1
|
Izri Z, Noireaux V. Membraneless Compartmentalization of Cell-Free Transcription-Translation by Polymer-Assisted Liquid-Liquid Phase Separation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2403243. [PMID: 39641187 DOI: 10.1002/smll.202403243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 11/21/2024] [Indexed: 12/07/2024]
Abstract
Living cells use liquid-liquid phase separation (LLPS) to compartmentalize metabolic functions into mesoscopic-sized droplets. Deciphering the mechanisms at play in LLPS is therefore critical to understanding the structuration and functions of cells at the subcellular level. Although observed and achieved to a significant degree of control in vivo, the reconstitution of LLPS integrating advanced biological functions, such as gene expression, has been so far limited in vitro. LLPS of cell-free transcription-translation (TXTL) reactions require multi-step experimental approaches that lack biomimetic and have relatively poor efficacy, thus limiting their usage in cell-free engineered systems such as synthetic cells. Here the polymer-assisted LLPS of TXTL reactions are reported as the single-pot one-step compartmentalization of a model complex metabolic system obtain without using solvents or surfactants. LLPS occurs by adding the biocompatible polymers poly(ethylene glycol), poly(vinyl alcohol), and dextran to a TXTL reaction, that remains highly active. These polymers serve as partitioning agents that localize TXTL in mesoscopic-sized droplets rich in dextran. Cytoplasmic and membrane-interacting proteins are synthesized preferentially inside these droplets, and localize either uniformly or preferentially at the interface, depending on their nature. The LLPS-TXTL system presented in this work is a step toward the design of synthetic membraneless active organelles.
Collapse
Affiliation(s)
- Ziane Izri
- School of Physics and Astronomy, University of Minnesota, 115 Union Street Southeast, Minneapolis, MN, 55455, USA
| | - Vincent Noireaux
- School of Physics and Astronomy, University of Minnesota, 115 Union Street Southeast, Minneapolis, MN, 55455, USA
| |
Collapse
|
2
|
Haugerud IS, Jaiswal P, Weber CA. Nonequilibrium Wet-Dry Cycling Acts as a Catalyst for Chemical Reactions. J Phys Chem B 2024; 128:1724-1736. [PMID: 38335971 PMCID: PMC10895654 DOI: 10.1021/acs.jpcb.3c05824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Recent experimental studies suggest that wet-dry cycles and coexisting phases can each strongly alter chemical processes. The mechanisms of why and to what degree chemical processes are altered when subjected to evaporation and condensation are unclear. To close this gap, we developed a theoretical framework for nondilute chemical reactions subject to nonequilibrium conditions of evaporation and condensation. We find that such conditions can change the half-time of the product's yield by more than an order of magnitude, depending on the substrate-solvent interaction. We show that the cycle frequency strongly affects the chemical turnover when the system is maintained out of equilibrium by wet-dry cycles. There exists a resonance behavior in the cycle frequency where the turnover is maximal. This resonance behavior enables wet-dry cycles to select specific chemical reactions, suggesting a potential mechanism for chemical evolution in prebiotic soups at early Earth.
Collapse
Affiliation(s)
- Ivar Svalheim Haugerud
- Faculty of Mathematics, Natural Sciences, and Materials Engineering: Institute of Physics, University of Augsburg, Universitätsstraße 1, Augsburg 86159, Germany
| | - Pranay Jaiswal
- Faculty of Mathematics, Natural Sciences, and Materials Engineering: Institute of Physics, University of Augsburg, Universitätsstraße 1, Augsburg 86159, Germany
| | - Christoph A Weber
- Faculty of Mathematics, Natural Sciences, and Materials Engineering: Institute of Physics, University of Augsburg, Universitätsstraße 1, Augsburg 86159, Germany
| |
Collapse
|
3
|
Robinson AO, Lee J, Cameron A, Keating CD, Adamala KP. Cell-Free Expressed Membraneless Organelles Inhibit Translation in Synthetic Cells. ACS Biomater Sci Eng 2024; 10:773-781. [PMID: 38226971 DOI: 10.1021/acsbiomaterials.3c01052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Compartments within living cells create specialized microenvironments, allowing multiple reactions to be carried out simultaneously and efficiently. While some organelles are bound by a lipid bilayer, others are formed by liquid-liquid phase separation such as P-granules and nucleoli. Synthetic minimal cells are widely used to study many natural processes, including organelle formation. In this work, synthetic cells expressing artificial membrane-less organelles that inhibit translation are described. RGG-GFP-RGG, a phase-separating protein derived from Caenorhabditis elegans P-granules, is expressed by cell-free transcription and translation, forming artificial membraneless organelles that can sequester RNA and reduce protein expression in synthetic cells. The introduction of artificial membrane-less organelles creates complex microenvironments within the synthetic cell cytoplasm and functions as a tool to inhibit protein expression in synthetic cells. The engineering of compartments within synthetic cells furthers the understanding of the evolution and function of natural organelles and facilitates the creation of more complex and multifaceted synthetic lifelike systems.
Collapse
Affiliation(s)
- Abbey O Robinson
- Department of Genetics, Cell Biology and Development, University of Minnesota, 420 SE Washington Ave., Minneapolis, Minnesota 55455, United States
| | - Jessica Lee
- Department of Chemistry, The Pennsylvania State University, 104 Chemistry Building, University Park, Pennsylvania 16802, United States
| | - Anders Cameron
- Department of Genetics, Cell Biology and Development, University of Minnesota, 420 SE Washington Ave., Minneapolis, Minnesota 55455, United States
| | - Christine D Keating
- Department of Chemistry, The Pennsylvania State University, 104 Chemistry Building, University Park, Pennsylvania 16802, United States
| | - Katarzyna P Adamala
- Department of Genetics, Cell Biology and Development, University of Minnesota, 420 SE Washington Ave., Minneapolis, Minnesota 55455, United States
| |
Collapse
|
4
|
Powers J, Jang Y. Advancing Biomimetic Functions of Synthetic Cells through Compartmentalized Cell-Free Protein Synthesis. Biomacromolecules 2023; 24:5539-5550. [PMID: 37962115 DOI: 10.1021/acs.biomac.3c00879] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Synthetic cells are artificial constructs that mimic the structures and functions of living cells. They are attractive for studying diverse biochemical processes and elucidating the origins of life. While creating a living synthetic cell remains a grand challenge, researchers have successfully synthesized hundreds of unique synthetic cell platforms. One promising approach to developing more sophisticated synthetic cells is to integrate cell-free protein synthesis (CFPS) mechanisms into vesicle platforms. This makes it possible to create synthetic cells with complex biomimetic functions such as genetic circuits, autonomous membrane modifications, sensing and communication, and artificial organelles. This Review explores recent advances in the use of CFPS to impart advanced biomimetic structures and functions to bottom-up synthetic cell platforms. We also discuss the potential applications of synthetic cells in biomedicine as well as the future directions of synthetic cell research.
Collapse
Affiliation(s)
- Jackson Powers
- Department of Chemical Engineering, University of Florida, 1006 Center Drive, Gainesville, Florida 32611, United States
| | - Yeongseon Jang
- Department of Chemical Engineering, University of Florida, 1006 Center Drive, Gainesville, Florida 32611, United States
| |
Collapse
|
5
|
Stano P, Tsumoto K. Membranous and Membraneless Interfaces-Origins of Artificial Cellular Complexity. Life (Basel) 2023; 13:1594. [PMID: 37511969 PMCID: PMC10381752 DOI: 10.3390/life13071594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Living cell architecture is based on the concept of micro-compartmentation at different hierarchical levels [...].
Collapse
Affiliation(s)
- Pasquale Stano
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Kanta Tsumoto
- Division of Chemistry for Materials, Graduate School of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu 514-8507, Mie, Japan
| |
Collapse
|
6
|
Yue K, Chen J, Li Y, Kai L. Advancing synthetic biology through cell-free protein synthesis. Comput Struct Biotechnol J 2023; 21:2899-2908. [PMID: 37216017 PMCID: PMC10196276 DOI: 10.1016/j.csbj.2023.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/03/2023] [Accepted: 05/03/2023] [Indexed: 05/24/2023] Open
Abstract
The rapid development of synthetic biology has enabled the production of compounds with revolutionary improvements in biotechnology. DNA manipulation tools have expedited the engineering of cellular systems for this purpose. Nonetheless, the inherent constraints of cellular systems persist, imposing an upper limit on mass and energy conversion efficiencies. Cell-free protein synthesis (CFPS) has demonstrated its potential to overcome these inherent constraints and has been instrumental in the further advancement of synthetic biology. Via the removal of the cell membranes and redundant parts of cells, CFPS has provided flexibility in directly dissecting and manipulating the Central Dogma with rapid feedback. This mini-review summarizes recent achievements of the CFPS technique and its application to a wide range of synthetic biology projects, such as minimal cell assembly, metabolic engineering, and recombinant protein production for therapeutics, as well as biosensor development for in vitro diagnostics. In addition, current challenges and future perspectives in developing a generalized cell-free synthetic biology are outlined.
Collapse
Affiliation(s)
- Ke Yue
- School of Life Sciences, Jiangsu Normal University, Xuzhou 22116, China
| | - Junyu Chen
- School of Life Sciences, Jiangsu Normal University, Xuzhou 22116, China
| | - Yingqiu Li
- School of Life Sciences, Jiangsu Normal University, Xuzhou 22116, China
| | - Lei Kai
- School of Life Sciences, Jiangsu Normal University, Xuzhou 22116, China
| |
Collapse
|
7
|
Robinson AO, Lee J, Cameron A, Keating CD, Adamala KP. Cell-free expressed membraneless organelles sequester RNA in synthetic cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.535479. [PMID: 37066403 PMCID: PMC10104018 DOI: 10.1101/2023.04.03.535479] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Compartments within living cells create specialized microenvironments, allowing for multiple reactions to be carried out simultaneously and efficiently. While some organelles are bound by a lipid bilayer, others are formed by liquid-liquid phase separation, such as P-granules and nucleoli. Synthetic minimal cells have been widely used to study many natural processes, including organelle formation. Here we describe a synthetic cell expressing RGG-GFP-RGG, a phase-separating protein derived from LAF-1 RGG domains, to form artificial membraneless organelles that can sequester RNA and reduce protein expression. We create complex microenvironments within synthetic cell cytoplasm and introduce a tool to modulate protein expression in synthetic cells. Engineering of compartments within synthetic cells furthers understanding of evolution and function of natural organelles, as well as it facilitates the creation of more complex and multifaceted synthetic life-like systems.
Collapse
Affiliation(s)
- Abbey O Robinson
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jessica Lee
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Anders Cameron
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Christine D Keating
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Katarzyna P Adamala
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
8
|
Li B, Chen X, Zhou Y, Zhao Y, Song T, Wu X, Shi W. Liquid-liquid phase separation of immiscible polymers at double emulsion interfaces for configurable microcapsules. J Colloid Interface Sci 2023; 641:299-308. [PMID: 36934577 DOI: 10.1016/j.jcis.2023.03.072] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/05/2023] [Accepted: 03/10/2023] [Indexed: 03/15/2023]
Abstract
Liquid-liquid phase separation at complex interfaces is a common phenomenon in biological systems and is also a fundamental basis to create synthetic materials in multicomponent mixtures. Understanding the liquid-liquid phase separation in well-defined macromolecular systems is anticipated to shed light on similar behaviors in cross-disciplinary areas. Here we study a series of immiscible polymers and reveal a generic phase diagram of liquid-liquid phase separation at double emulsion interfaces, which depicts the equilibrium structures by interfacial tension and polymer fraction. We further reveal that the interfacial tensions in various systems fall on a linear relationship with spreading coefficients. Based on this theoretical guideline, the liquid-liquid phase separation can be modulated by a low fraction of amphiphilic block copolymers, leading the double emulsion droplets configurable between compartments and anisotropic shapes. The solidified anisotropic microcapsules could provide unique orientation-sensitive optical properties and thermomechanical responses. The theoretical analysis and experimental protocol in this study yield a generalizable strategy to prepare multiphase double emulsions with controlled structures and desired properties.
Collapse
Affiliation(s)
- Baihui Li
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiaotong Chen
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yue Zhou
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yue Zhao
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Tiantian Song
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiaoxue Wu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Weichao Shi
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300071, China.
| |
Collapse
|
9
|
Chauhan G, Norred SE, Dabbs RM, Caveney PM, George JKV, Collier CP, Simpson ML, Abel SM. Crowding-Induced Spatial Organization of Gene Expression in Cell-Sized Vesicles. ACS Synth Biol 2022; 11:3733-3742. [PMID: 36260840 DOI: 10.1021/acssynbio.2c00336] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Cell-free protein synthesis is an important tool for studying gene expression and harnessing it for applications. In cells, gene expression is regulated in part by the spatial organization of transcription and translation. Unfortunately, current cell-free approaches are unable to control the organization of molecular components needed for gene expression, which limits the ability to probe and utilize its effects. Here, we show, using complementary computational and experimental approaches, that macromolecular crowding can be used to control the spatial organization and translational efficiency of gene expression in cell-sized vesicles. Computer simulations and imaging experiments reveal that, as crowding is increased, DNA plasmids become localized at the inner surface of vesicles. Ribosomes, in contrast, remain uniformly distributed, demonstrating that crowding can be used to differentially organize components of gene expression. We further carried out cell-free protein synthesis reactions in cell-sized vesicles and quantified mRNA and protein abundance. At sufficiently high levels of crowding, we observed localization of mRNA near vesicle surfaces, a decrease in translational efficiency and protein abundance, and anomalous scaling of protein abundance as a function of vesicle size. These results are consistent with high levels of crowding causing altered spatial organization and slower diffusion. Our work demonstrates a straightforward way to control the organization of gene expression in cell-sized vesicles and provides insight into the spatial regulation of gene expression in cells.
Collapse
Affiliation(s)
- Gaurav Chauhan
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Knoxville, Tennessee37996, United States
| | - S Elizabeth Norred
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States.,Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville and Oak Ridge National Laboratory, Knoxville, Tennessee37996, United States
| | - Rosemary M Dabbs
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville and Oak Ridge National Laboratory, Knoxville, Tennessee37996, United States
| | - Patrick M Caveney
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States.,Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville and Oak Ridge National Laboratory, Knoxville, Tennessee37996, United States
| | - John K Vincent George
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States.,Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville and Oak Ridge National Laboratory, Knoxville, Tennessee37996, United States
| | - C Patrick Collier
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States
| | - Michael L Simpson
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States.,Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville and Oak Ridge National Laboratory, Knoxville, Tennessee37996, United States
| | - Steven M Abel
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Knoxville, Tennessee37996, United States
| |
Collapse
|
10
|
Cell-free protein crystallization for nanocrystal structure determination. Sci Rep 2022; 12:16031. [PMID: 36192567 PMCID: PMC9530169 DOI: 10.1038/s41598-022-19681-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/01/2022] [Indexed: 11/08/2022] Open
Abstract
In-cell protein crystallization (ICPC) has been investigated as a technique to support the advancement of structural biology because it does not require protein purification and a complicated crystallization process. However, only a few protein structures have been reported because these crystals formed incidentally in living cells and are insufficient in size and quality for structure analysis. Here, we have developed a cell-free protein crystallization (CFPC) method, which involves direct protein crystallization using cell-free protein synthesis. We have succeeded in crystallization and structure determination of nano-sized polyhedra crystal (PhC) at a high resolution of 1.80 Å. Furthermore, nanocrystals were synthesized at a reaction scale of only 20 μL using the dialysis method, enabling structural analysis at a resolution of 1.95 Å. To further demonstrate the potential of CFPC, we attempted to determine the structure of crystalline inclusion protein A (CipA), whose structure had not yet been determined. We added chemical reagents as a twinning inhibitor to the CFPC solution, which enabled us to determine the structure of CipA at 2.11 Å resolution. This technology greatly expands the high-throughput structure determination method of unstable, low-yield, fusion, and substrate-biding proteins that have been difficult to analyze with conventional methods.
Collapse
|
11
|
Maeda YT. Negative autoregulation controls size scaling in confined gene expression reactions. Sci Rep 2022; 12:10516. [PMID: 35732682 PMCID: PMC9217826 DOI: 10.1038/s41598-022-14719-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 06/10/2022] [Indexed: 11/09/2022] Open
Abstract
Gene expression via transcription-translation is the most fundamental reaction to sustain biological systems, and complex reactions occur in a small compartment of living cells. There is increasing evidence that physical effects, such as molecular crowding or excluded volume effects of transcriptional-translational machinery, affect the yield of reaction products. On the other hand, transcriptional feedback that controls gene expression during mRNA synthesis is also a vital mechanism that regulates protein synthesis in cells. However, the excluded volume effect of spatial constraints on feedback regulation is not well understood. Here, we study the confinement effect on transcriptional autoregulatory feedbacks of gene expression reactions using a theoretical model. The excluded volume effects between molecules and the membrane interface suppress the gene expression in a small cell-sized compartment. We find that negative feedback regulation at the transcription step mitigates this size-induced gene repression and alters the scaling relation of gene expression level on compartment volume, approaching the regular scaling relation without the steric effect. This recovery of regular size-scaling of gene expression does not appear in positive feedback regulation, suggesting that negative autoregulatory feedback is crucial for maintaining reaction products constant regardless of compartment size in heterogeneous cell populations.
Collapse
Affiliation(s)
- Yusuke T Maeda
- Department of Physics, Kyushu University, Motooka 744, Fukuoka, 819-0395, Japan.
| |
Collapse
|
12
|
Jia TZ, Kuruma Y. Increasing complexity of primitive compartments. Biophys Physicobiol 2021; 18:269-273. [PMID: 34909364 PMCID: PMC8639197 DOI: 10.2142/biophysico.bppb-v18.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 11/15/2021] [Indexed: 12/01/2022] Open
Affiliation(s)
- Tony Z Jia
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan.,Blue Marble Space Institute of Science, Seattle, Washington 98154, USA
| | - Yutetsu Kuruma
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan.,Extra-cutting-edge Science and Technology Avant-garde Research Program, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Kanagawa 237-0061, Japan.,Japan Science and Technology Agency, PRESTO, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
13
|
Zhao H, Ibarboure E, Ibrahimova V, Xiao Y, Garanger E, Lecommandoux S. Spatiotemporal Dynamic Assembly/Disassembly of Organelle-Mimics Based on Intrinsically Disordered Protein-Polymer Conjugates. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102508. [PMID: 34719874 PMCID: PMC8693077 DOI: 10.1002/advs.202102508] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/09/2021] [Indexed: 05/04/2023]
Abstract
Design of reversible organelle-like microcompartments formed by liquid-liquid phase separation in cell-mimicking entities has significantly advanced the bottom-up construction of artificial eukaryotic cells. However, organizing the formation of artificial organelle architectures in a spatiotemporal manner within complex primitive compartments remains scarcely explored. In this work, thermoresponsive hybrid polypeptide-polymer conjugates are rationally engineered and synthesized, resulting from the conjugation of an intrinsically disordered synthetic protein (IDP), namely elastin-like polypeptide, and synthetic polymers (poly(ethylene glycol) and dextran) that are widely used as macromolecular crowding agents. Cell-like constructs are built using droplet-based microfluidics that are filled with such bioconjugates and an artificial cytoplasm system that is composed of specific polymers conjugated to the IDP. The distinct spatial organizations of two polypeptide-polymer conjugates and the dynamic assembly and disassembly of polypeptide-polymer coacervate droplets in response to temperature are studied in the cytomimetic protocells. Furthermore, a monoblock IDP with longer length is concurrently included with bioconjugates individually inside cytomimetic compartments. Both bioconjugates exhibit an identical surfactant-like property, compartmentalizing the monoblock IDP coacervates via temperature control. These findings lay the foundation for developing hierarchically structured synthetic cells with interior organelle-like structures which could be designed to localize in desired phase-separated subcompartments.
Collapse
Affiliation(s)
- Hang Zhao
- Univ. BordeauxCNRSBordeaux INPLCPOUMR 5629PessacF‐33600France
| | | | | | - Ye Xiao
- Univ. BordeauxCNRSBordeaux INPLCPOUMR 5629PessacF‐33600France
| | | | | |
Collapse
|