1
|
Kim H, Dutta SD, Randhawa A, Patil TV, Ganguly K, Acharya R, Lee J, Park H, Lim KT. Recent advances and biomedical application of 3D printed nanocellulose-based adhesive hydrogels: A review. Int J Biol Macromol 2024; 264:130732. [PMID: 38479658 DOI: 10.1016/j.ijbiomac.2024.130732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/17/2024]
Abstract
Nanocellulose-based tissue adhesives show promise for achieving rapid hemostasis and effective wound healing. Conventional methods, such as sutures and staples, have limitations, prompting the exploration of bioadhesives for direct wound adhesion and minimal tissue damage. Nanocellulose, a hydrolysis product of cellulose, exhibits superior biocompatibility and multifunctional properties, gaining interest as a base material for bioadhesive development. This study explores the potential of nanocellulose-based adhesives for hemostasis and wound healing using 3D printing techniques. Nanocellulose enables the creation of biodegradable adhesives with minimal adverse effects and opens avenues for advanced wound healing and complex tissue regeneration, such as skin, blood vessels, lungs, cartilage, and muscle. This study reviews recent trends in various nanocellulose-based 3D printed hydrogel patches for tissue engineering applications. The review also introduces various types of nanocellulose and their synthesis, surface modification, and bioadhesive fabrication techniques via 3D printing for smart wound healing.
Collapse
Affiliation(s)
- Hojin Kim
- Department of Biosystems Engineering, Kangwon University, Chuncheon 24341, Gangwon-do, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, Kangwon University, Chuncheon 24341, Gangwon-do, Republic of Korea; Institute of Forest Science, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea
| | - Aayushi Randhawa
- Department of Biosystems Engineering, Kangwon University, Chuncheon 24341, Gangwon-do, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea
| | - Tejal V Patil
- Department of Biosystems Engineering, Kangwon University, Chuncheon 24341, Gangwon-do, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea
| | - Keya Ganguly
- Department of Biosystems Engineering, Kangwon University, Chuncheon 24341, Gangwon-do, Republic of Korea
| | - Rumi Acharya
- Department of Biosystems Engineering, Kangwon University, Chuncheon 24341, Gangwon-do, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea
| | - Jieun Lee
- Department of Biosystems Engineering, Kangwon University, Chuncheon 24341, Gangwon-do, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea
| | - Hyeonseo Park
- Department of Biosystems Engineering, Kangwon University, Chuncheon 24341, Gangwon-do, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon University, Chuncheon 24341, Gangwon-do, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea; Institute of Forest Science, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea.
| |
Collapse
|
2
|
Österberg M, Henn KA, Farooq M, Valle-Delgado JJ. Biobased Nanomaterials─The Role of Interfacial Interactions for Advanced Materials. Chem Rev 2023; 123:2200-2241. [PMID: 36720130 PMCID: PMC9999428 DOI: 10.1021/acs.chemrev.2c00492] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This review presents recent advances regarding biomass-based nanomaterials, focusing on their surface interactions. Plant biomass-based nanoparticles, like nanocellulose and lignin from industry side streams, hold great potential for the development of lightweight, functional, biodegradable, or recyclable material solutions for a sustainable circular bioeconomy. However, to obtain optimal properties of the nanoparticles and materials made thereof, it is crucial to control the interactions both during particle production and in applications. Herein we focus on the current understanding of these interactions. Solvent interactions during particle formation and production, as well as interactions with water, polymers, cells and other components in applications, are addressed. We concentrate on cellulose and lignin nanomaterials and their combination. We demonstrate how the surface chemistry of the nanomaterials affects these interactions and how excellent performance is only achieved when the interactions are controlled. We furthermore introduce suitable methods for probing interactions with nanomaterials, describe their advantages and challenges, and introduce some less commonly used methods and discuss their possible applications to gain a deeper understanding of the interfacial chemistry of biobased nanomaterials. Finally, some gaps in current understanding and interesting emerging research lines are identified.
Collapse
Affiliation(s)
- Monika Österberg
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Vuorimiehentie 1, 02150Espoo, Finland
| | - K Alexander Henn
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Vuorimiehentie 1, 02150Espoo, Finland
| | - Muhammad Farooq
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Vuorimiehentie 1, 02150Espoo, Finland
| | - Juan José Valle-Delgado
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Vuorimiehentie 1, 02150Espoo, Finland
| |
Collapse
|
3
|
Polez RT, Morits M, Jonkergouw C, Phiri J, Valle-Delgado JJ, Linder MB, Maloney T, Rojas OJ, Österberg M. Biological activity of multicomponent bio-hydrogels loaded with tragacanth gum. Int J Biol Macromol 2022; 215:691-704. [PMID: 35777518 DOI: 10.1016/j.ijbiomac.2022.06.153] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/14/2022] [Accepted: 06/23/2022] [Indexed: 11/05/2022]
Abstract
Producing hydrogels capable of mimicking the biomechanics of soft tissue remains a challenge. We explore the potential of plant-based hydrogels as polysaccharide tragacanth gum and antioxidant lignin nanoparticles in bioactive multicomponent hydrogels for tissue engineering. These natural components are combined with TEMPO-oxidized cellulose nanofibrils, a material with known shear thinning behavior. Hydrogels presented tragacanth gum (TG) concentration-dependent rheological properties suitable for extrusion 3D printing. TG enhanced the swelling capacity up to 645 % and the degradation rate up to 1.3 %/day for hydrogels containing 75 % of TG. Young's moduli of the hydrogels varied from 5.0 to 11.6 kPa and were comparable to soft tissues like skin and muscle. In vitro cell viability assays revealed that the scaffolds were non-toxic and promoted proliferation of hepatocellular carcinoma HepG2 cells. Therefore, the plant-based hydrogels designed in this work have a significant potential for tissue engineering.
Collapse
Affiliation(s)
- Roberta Teixeira Polez
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Maria Morits
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Christopher Jonkergouw
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Josphat Phiri
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Juan José Valle-Delgado
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Markus B Linder
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Thaddeus Maloney
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Orlando J Rojas
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland; Bioproducts Institute, Department of Chemical and Biological Engineering, Department of Chemistry and Department of Wood Science, University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Monika Österberg
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland.
| |
Collapse
|