland
| | - Philipp Fisch
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences & Technology, ETH Zürich, Otto-Stern-Weg 7, Zürich, 8093, Switzerland
| | - Simone Ponta
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences & Technology, ETH Zürich, Otto-Stern-Weg 7, Zürich, 8093, Switzerland
| | - Daniel M Weber
- Division of Hand Surgery, University Children's Hospital Zürich, University of Zürich, Zürich, 8032, Switzerland
| | - Marcy Zenobi-Wong
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences & Technology, ETH Zürich, Otto-Stern-Weg 7, Zürich, 8093, Switzerland
| |
Collapse
|
7
|
Cao H, Deng S, Chen X, Cui X, Yuan T, Liang J, Zhang X, Fan Y, Wang Q. An injectable cartilage-coating composite with long-term protection, effective lubrication and chondrocyte nourishment for osteoarthritis treatment. Acta Biomater 2024; 179:95-105. [PMID: 38513723 DOI: 10.1016/j.actbio.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/27/2024] [Accepted: 03/14/2024] [Indexed: 03/23/2024]
Abstract
The osteoarthritic (OA) environment within articular cartilage poses significant challenges, resulting in chondrocyte dysfunction and cartilage matrix degradation. While intra-articular injections of anti-inflammatory drugs, biomaterials, or bioactive agents have demonstrated some effectiveness, they primarily provide temporary relief from OA pain without arresting OA progression. This study presents an injectable cartilage-coating composite, comprising hyaluronic acid and decellularized cartilage matrix integrated with specific linker polymers. It enhances the material retention, protection, and lubrication on the cartilage surface, thereby providing an effective physical barrier against inflammatory factors and reducing the friction and shear force associated with OA joint movement. Moreover, the composite gradually releases nutrients, nourishing OA chondrocytes, aiding in the recovery of cellular function, promoting cartilage-specific matrix production, and mitigating OA progression in a rat model. Overall, this injectable cartilage-coating composite offers promising potential as an effective cell-free treatment for OA. STATEMENT OF SIGNIFICANCE: Osteoarthritis (OA) in the articular cartilage leads to chondrocyte dysfunction and cartilage matrix degradation. This study introduces an intra-articular injectable composite material (HDC), composed of decellularized cartilage matrix (dECMs), hyaluronan (HA), and specially designed linker polymers to provide an effective cell-free OA treatment. The linker polymers bind HA and dECMs to form an integrated HDC structure with an enhanced degradation rate, potentially reducing the need for frequent injections and associated trauma. They also enable HDC to specifically coat the cartilage surface, forming a protective and lubricating layer that enhances long-term retention, acts as a barrier against inflammatory factors, and reduces joint movement friction. Furthermore, HDC nourishes OA chondrocytes through gradual nutrient release, aiding cellular function recovery, promoting cartilage-specific matrix production, and mitigating OA progression.
Collapse
Affiliation(s)
- Hongfu Cao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China; College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Siyan Deng
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China; College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xi Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China; College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xiaolin Cui
- School of Medicine, the Chinese University of Hong Kong, Shenzhen 518172, China; Department of Orthopedic Surgery & Musculoskeletal Medicine, Centre for Bioengineering & Nanomedicine, University of Otago, Christchurch 8011, New Zealand
| | - Tun Yuan
- Sichuan Testing Center for Biomaterials and Medical Devices Co. Ltd, 29 Wangjiang Road, Chengdu, Sichuan, China
| | - Jie Liang
- Sichuan Testing Center for Biomaterials and Medical Devices Co. Ltd, 29 Wangjiang Road, Chengdu, Sichuan, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China; College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China; College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Qiguang Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China; College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| |
Collapse
|
8
|
An H, Zhang M, Gu Z, Jiao X, Ma Y, Huang Z, Wen Y, Dong Y, Zhang P. Advances in Polysaccharides for Cartilage Tissue Engineering Repair: A Review. Biomacromolecules 2024; 25:2243-2260. [PMID: 38523444 DOI: 10.1021/acs.biomac.3c01424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Cartilage repair has been a significant challenge in orthopedics that has not yet been fully resolved. Due to the absence of blood vessels and the almost cell-free nature of mature cartilage tissue, the limited ability to repair cartilage has resulted in significant socioeconomic pressures. Polysaccharide materials have recently been widely used for cartilage tissue repair due to their excellent cell loading, biocompatibility, and chemical modifiability. They also provide a suitable microenvironment for cartilage repair and regeneration. In this Review, we summarize the techniques used clinically for cartilage repair, focusing on polysaccharides, polysaccharides for cartilage repair, and the differences between these and other materials. In addition, we summarize the techniques of tissue engineering strategies for cartilage repair and provide an outlook on developing next-generation cartilage repair and regeneration materials from polysaccharides. This Review will provide theoretical guidance for developing polysaccharide-based cartilage repair and regeneration materials with clinical applications for cartilage tissue repair and regeneration.
Collapse
Affiliation(s)
- Heng An
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Meng Zhang
- Department of Orthopaedics and Trauma Peking University People's Hospital, Beijing 100044, China
| | - Zhen Gu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiangyu Jiao
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yinglei Ma
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhe Huang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yongqiang Wen
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | | | - Peixun Zhang
- Department of Orthopaedics and Trauma Peking University People's Hospital, Beijing 100044, China
| |
Collapse
|
9
|
Rybak D, Rinoldi C, Nakielski P, Du J, Haghighat Bayan MA, Zargarian SS, Pruchniewski M, Li X, Strojny-Cieślak B, Ding B, Pierini F. Injectable and self-healable nano-architectured hydrogel for NIR-light responsive chemo- and photothermal bacterial eradication. J Mater Chem B 2024; 12:1905-1925. [PMID: 38305576 DOI: 10.1039/d3tb02693k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Hydrogels with multifunctional properties activated at specific times have gained significant attention in the biomedical field. As bacterial infections can cause severe complications that negatively impact wound repair, herein, we present the development of a stimuli-responsive, injectable, and in situ-forming hydrogel with antibacterial, self-healing, and drug-delivery properties. In this study, we prepared a Pluronic F-127 (PF127) and sodium alginate (SA)-based hydrogel that can be targeted to a specific tissue via injection. The PF127/SA hydrogel was incorporated with polymeric short-filaments (SFs) containing an anti-inflammatory drug - ketoprofen, and stimuli-responsive polydopamine (PDA) particles. The hydrogel, after injection, could be in situ gelated at the body temperature, showing great in vitro stability and self-healing ability after 4 h of incubation. The SFs and PDA improved the hydrogel injectability and compressive strength. The introduction of PDA significantly accelerated the KET release under near-infrared light exposure and extended its release validity period. The excellent composites' photo-thermal performance led to antibacterial activity against representative Gram-positive and Gram-negative bacteria, resulting in 99.9% E. coli and S. aureus eradication after 10 min of NIR light irradiation. In vitro, fibroblast L929 cell studies confirmed the materials' biocompatibility and paved the way toward further in vivo and clinical application of the system for chronic wound treatments.
Collapse
Affiliation(s)
- Daniel Rybak
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw 02-106, Poland.
| | - Chiara Rinoldi
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw 02-106, Poland.
| | - Paweł Nakielski
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw 02-106, Poland.
| | - Jingtao Du
- Innovation Center for Textile Science and Technology, Collage of Textiles, Donghua University, Shanghai 201620, China
| | - Mohammad Ali Haghighat Bayan
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw 02-106, Poland.
| | - Seyed Shahrooz Zargarian
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw 02-106, Poland.
| | - Michał Pruchniewski
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw 02-787, Poland
| | - Xiaoran Li
- Innovation Center for Textile Science and Technology, Collage of Textiles, Donghua University, Shanghai 201620, China
| | - Barbara Strojny-Cieślak
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw 02-787, Poland
| | - Bin Ding
- Innovation Center for Textile Science and Technology, Collage of Textiles, Donghua University, Shanghai 201620, China
| | - Filippo Pierini
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw 02-106, Poland.
| |
Collapse
|
10
|
Khatami N, Guerrero P, Martín P, Quintela E, Ramos V, Saa L, Cortajarena AL, de la Caba K, Camarero-Espinosa S, Abarrategi A. Valorization of biological waste from insect-based food industry: Assessment of chitin and chitosan potential. Carbohydr Polym 2024; 324:121529. [PMID: 37985106 DOI: 10.1016/j.carbpol.2023.121529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/21/2023] [Accepted: 10/23/2023] [Indexed: 11/22/2023]
Abstract
Edible mealworms can be farmed to produce high-quality nutrients and proteins, useful as ingredients in human and animal foods. During this process biological waste is produced. This work explores the usage of the biological waste as source to produce chitin and chitosan with different potential applications. Different waste fractions were processed, and the feasibility of chitin isolation was assessed. Chitosan was derived, and films were fabricated and tested for intended uses. Data indicate that biopolymers with different properties can be obtained from multiple biological waste fractions. All samples show antibacterial activity, while chitosan films derived from molt show interesting properties for packaging purposes. Films also trigger the expression of anti-inflammatory phenotype markers in macrophage cells, which may be useful for tissue engineering implantation purposes. Altogether, biological waste from insect farming can be used to extract chitin and chitosan with different properties, and therefore, suitable for different applications.
Collapse
Affiliation(s)
- Neda Khatami
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastian, Spain; POLYMAT, University of Basque Country UPV/EHU, Donostia/San Sebastián 20018, Gipuzkoa, Spain
| | - Pedro Guerrero
- BIOMAT Research Group, University of the Basque Country (UPV/EHU), Escuela de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain; BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - Pablo Martín
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastian, Spain
| | | | - Viviana Ramos
- Noricum SL, Avda. Fuente Nueva 14, nave 3, 28703 San Sebastián de los Reyes, Madrid, Spain
| | - Laura Saa
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastian, Spain
| | - Aitziber L Cortajarena
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastian, Spain; IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Koro de la Caba
- BIOMAT Research Group, University of the Basque Country (UPV/EHU), Escuela de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain; BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - Sandra Camarero-Espinosa
- POLYMAT, University of Basque Country UPV/EHU, Donostia/San Sebastián 20018, Gipuzkoa, Spain; IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Ander Abarrategi
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastian, Spain; IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain.
| |
Collapse
|
11
|
Lee KW, Chung K, Nam DH, Jung M, Kim SH, Kim HG. Decellularized allogeneic cartilage paste with human costal cartilage and crosslinked hyaluronic acid-carboxymethyl cellulose carrier augments microfracture for improved articular cartilage repair. Acta Biomater 2023; 172:297-308. [PMID: 37813156 DOI: 10.1016/j.actbio.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/09/2023] [Accepted: 10/05/2023] [Indexed: 10/11/2023]
Abstract
Articular cartilage lacks natural healing abilities and necessitates surgical treatments for injuries. While microfracture (MF) is a primary surgical approach, it often results in the formation of unstable fibrocartilage. Delivering hyaline cartilage directly to defects poses challenges due to the limited availability of autologous cartilage and difficulties associated with allogeneic cartilage delivery. We developed a decellularized allogeneic cartilage paste (DACP) using human costal cartilage mixed with a crosslinked hyaluronic acid (HA)-carboxymethyl cellulose (CMC) carrier. The decellularized allogeneic cartilage preserved the extracellular matrix and the nanostructure of native hyaline cartilage. The crosslinked HA-CMC carrier provided shape retention and moldability. In vitro studies confirmed that DACP did not cause cytotoxicity and promoted migration, proliferation, and chondrogenic differentiation of human bone marrow-derived mesenchymal stem cells. After 6 months of implantation in rabbit knee osteochondral defects, DACP combined with MF outperformed MF alone, demonstrating improved gait performance, defect filling, morphology, extracellular matrix deposition, and biomechanical properties similar to native cartilage. Thus, DACP offers a safe and effective method for articular cartilage repair, representing a promising augmentation to MF. STATEMENT OF SIGNIFICANCE: Directly delivering hyaline cartilage to repair articular cartilage defects is an ideal treatment. However, current allogeneic cartilage products face delivery challenges. In this study, we developed a decellularized allogeneic cartilage paste (DACP) by mixing human costal cartilage with crosslinked hyaluronic acid (HA)-carboxymethyl cellulose (CMC). DACP preserves extracellular matrix components and nanostructures similar to native cartilage, with HA-CMC ensuring shape retention and moldability. Our study demonstrates improved cartilage repair by combining DACP with microfracture, compared to microfracture alone, in rabbit knee defects over 6 months. This is the first report showing better articular cartilage repair using decellularized allogeneic cartilage with microfracture, without the need for exogenous cells or bioactive substances.
Collapse
Affiliation(s)
- Kee-Won Lee
- R&D Center, L&C BIO Co., Ltd., 82, Naruteo-ro, Seocho-gu, Seoul, Republic of Korea
| | - Kwangho Chung
- Arthroscopy and Joint Research Institute, Severance Hospital, Yonsei University Health System, Seoul, Republic of Korea; Department of Orthopaedic Surgery, Yongin Severance Hospital, Yonsei University College of Medicine, Gyeonggi-do, Republic of Korea
| | - Dong-Hyun Nam
- R&D Center, L&C BIO Co., Ltd., 82, Naruteo-ro, Seocho-gu, Seoul, Republic of Korea
| | - Min Jung
- Arthroscopy and Joint Research Institute, Severance Hospital, Yonsei University Health System, Seoul, Republic of Korea; Department of Orthopaedic Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sung-Hwan Kim
- Arthroscopy and Joint Research Institute, Severance Hospital, Yonsei University Health System, Seoul, Republic of Korea; Department of Orthopaedic Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Hyung-Gu Kim
- R&D Center, L&C BIO Co., Ltd., 82, Naruteo-ro, Seocho-gu, Seoul, Republic of Korea.
| |
Collapse
|
12
|
Stafin K, Śliwa P, Piątkowski M. Towards Polycaprolactone-Based Scaffolds for Alveolar Bone Tissue Engineering: A Biomimetic Approach in a 3D Printing Technique. Int J Mol Sci 2023; 24:16180. [PMID: 38003368 PMCID: PMC10671727 DOI: 10.3390/ijms242216180] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
The alveolar bone is a unique type of bone, and the goal of bone tissue engineering (BTE) is to develop methods to facilitate its regeneration. Currently, an emerging trend involves the fabrication of polycaprolactone (PCL)-based scaffolds using a three-dimensional (3D) printing technique to enhance an osteoconductive architecture. These scaffolds are further modified with hydroxyapatite (HA), type I collagen (CGI), or chitosan (CS) to impart high osteoinductive potential. In conjunction with cell therapy, these scaffolds may serve as an appealing alternative to bone autografts. This review discusses research gaps in the designing of 3D-printed PCL-based scaffolds from a biomimetic perspective. The article begins with a systematic analysis of biological mineralisation (biomineralisation) and ossification to optimise the scaffold's structural, mechanical, degradation, and surface properties. This scaffold-designing strategy lays the groundwork for developing a research pathway that spans fundamental principles such as molecular dynamics (MD) simulations and fabrication techniques. Ultimately, this paves the way for systematic in vitro and in vivo studies, leading to potential clinical applications.
Collapse
Affiliation(s)
- Krzysztof Stafin
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, PL 31-155 Kraków, Poland; (K.S.); (P.Ś.)
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, PL 31-155 Kraków, Poland
| | - Paweł Śliwa
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, PL 31-155 Kraków, Poland; (K.S.); (P.Ś.)
| | - Marek Piątkowski
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, PL 31-155 Kraków, Poland
| |
Collapse
|
13
|
Ning X, Liu N, Sun T, You Y, Luo Y, Kang E, Chen Z, Wang Y, Ren J. Promotion of adipose stem cell transplantation using GelMA hydrogel reinforced by PLCL/ADM short nanofibers. Biomed Mater 2023; 18:065003. [PMID: 37647920 DOI: 10.1088/1748-605x/acf551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 08/30/2023] [Indexed: 09/01/2023]
Abstract
Adipose-derived mesenchymal stem cells (ADSCs) show poor survival after transplantation, limiting their clinical application. In this study, a series of poly(l-lactide-co-ϵ-caprolactone) (PLCL)/acellular dermal matrix (ADM) nanofiber scaffolds with different proportions were prepared by electrospinning. By studying their morphology, hydrophilicity, tensile mechanics, and biocompatibility, PLCL/ADM nanofiber scaffolds with the best composition ratio (PLCL:ADM = 7:3) were selected to prepare short nanofibers. And based on this, injectable gelatin methacryloyl (GelMA) hydrogel loaded with PLCL/ADM short nanofibers (GelMA-Fibers) was constructed as a transplantation vector of ADSCs. ADSCs and GelMA-Fibers were co-cultured, and the optimal loading concentration of PLCL/ADM nanofibers was investigated by cell proliferation assay, live/dead cell staining, and cytoskeleton stainingin vitro. In vivoinvestigations were also performed by H&E staining, Oil red O staining, and TUNEL staining, and the survival and apoptosis rates of ADSCs transplantedin vivowere analyzed. It was demonstrated that GelMA-Fibers could effectively promote the proliferation of ADSCsin vitro. Most importantly, GelMA-Fibers increased the survival rate of ADSCs transplantation and decreased their apoptosis rate within 14 d. In conclusion, the constructed GelMA-Fibers would provide new ideas and options for stem cell tissue engineering and stem cell-based clinical therapies.
Collapse
Affiliation(s)
- Xuchao Ning
- Department of Cosmetic and Plastic Surgery, Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
- Department of Plastic Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, People's Republic of China
| | - Na Liu
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao Medical College, Qingdao University, Qingdao, People's Republic of China
| | - Tiancai Sun
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao, People's Republic of China
| | - Yong You
- Department of Cosmetic and Plastic Surgery, Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Yanan Luo
- Department of Cosmetic and Plastic Surgery, Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Enhao Kang
- Department of Pathology, Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Zhenyu Chen
- Department of Cosmetic and Plastic Surgery, Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Yuanfei Wang
- Central Laboratory, Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, People's Republic of China
| | - Jizhen Ren
- Department of Cosmetic and Plastic Surgery, Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| |
Collapse
|
14
|
Zhang R, Chang SJ, Jing Y, Wang L, Chen CJ, Liu JT. Application of chitosan with different molecular weights in cartilage tissue engineering. Carbohydr Polym 2023; 314:120890. [PMID: 37173038 DOI: 10.1016/j.carbpol.2023.120890] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/27/2023] [Accepted: 04/04/2023] [Indexed: 05/15/2023]
Abstract
Cartilage tissue engineering involves the invention of novel implantable cartilage replacement materials to help heal cartilage injuries that do not heal themselves, aiming to overcome the shortcomings of current clinical cartilage treatments. Chitosan has been widely used in cartilage tissue engineering because of its similar structure to glycine aminoglycan, which is widely distributed in connective tissues. The molecular weight, as an important structural parameter of chitosan, affects not only the method of chitosan composite scaffold preparation but also the effect on cartilage tissue healing. Thus, this review identifies methods for the preparation of chitosan composite scaffolds with low, medium and high molecular weights, as well as a range of chitosan molecular weights appropriate for cartilage tissue repair, by summarizing the application of different molecular weights of chitosan in cartilage repair in recent years.
Collapse
Affiliation(s)
- Runjie Zhang
- Research Center for Materials Science and Opti-Electronic Technology, College of Materials Science and Opti-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shwu Jen Chang
- Department of Biomedical Engineering, I-Shou University, Kaohsiung City 82445, Taiwan
| | - Yanzhen Jing
- Research Center for Materials Science and Opti-Electronic Technology, College of Materials Science and Opti-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - LiYuan Wang
- Research Center for Materials Science and Opti-Electronic Technology, College of Materials Science and Opti-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ching-Jung Chen
- Research Center for Materials Science and Opti-Electronic Technology, School of Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jen-Tsai Liu
- Research Center for Materials Science and Opti-Electronic Technology, College of Materials Science and Opti-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
15
|
Baei P, Daemi H, Aramesh F, Baharvand H, Eslaminejad MB. Advances in mechanically robust and biomimetic polysaccharide-based constructs for cartilage tissue engineering. Carbohydr Polym 2023; 308:120650. [PMID: 36813342 DOI: 10.1016/j.carbpol.2023.120650] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
The purpose of cartilage tissue engineering is to provide artificial constructs with biological functions and mechanical features that resemble native tissue to improve tissue regeneration. Biochemical characteristics of the cartilage extracellular matrix (ECM) microenvironment provide a platform for researchers to develop biomimetic materials for optimal tissue repair. Due to the structural similarity of polysaccharides into physicochemical characteristics of cartilage ECM, these natural polymers capture special attention for developing biomimetic materials. The mechanical properties of constructs play a crucial influence in load-bearing cartilage tissues. Moreover, the addition of appropriate bioactive molecules to these constructs can promote chondrogenesis. Here, we discuss polysaccharide-based constructs that can be used to create substitutes for cartilage regeneration. We intend to focus on newly developed bioinspired materials, fine-tuning the mechanical properties of constructs, the design of carriers loaded by chondroinductive agents, and development of appropriate bioinks as a bioprinting approach for cartilage regeneration.
Collapse
Affiliation(s)
- Payam Baei
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Tissue Engineering, School of Advanced Technologies in Medicine, Royan Institute, Tehran, Iran
| | - Hamed Daemi
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Tissue Engineering, School of Advanced Technologies in Medicine, Royan Institute, Tehran, Iran.
| | - Fatemeh Aramesh
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University ofTehran, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Mohamadreza Baghaban Eslaminejad
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Royan Institute, Tehran, Iran; Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
16
|
Zhang Y, Cai R, Li J, Wu X. The Immunosuppressive Niche Established with a Curcumin-Loaded Electrospun Nanofibrous Membrane Promotes Cartilage Regeneration in Immunocompetent Animals. MEMBRANES 2023; 13:335. [PMID: 36984722 PMCID: PMC10053658 DOI: 10.3390/membranes13030335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Inflammatory cells mount an immune response against in vitro engineered cartilage implanted into immunocompetent animals, consequently limiting the usage of tissue-engineered cartilage to repair cartilage defects. In this study, curcumin (Cur)-an anti-inflammatory agent-was mixed with poly(lactic-co-glycolic acid) (PLGA) to develop a Cur/PLGA nanofibrous membrane with nanoscale pore size and anti-inflammatory properties. Fourier-transform infrared spectroscopy and high-performance liquid chromatography analyses confirmed the successful loading of Cur into the Cur/PLGA nanofibrous membrane. The results of the in vitro assay demonstrated the sustained release kinetics and enhanced stability of Cur in the Cur/PLGA nanofibrous membrane. Western blotting and enzyme-linked immunosorbent assay analyses revealed that the Cur/PLGA nanofibrous membrane significantly downregulated the expression of inflammatory cytokines (IL-1β, IL-6, and TNF-α). A chondrocyte suspension was seeded into a porous PLGA scaffold, and the loaded scaffold was cultured for 3 weeks in vitro to engineer cartilage tissues. The cartilage was packed with the in vitro engineered Cur/PLGA nanofibrous membrane and subcutaneously implanted into rats to generate an immunosuppressive niche. Compared with those in the PLGA-implanted and pure cartilage (without nanofibrous membrane package)-implanted groups, the cartilage was well preserved and the inflammatory response was suppressed in the Cur/PLGA-implanted group at weeks 2 and 4 post-implantation. Thus, this study demonstrated that packaging the cartilage with the Cur/PLGA nanofibrous membrane effectively generated an immunosuppressive niche to protect the cartilage against inflammatory invasion. These findings enable the clinical translation of tissue-engineered cartilage to repair cartilage defects.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Thoracic and Cardiovascular Surgery/Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Breast Surgery, Hainan General Hospital, Hainan Hospital Affiliated to Hainan Medical College, Haikou 570311, China
| | - Renzhong Cai
- Department of Thoracic and Cardiovascular Surgery/Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Thoracic Surgery, Hainan General Hospital, Hainan Hospital Affiliated to Hainan Medical College, Haikou 570311, China
| | - Jun Li
- Department of Thoracic and Cardiovascular Surgery/Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xu Wu
- Department of Thoracic and Cardiovascular Surgery/Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
17
|
Kim Y, Zharkinbekov Z, Raziyeva K, Tabyldiyeva L, Berikova K, Zhumagul D, Temirkhanova K, Saparov A. Chitosan-Based Biomaterials for Tissue Regeneration. Pharmaceutics 2023; 15:pharmaceutics15030807. [PMID: 36986668 PMCID: PMC10055885 DOI: 10.3390/pharmaceutics15030807] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Chitosan is a chitin-derived biopolymer that has shown great potential for tissue regeneration and controlled drug delivery. It has numerous qualities that make it attractive for biomedical applications such as biocompatibility, low toxicity, broad-spectrum antimicrobial activity, and many others. Importantly, chitosan can be fabricated into a variety of structures including nanoparticles, scaffolds, hydrogels, and membranes, which can be tailored to deliver a desirable outcome. Composite chitosan-based biomaterials have been demonstrated to stimulate in vivo regeneration and the repair of various tissues and organs, including but not limited to, bone, cartilage, dental, skin, nerve, cardiac, and other tissues. Specifically, de novo tissue formation, resident stem cell differentiation, and extracellular matrix reconstruction were observed in multiple preclinical models of different tissue injuries upon treatment with chitosan-based formulations. Moreover, chitosan structures have been proven to be efficient carriers for medications, genes, and bioactive compounds since they can maintain the sustained release of these therapeutics. In this review, we discuss the most recently published applications of chitosan-based biomaterials for different tissue and organ regeneration as well as the delivery of various therapeutics.
Collapse
|
18
|
Gwak MA, Lee SJ, Lee D, Park SA, Park WH. Highly gallol-substituted, rapidly self-crosslinkable, and robust chitosan hydrogel for 3D bioprinting. Int J Biol Macromol 2023; 227:493-504. [PMID: 36535357 DOI: 10.1016/j.ijbiomac.2022.12.124] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/03/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Although three-dimensional (3D) bioprinting is a promising technology for reconstructing artificial tissues and organs using bioink, there is a lack of a bioink that satisfies all requirements, including printability, gelation, mechanical properties, and cytocompatibility, Herein, a novel self-crosslinkable bioink derived from chitosan (CS) and gallic acid (GA) is presented. 3D printed scaffolds with excellent shape fidelity are realized by systematically analyzing the self-crosslinking mechanism of hydrogel formation from CS-GA conjugates and by optimizing various parameters of the printing process. The CS-GA hydrogel forms rapidly in a physiological pH without any chemical crosslinking agent. In addition, the CS-GA hydrogel exhibited various physical and chemical intermolecular interactions, fast gelation rates, and excellent mechanical properties (>337 kPa). Moreover, the CS-GA hydrogel singificantly improves the cell viability (>92 %) and proliferation of the bioink. Therefore, the self-crosslinkable CS-GA bioink has great potential to overcome the limitations of conventional bioinks.
Collapse
Affiliation(s)
- Min A Gwak
- Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Su Jin Lee
- Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Dongjin Lee
- Department of Nature-Inspired Nanoconvergence Systems, Korea Institute of Machinery and Materials, Daejeon 34103, Republic of Korea
| | - Su A Park
- Department of Nature-Inspired Nanoconvergence Systems, Korea Institute of Machinery and Materials, Daejeon 34103, Republic of Korea
| | - Won Ho Park
- Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
19
|
Recent Developments and Current Applications of Organic Nanomaterials in Cartilage Repair. Bioengineering (Basel) 2022; 9:bioengineering9080390. [PMID: 36004915 PMCID: PMC9405275 DOI: 10.3390/bioengineering9080390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/28/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Regeneration of cartilage is difficult due to the unique microstructure, unique multizone organization, and avascular nature of cartilage tissue. The development of nanomaterials and nanofabrication technologies holds great promise for the repair and regeneration of injured or degenerated cartilage tissue. Nanomaterials have structural components smaller than 100 nm in at least one dimension and exhibit unique properties due to their nanoscale structure and high specific surface area. The unique properties of nanomaterials include, but are not limited to, increased chemical reactivity, mechanical strength, degradability, and biocompatibility. As an emerging nanomaterial, organic nanocomposites can mimic natural cartilage in terms of microstructure, physicochemical, mechanical, and biological properties. The integration of organic nanomaterials is expected to develop scaffolds that better mimic the extracellular matrix (ECM) environment of cartilage to enhance scaffold-cell interactions and improve the functionality of engineered tissue constructs. Next-generation hydrogel technology and bioprinting can be used not only for healing cartilage injury areas but also for extensive osteoarthritic degenerative changes within the joint. Although more challenges need to be solved before they can be translated into full-fledged commercial products, nano-organic composites remain very promising candidates for the future development of cartilage tissue engineering.
Collapse
|
20
|
Recent advances in graphene-based polymer composite scaffolds for bone/cartilage tissue engineering. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
21
|
Attasgah R, Velasco-Rodríguez B, Pardo A, Fernández-Vega J, Arellano-Galindo L, Rosales-Rivera L, Prieto G, Barbosa S, Soltero J, Mahmoudi M, Taboada P. DEVELOPMENT OF FUNCTIONAL HYBRID SCAFFOLDS FOR WOUND HEALING APPLICATIONS. iScience 2022; 25:104019. [PMID: 35340432 PMCID: PMC8941216 DOI: 10.1016/j.isci.2022.104019] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/31/2022] [Accepted: 02/25/2022] [Indexed: 12/02/2022] Open
Abstract
Hybrid hydrogels composed of chitosan (CS) and hyaluronic acid (HA) and collagen (Coll) were prepared by polyelectrolyte complex self-assembly. These scaffolds displayed a good intermingling of the polymeric chains, with porosities above 80% and good interconnected structures with pore sizes lying between 30–115 μm. The ionic interactions between CS and HA make the scaffolds have larger storage modulus and longer LVR regions than their pure counterparts. Both quantities progressively decrease as the HA and Coll concentrations in the formulation rise. These hybrid hydrogels showed good swelling extents from ca. 420 to ca. 690% and suitable resistance to enzymatic degradation, which was slightly lower for scaffolds containing CS to larger extents or Coll in the formulation. All scaffolds were largely cytocompatible and allowed the proliferation of both mouse fibroblast and human keratinocytes with their infiltration inside, thus becoming optimal matrices for intended tissue engineering applications as well as transdermal drug delivery depots. Hybrid scaffolds were obtained by polyelectrolyte ionic self-assembly Scaffolds were largely porous with suitable pore sizes for cell proliferation Scaffolds showed exceptional swelling and good resistance to enzymatic attack They were nontoxic and enabled cell proliferation and infiltration inside the scaffold
Collapse
|
22
|
García-Couce J, Tomás M, Fuentes G, Que I, Almirall A, Cruz LJ. Chitosan/Pluronic F127 Thermosensitive Hydrogel as an Injectable Dexamethasone Delivery Carrier. Gels 2022; 8:44. [PMID: 35049579 PMCID: PMC8774693 DOI: 10.3390/gels8010044] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/17/2021] [Accepted: 01/04/2022] [Indexed: 02/06/2023] Open
Abstract
Intra-articular administration of anti-inflammatory drugs is a strategy that allows localized action on damaged articular cartilage and reduces the side effects associated with systemic drug administration. The objective of this work is to prepare injectable thermosensitive hydrogels for the long-term application of dexamethasone. The hydrogels were prepared by mixing chitosan (CS) and Pluronic-F127 (PF) physically. In addition, tripolyphosphate (TPP) was used as a crosslinking agent. Chitosan added to the mix increased the gel time compared to the pluronic gel alone. The incorporation of TPP into the material modified the morphology of the hydrogels formed. Subsequently, MTS and Live/Dead® experiments were performed to investigate the toxicity of hydrogels against human chondrocytes. The in vitro releases of dexamethasone (DMT) from CS-PF and CS-PF-TPP gels had an initial burst and took more time than that from the PF hydrogel. In vivo studies showed that hydrogels retained the fluorescent compound longer in the joint than when administered in PBS alone. These results suggest that the CS-PF and CS-PF-TPP hydrogels loaded with DMT could be a promising drug delivery platform for the treatment of osteoarthritis.
Collapse
Affiliation(s)
- Jomarien García-Couce
- Biomaterials Center, University of Havana, Avenida Universidad entre G y Ronda, Vedado, Plaza, La Habana 10400, Cuba; (J.G.-C.); (A.A.)
- Translational Nanobiomaterials and Imaging Group, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | - Miriela Tomás
- Unidad de I + D, Empresa Laboratorios AICA, La Habana 11300, Cuba;
| | - Gastón Fuentes
- Biomaterials Center, University of Havana, Avenida Universidad entre G y Ronda, Vedado, Plaza, La Habana 10400, Cuba; (J.G.-C.); (A.A.)
- Translational Nanobiomaterials and Imaging Group, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | - Ivo Que
- Translational Nanobiomaterials and Imaging Group, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | - Amisel Almirall
- Biomaterials Center, University of Havana, Avenida Universidad entre G y Ronda, Vedado, Plaza, La Habana 10400, Cuba; (J.G.-C.); (A.A.)
| | - Luis J. Cruz
- Translational Nanobiomaterials and Imaging Group, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| |
Collapse
|
23
|
Zhao T, Zhang J, Gao X, Yuan D, Gu Z, Xu Y. Electrospun Nanofibers for Bone Regeneration: From Biomimetic Composition, Structure to Function. J Mater Chem B 2022; 10:6078-6106. [DOI: 10.1039/d2tb01182d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In recent years, a variety of novel materials and processing technologies have been developed to prepare tissue engineering scaffolds for bone defect repair. Among them, nanofibers fabricated via electrospinning technology...
Collapse
|
24
|
Nicolle L, Journot CMA, Gerber-Lemaire S. Chitosan Functionalization: Covalent and Non-Covalent Interactions and Their Characterization. Polymers (Basel) 2021; 13:4118. [PMID: 34883621 PMCID: PMC8659004 DOI: 10.3390/polym13234118] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 02/06/2023] Open
Abstract
Chitosan (CS) is a natural biopolymer that has gained great interest in many research fields due to its promising biocompatibility, biodegradability, and favorable mechanical properties. The versatility of this low-cost polymer allows for a variety of chemical modifications via covalent conjugation and non-covalent interactions, which are designed to further improve the properties of interest. This review aims at presenting the broad range of functionalization strategies reported over the last five years to reflect the state-of-the art of CS derivatization. We start by describing covalent modifications performed on the CS backbone, followed by non-covalent CS modifications involving small molecules, proteins, and metal adjuvants. An overview of CS-based systems involving both covalent and electrostatic modification patterns is then presented. Finally, a special focus will be given on the characterization techniques commonly used to qualify the composition and physical properties of CS derivatives.
Collapse
Affiliation(s)
| | | | - Sandrine Gerber-Lemaire
- Group for Functionalized Biomaterials, Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC SCI-SB-SG, Station 6, CH-1015 Lausanne, Switzerland; (L.N.); (C.M.A.J.)
| |
Collapse
|
25
|
Datta S, Rameshbabu AP, Bankoti K, Jana S, Roy S, Sen R, Dhara S. Microsphere embedded hydrogel construct - binary delivery of alendronate and BMP-2 for superior bone regeneration. J Mater Chem B 2021; 9:6856-6869. [PMID: 34396378 DOI: 10.1039/d1tb00255d] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Biomimetic delivery of osteoinductive growth factors via an osteoconductive matrix is an interesting approach for stimulating bone regeneration. In this context, the bone extracellular matrix (ECM) has been explored as an optimal delivery system, since it releases growth factors in a spatiotemporal manner from the matrix. However, a bone ECM hydrogel alone is weak, unstable, and prone to microbial contamination and also has been reported to have significantly reduced bone morphogenic protein-2 (BMP-2) post decellularization. In the present work, a microsphere embedded osteoinductive decellularized bone ECM/oleoyl chitosan based hydrogel construct (BOC) was developed as a matrix allowing dual delivery of an anti-resorptive drug (alendronate, ALN, via the microspheres) and BMP-2 (via the hydrogel) for a focal tibial defect in a rabbit model. The synthesized gelatin microspheres (GMs) were spherical in shape with diameter ∼32 μm as assessed by SEM analysis. The BOC construct showed sustained release of ALN and BMP-2 under the studied conditions. Interestingly, amniotic membrane-derived stem cells (HAMSCs) cultivated on the hydrogel construct demonstrated excellent biocompatibility, cell viability, and active proliferation potential. Additionally, cell differentiation on the constructs showed an elevated expression of osteogenic genes in an RT-PCR study along with enhanced mineralized matrix deposition as demonstrated by alkaline phosphatase (ALP) assay and alizarin red assay. The hydrogel construct was witnessed to have improved neo-vascularization potential in a chick chorioalantoic membrane (CAM) assay. Also, histological and computed tomographic findings evidenced enhanced bone regeneration in the group treated with the BOC/ALN/BMP hydrogel construct in a rabbit tibial defect model. To conclude, the developed multifunctional hydrogel construct acts as an osteoinductive and osteoconductive platform facilitating controlled delivery of ALN and BMP-2, essential for stimulating bone tissue regeneration.
Collapse
Affiliation(s)
- Sayanti Datta
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur - 721302, India.
| | | | | | | | | | | | | |
Collapse
|