1
|
Chemla Y, Kaufman F, Amiram M, Alfonta L. Expanding the Genetic Code of Bioelectrocatalysis and Biomaterials. Chem Rev 2024; 124:11187-11241. [PMID: 39377473 DOI: 10.1021/acs.chemrev.4c00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Genetic code expansion is a promising genetic engineering technology that incorporates noncanonical amino acids into proteins alongside the natural set of 20 amino acids. This enables the precise encoding of non-natural chemical groups in proteins. This review focuses on the applications of genetic code expansion in bioelectrocatalysis and biomaterials. In bioelectrocatalysis, this technique enhances the efficiency and selectivity of bioelectrocatalysts for use in sensors, biofuel cells, and enzymatic electrodes. In biomaterials, incorporating non-natural chemical groups into protein-based polymers facilitates the modification, fine-tuning, or the engineering of new biomaterial properties. The review provides an overview of relevant technologies, discusses applications, and highlights achievements, challenges, and prospects in these fields.
Collapse
|
2
|
Priyanka, Kaur M, Maiti S. Substrate-induced assembly of cascade enzymes and catalytic surfactants: nanoarchitectonics at the oil-in-water droplet interface. Chem Commun (Camb) 2024; 60:9101-9104. [PMID: 39109397 DOI: 10.1039/d4cc03243h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
The heterogeneous distribution of lipids and lipid-bound proteins in a plasma membrane has functional advantages. Herein, in a synthetic system, we demonstrate the assembly of three enzymes involved in cascade reactions, in response to the substrate of the first enzyme at the oil-water interface being stabilized by a Zn(II)-metallosurfactant. Then we show substrate-mediated catalytically-active cluster formation of the metallosurfactant in a binary mixture with another non-catalytic surfactant at the interface. The catalytic ability can be tuned by controlling clustering through the addition of phosphate ions. Overall this work demonstrates functionally diverse supramolecular nanoarchitectonics at the oil-water interface.
Collapse
Affiliation(s)
- Priyanka
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Manauli 140306, India.
| | - Manpreet Kaur
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Manauli 140306, India.
| | - Subhabrata Maiti
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Manauli 140306, India.
| |
Collapse
|
3
|
Brodszkij E, Städler B. Advances in block copolymer-phospholipid hybrid vesicles: from physical-chemical properties to applications. Chem Sci 2024; 15:10724-10744. [PMID: 39027291 PMCID: PMC11253165 DOI: 10.1039/d4sc01444h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/23/2024] [Indexed: 07/20/2024] Open
Abstract
Hybrid vesicles, made of lipids and amphiphilic block copolymers, have become increasingly popular thanks to their versatile properties that enable the construction of intricate membranes mimicking cellular structures. This tutorial review gives an overview over the different hybrid vesicle designs, and provides a detailed analysis of their properties, including their composition, membrane fluidity, membrane homogeneity, permeability, stability. The review puts emphasis on the application of these hybrid vesicles in bottom-up synthetic biology and aims to offer an overview of design guidelines, particularly focusing on composition, to eventually realize the intended applications of these hybrid vesicles.
Collapse
Affiliation(s)
- Edit Brodszkij
- Interdisciplinary Nanoscience Center (iNANO) Aarhus University Gustave Wieds Vej 14 8000 Aarhus C Denmark
| | - Brigitte Städler
- Interdisciplinary Nanoscience Center (iNANO) Aarhus University Gustave Wieds Vej 14 8000 Aarhus C Denmark
| |
Collapse
|
4
|
Kaur B, Chaudhary GR, Kaur G. Cholesterol vs Ergosterol: Influence on the Dynamic and Structural Properties of the Cobalt-Based Metallosomal Bilayer Membrane. Mol Pharm 2024; 21:3643-3660. [PMID: 38885973 DOI: 10.1021/acs.molpharmaceut.4c00376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Sterol derivatives are a crucial part of liposomes, as their concentration and nature can induce significant alternations in their characteristic features. For natural liposomal-based (phospholipid-based) studies, the bulk literature is already present depicting the role of the concentration or nature of different sterol derivatives in modulation of membrane properties. However, the studies aiming at evaluating the effect of sterol derivatives on synthetic liposomal assemblies are limited to cholesterol (Chl), and a comparative effect with other sterol derivatives, such as ergosterol (Erg), has never been studied. To fill this research gap, through this work, we intend to provide insights into the concentration-dependent effect of two sterol derivatives (Chl and Erg) on a synthetic liposomal assembly (i.e., metallosomes) prepared via thin film hydration route using a double-tailed metallosurfactant fabricated by modifying cetylpyridinium chloride with cobalt (Co) (i.e., Co:CPC II). The morphological evaluations with cryogenic-transmission electron microscopy (cryo-TEM), atomic force microscopy (AFM), and field emission-scanning electron microscopy (FE-SEM) indicated that metallosomes retained their spherical morphology irrespective of the nature and concentration of sterol derivatives. However, the size, ζ-potential, and lamellar width values were significantly modified with the incorporation of sterol derivatives in a concentration-dependent manner. In-depth studies affirmed that the extent of modulation of the bilayer in terms of hydrophobicity, fluidity, and rigidity was more severe with Chl than Erg. Such differences in the membrane properties lead to their contrasting behavior in the delivery of the broad-spectrum active compound "curcumin". From entrapment to in vitro behavior, the metallosomes demonstrated dissimilar behavior as even though Erg-modified metallosomes (at higher concentrations of Erg) exhibited low entrapment efficiency, they still could easily release >80% of the entrapped drug. In vitro studies conducted with Staphylococcus aureus bacterial cultures further revealed an interesting pattern of activity as the incorporation of Chl reduced the toxicity of the self-assembly, whereas their Erg-modified counterparts yielded slightly augmented toxicity toward these bacterial cells. Furthermore, Chl- and Erg-modified assemblies also exhibited contrasting behavior in their interaction studies with bacterial DNA.
Collapse
Affiliation(s)
- Baljinder Kaur
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Ganga Ram Chaudhary
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Gurpreet Kaur
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| |
Collapse
|
5
|
Gray M, Rodriguez-Otero MR, Champion JA. Self-Assembled Recombinant Elastin and Globular Protein Vesicles with Tunable Properties for Diverse Applications. Acc Chem Res 2024; 57:1227-1237. [PMID: 38624000 PMCID: PMC11080046 DOI: 10.1021/acs.accounts.3c00694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 04/17/2024]
Abstract
Vesicles are self-assembled structures comprised of a membrane-like exterior surrounding a hollow lumen with applications in drug delivery, artificial cells, and micro-bioreactors. Lipid or polymer vesicles are the most common and are made of lipids or polymers, respectively. They are highly useful structures for many applications but it can be challenging to decorate them with proteins or encapsulate proteins in them, owing to the use of organic solvent in their formation and the large size of proteins relative to lipid or polymer molecules. By utilization of recombinant fusion proteins to make vesicles, specific protein domains can be directly incorporated while also imparting tunability and stability. Protein vesicle assembly relies on the design and use of self-assembling amphiphilic proteins. A specific protein vesicle platform made in purely aqueous conditions of a globular, functional protein fused to a glutamate-rich leucine zipper (ZE) and a thermoresponsive elastin-like polypeptide (ELP) fused to an arginine-rich leucine zipper (ZR) is discussed here. The hydrophobic conformational change of the ELP above its transition temperature drives assembly, and strong ZE/ZR binding enables incorporation of the desired functional protein. Mixing the soluble proteins on ice induces zipper binding, and then warming above the ELP transition temperature (Tt) triggers the transition to and growth of protein-rich coacervates and, finally, reorganization of proteins into vesicles. Vesicle size is tunable based on salt concentration, rate of heating, protein concentration, size of the globular protein, molar ratio of the proteins, and the ELP sequence. Increasing the salt concentration decreases vesicle size by decreasing the Tt, resulting in a shorter coacervation transition stage. Likewise, directly changing the heating rate also changes this time and increasing protein concentration increases coalescence. Increasing globular protein size decreases the size of the vesicle due to steric hindrance. By changing the ELP sequence, which consists of (VPGXG)n, through the guest residue (X) or number of repeats (n), Tt is changed, affecting size. Additionally, the chemical nature of X variation has endowed vesicles with stimuli responsiveness and stability at physiological conditions.Protein vesicles have been used for biocatalysis, biomacromolecular drug delivery, and vaccine applications. Photo-cross-linkable vesicles were used to deliver small molecule cargo to cancer cells in vitro and antigen to immune cells in vivo. pH-responsive vesicles effectively delivered functional protein cargo, including cytochrome C, to the cytosol of cancer cells in vitro, using hydrophobic ion pairing to improve cargo distribution in the vesicles and release. The globular protein used to make the vesicles can be varied to achieve different functions. For example, enzyme vesicles exhibit biocatalysis, and antigen vesicles induce antibody and cellular immune responses after vaccination in mice. Collectively, the development and engineering of the protein vesicle platform has employed amphiphilic self-assembly strategies and rational protein engineering to control physical, chemical, and biological properties for biotechnology and nanomedicine applications.
Collapse
Affiliation(s)
- Mikaela
A. Gray
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Dr NW, Atlanta, Georgia 30332, United States
| | - Mariela R. Rodriguez-Otero
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Dr NW, Atlanta, Georgia 30332, United States
- BioEngineering
Program, Georgia Institute of Technology, 950 Atlantic Dr NW, Atlanta, Georgia 30332, United States
| | - Julie A. Champion
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Dr NW, Atlanta, Georgia 30332, United States
- BioEngineering
Program, Georgia Institute of Technology, 950 Atlantic Dr NW, Atlanta, Georgia 30332, United States
| |
Collapse
|
6
|
Harder D, Ritzmann N, Ucurum Z, Müller DJ, Fotiadis D. Light Color-Controlled pH-Adjustment of Aqueous Solutions Using Engineered Proteoliposomes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307524. [PMID: 38342618 PMCID: PMC11022694 DOI: 10.1002/advs.202307524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/16/2024] [Indexed: 02/13/2024]
Abstract
Controlling the pH at the microliter scale can be useful for applications in research, medicine, and industry, and therefore represents a valuable application for synthetic biology and microfluidics. The presented vesicular system translates light of different colors into specific pH changes in the surrounding solution. It works with the two light-driven proton pumps bacteriorhodopsin and blue light-absorbing proteorhodopsin Med12, that are oriented in opposite directions in the lipid membrane. A computer-controlled measuring device implements a feedback loop for automatic adjustment and maintenance of a selected pH value. A pH range spanning more than two units can be established, providing fine temporal and pH resolution. As an application example, a pH-sensitive enzyme reaction is presented where the light color controls the reaction progress. In summary, light color-controlled pH-adjustment using engineered proteoliposomes opens new possibilities to control processes at the microliter scale in different contexts, such as in synthetic biology applications.
Collapse
Affiliation(s)
- Daniel Harder
- Institute of Biochemistry and Molecular MedicineUniversity of BernBern3012Switzerland
- National Centre of Competence in Research (NCCR)Molecular Systems EngineeringBaselSwitzerland
| | - Noah Ritzmann
- National Centre of Competence in Research (NCCR)Molecular Systems EngineeringBaselSwitzerland
- Department of Biosystems Science and EngineeringETH ZürichBasel4056Switzerland
| | - Zöhre Ucurum
- Institute of Biochemistry and Molecular MedicineUniversity of BernBern3012Switzerland
| | - Daniel J. Müller
- National Centre of Competence in Research (NCCR)Molecular Systems EngineeringBaselSwitzerland
- Department of Biosystems Science and EngineeringETH ZürichBasel4056Switzerland
| | - Dimitrios Fotiadis
- Institute of Biochemistry and Molecular MedicineUniversity of BernBern3012Switzerland
- National Centre of Competence in Research (NCCR)Molecular Systems EngineeringBaselSwitzerland
| |
Collapse
|
7
|
Gaur D, Dubey NC, Tripathi BP. Designing Configurable Soft Microgelsomes as a Smart Biomimetic Protocell. Biomacromolecules 2024; 25:1108-1118. [PMID: 38236272 DOI: 10.1021/acs.biomac.3c01127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Self-assembly is an intriguing aspect of primitive cells. The construction of a semipermeable compartment with a robust framework of soft material capable of housing an array of functional components for chemical changes is essential for the fabrication of synthetic protocells. Microgels, loosely cross-linked polymer networks, are suitable building blocks for protocell capsule generation due to their porous structure, tunable properties, and assembly at the emulsion interface. Here, we present an interfacial assembly of microgel-based microcompartments (microgelsomes, MGC) that are defined by a semipermeable, temperature-responsive elastic membrane formed by densely packed microgels in a monolayer. The water-dispersible microgelsomes can thermally shuttle between 10 and 95 °C while retaining their structural integrity. Importantly, the microgelsomes exhibited distinct properties of protocells, such as cargo encapsulation, semipermeable membrane, DNA amplification, and membrane-gated compartmentalized enzymatic cascade reaction. This versatile approach for the construction of biomimetic microcompartments augments the protocell library and paves the way for programmable synthetic cells.
Collapse
Affiliation(s)
- Divya Gaur
- Functional Materials & Membranes Laboratory, Department of Materials Science & Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Nidhi C Dubey
- Department of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India
| | - Bijay P Tripathi
- Functional Materials & Membranes Laboratory, Department of Materials Science & Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
8
|
Powers J, Jang Y. Advancing Biomimetic Functions of Synthetic Cells through Compartmentalized Cell-Free Protein Synthesis. Biomacromolecules 2023; 24:5539-5550. [PMID: 37962115 DOI: 10.1021/acs.biomac.3c00879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Synthetic cells are artificial constructs that mimic the structures and functions of living cells. They are attractive for studying diverse biochemical processes and elucidating the origins of life. While creating a living synthetic cell remains a grand challenge, researchers have successfully synthesized hundreds of unique synthetic cell platforms. One promising approach to developing more sophisticated synthetic cells is to integrate cell-free protein synthesis (CFPS) mechanisms into vesicle platforms. This makes it possible to create synthetic cells with complex biomimetic functions such as genetic circuits, autonomous membrane modifications, sensing and communication, and artificial organelles. This Review explores recent advances in the use of CFPS to impart advanced biomimetic structures and functions to bottom-up synthetic cell platforms. We also discuss the potential applications of synthetic cells in biomedicine as well as the future directions of synthetic cell research.
Collapse
Affiliation(s)
- Jackson Powers
- Department of Chemical Engineering, University of Florida, 1006 Center Drive, Gainesville, Florida 32611, United States
| | - Yeongseon Jang
- Department of Chemical Engineering, University of Florida, 1006 Center Drive, Gainesville, Florida 32611, United States
| |
Collapse
|
9
|
Reverte-López M, Gavrilovic S, Merino-Salomón A, Eto H, Yagüe Relimpio A, Rivas G, Schwille P. Protein-Based Patterning to Spatially Functionalize Biomimetic Membranes. SMALL METHODS 2023; 7:e2300173. [PMID: 37350500 DOI: 10.1002/smtd.202300173] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/08/2023] [Indexed: 06/24/2023]
Abstract
The bottom-up reconstitution of proteins for their modular engineering into synthetic cellular systems can reveal hidden protein functions in vitro. This is particularly evident for the bacterial Min proteins, a paradigm for self-organizing reaction-diffusion systems that displays an unexpected functionality of potential interest for bioengineering: the directional active transport of any diffusible cargo molecule on membranes. Here, the MinDE protein system is reported as a versatile surface patterning tool for the rational design of synthetically assembled 3D systems. Employing two-photon lithography, microswimmer-like structures coated with tailored lipid bilayers are fabricated and demonstrate that Min proteins can uniformly pattern bioactive molecules on their surface. Moreover, it is shown that the MinDE system can form stationary patterns inside lipid vesicles, which allow the targeting and distinctive clustering of higher-order protein structures on their inner leaflet. Given their facile use and robust function, Min proteins thus constitute a valuable molecular toolkit for spatially patterned functionalization of artificial biosystems like cell mimics and microcarriers.
Collapse
Affiliation(s)
- María Reverte-López
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Svetozar Gavrilovic
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Adrián Merino-Salomón
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Hiromune Eto
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), Utrecht, 3584 CT, The Netherlands
| | - Ana Yagüe Relimpio
- Department of Cellular Biophysics, Max Planck for Medical Research, 69120, Heidelberg, Germany
| | - Germán Rivas
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, 28040, Spain
| | - Petra Schwille
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| |
Collapse
|
10
|
Kayani A, Raza A, Si J, Dutta D, Zhou Q, Ge Z. Polymersome Membrane Engineering with Active Targeting or Controlled Permeability for Responsive Drug Delivery. Biomacromolecules 2023; 24:4622-4645. [PMID: 37870458 DOI: 10.1021/acs.biomac.3c00839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Polymersomes have been extensively investigated for drug delivery as nanocarriers for two decades due to a series of advantages including high stability under physiological conditions, simultaneous encapsulation of hydrophilic and hydrophobic drugs inside inner cavities and membranes, respectively, and facile adjustment of membrane and surface properties, as well as controlled drug release through incorporation of stimuli-responsive components. Despite these features, polymersome nanocarriers frequently suffer from nontargeting delivery and poor membrane permeability. In recent years, polymersomes have been functionalized for more efficient drug delivery. The surface shells were explored to be modified with diverse active targeting groups to improve disease-targeting delivery. The membrane permeability of the polymersomes was adjusted by incorporation of the stimuli-responsive components for smart controlled transportation of the encapsulated drugs. Therefore, being the polymersome-biointerface, tailorable properties can be introduced by its carefully modulated engineering. This review elaborates on the role of polymersome membranes as a platform to incorporate versatile features. First, we discuss how surface functionalization facilitates the directional journey to the targeting sites toward specific diseases, cells, or intracellular organelles via active targeting. Moreover, recent advances in the past decade related to membrane permeability to control drug release are also summarized. We finally discuss future development to promote polymersomes as in vivo drug delivery nanocarriers.
Collapse
Affiliation(s)
- Anum Kayani
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Arsalan Raza
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Jiale Si
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Debabrata Dutta
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Qinghao Zhou
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Zhishen Ge
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| |
Collapse
|
11
|
Shin J, Jang Y. Rational design and engineering of polypeptide/protein vesicles for advanced biological applications. J Mater Chem B 2023; 11:8834-8847. [PMID: 37505198 DOI: 10.1039/d3tb01103h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Synthetic vesicles have gained considerable popularity in recent years for numerous biological and medical applications. Among the various types of synthetic vesicles, the utilization of polypeptides and/or proteins as fundamental constituents has garnered significant interest for vesicle construction owing to the unique bio-functionalities inherent in rationally designed amino acid sequences. Especially the incorporation of functional proteins onto the vesicle surface facilitates a wide range of advanced biological applications that are not easily attainable with traditional building blocks, such as lipids and polymers. The main goal of this review is to provide a comprehensive overview of the latest advancements in polypeptide/protein vesicles. Moreover, this review encompasses the rational design and engineering strategies employed in the creation of polypeptide/protein vesicles, including the synthesis of building blocks, the modulation of their self-assembly, as well as their diverse applications. Furthermore, this work includes an in-depth discussion of the key challenges and opportunities associated with polypeptide/protein vesicles, providing valuable insights for future research. By offering an up-to-date review of this burgeoning field of polypeptide/protein vesicle research, this review will shed light on the potential applications of these biomaterials.
Collapse
Affiliation(s)
- Jooyong Shin
- Department of Chemical Engineering, University of Florida, 1006 Center Drive, Gainesville, Florida 32611, USA.
| | - Yeongseon Jang
- Department of Chemical Engineering, University of Florida, 1006 Center Drive, Gainesville, Florida 32611, USA.
| |
Collapse
|
12
|
Fumadó Navarro J, Lomora M. Mechanoresponsive Drug Delivery Systems for Vascular Diseases. Macromol Biosci 2023; 23:e2200466. [PMID: 36670512 DOI: 10.1002/mabi.202200466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/16/2023] [Indexed: 01/22/2023]
Abstract
Mechanoresponsive drug delivery systems (DDS) have emerged as promising candidates to improve the current effectiveness and lower the side effects typically associated with direct drug administration in the context of vascular diseases. Despite tremendous research efforts to date, designing drug delivery systems able to respond to mechanical stimuli to potentially treat these diseases is still in its infancy. By understanding relevant biological forces emerging in healthy and pathological vascular endothelium, it is believed that better-informed design strategies can be deduced for the fabrication of simple-to-complex macromolecular assemblies capable of sensing mechanical forces. These responsive systems are discussed through insights into essential parameter design (composition, size, shape, and aggregation state) , as well as their functionalization with (macro)molecules that are intrinsically mechanoresponsive (e.g., mechanosensitive ion channels and mechanophores). Mechanical forces, including the pathological shear stress and exogenous stimuli (e.g., ultrasound, magnetic fields), used for the activation of mechanoresponsive DDS are also introduced, followed by in vitro and in vivo experimental models used to investigate and validate such novel therapies. Overall, this review aims to propose a fresh perspective through identified challenges and proposed solutions that could be of benefit for the further development of this exciting field.
Collapse
Affiliation(s)
- Josep Fumadó Navarro
- School of Biological and Chemical Sciences, University of Galway, University Road, Galway, H91 TK33, Ireland
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Upper Newcastle, Galway, H91 W2TY, Ireland
| | - Mihai Lomora
- School of Biological and Chemical Sciences, University of Galway, University Road, Galway, H91 TK33, Ireland
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Upper Newcastle, Galway, H91 W2TY, Ireland
| |
Collapse
|
13
|
Lin AJ, Sihorwala AZ, Belardi B. Engineering Tissue-Scale Properties with Synthetic Cells: Forging One from Many. ACS Synth Biol 2023; 12:1889-1907. [PMID: 37417657 PMCID: PMC11017731 DOI: 10.1021/acssynbio.3c00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
In metazoans, living cells achieve capabilities beyond individual cell functionality by assembling into multicellular tissue structures. These higher-order structures represent dynamic, heterogeneous, and responsive systems that have evolved to regenerate and coordinate their actions over large distances. Recent advances in constructing micrometer-sized vesicles, or synthetic cells, now point to a future where construction of synthetic tissue can be pursued, a boon to pressing material needs in biomedical implants, drug delivery systems, adhesives, filters, and storage devices, among others. To fully realize the potential of synthetic tissue, inspiration has been and will continue to be drawn from new molecular findings on its natural counterpart. In this review, we describe advances in introducing tissue-scale features into synthetic cell assemblies. Beyond mere complexation, synthetic cells have been fashioned with a variety of natural and engineered molecular components that serve as initial steps toward morphological control and patterning, intercellular communication, replication, and responsiveness in synthetic tissue. Particular attention has been paid to the dynamics, spatial constraints, and mechanical strengths of interactions that drive the synthesis of this next-generation material, describing how multiple synthetic cells can act as one.
Collapse
Affiliation(s)
- Alexander J Lin
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Ahmed Z Sihorwala
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Brian Belardi
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
14
|
Nagata H, Yoshimoto M, Walde P. Preparation and Catalytic Properties of Carbonic Anhydrase Conjugated to Liposomes through a Bis-Aryl Hydrazone Bond. ACS OMEGA 2023; 8:18637-18652. [PMID: 37273636 PMCID: PMC10233673 DOI: 10.1021/acsomega.3c00551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/05/2023] [Indexed: 06/06/2023]
Abstract
Liposomes (lipid vesicles) with sizes of about 100-200 nm carrying surface-bound (immobilized) water-soluble enzymes are functionalized molecular compartment systems for possible applications, for example, as therapeutic materials or as catalytic reaction units for running reactions in aqueous media in vitro. One way of covalently attaching enzyme molecules under mild conditions in a controlled way to the surface of preformed liposomes is to apply the spectrophotometrically traceable bis-aryl hydrazone (BAH) bond between the liposome and the enzyme molecules of interest. Using bovine carbonic anhydrase (BCA), an aqueous dispersion of liposome-BAH-BCA - conjugates of defined composition was prepared. The liposomes used consisted of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), N-(methylpolyoxyethylene oxycarbonyl)-1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE-PEG), and N-(aminopropylpolyoxyethylene oxycarbonyl)-1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE-PEG-NH2). The amino group of some of the DSPE-PEG-NH2 molecules present in the liposomes were converted into an aromatic aldehyde, which (after purification) reacted with (purified) BCA molecules that had on their surface on average one acetone protected aromatic hydrazine. After purification of the liposome-BAH-BCA conjugate dispersion obtained, it was characterized in terms of (i) BCA activity, (ii) overall BCA structure, and (iii) storage stability. For an average liposome of 138 nm diameter, about 1200 BCA molecules were attached to the outer liposome surface. Liposomally bound BCA was found to exhibit (i) similar catalytic activity at 25 °C and (ii) similar storage stability when stored in a dispersed state in aqueous solution at 4 °C as free BCA. Measurements at 5 °C clearly showed that liposome-BAH-BCA is able to catalyze the hydration of carbon dioxide to hydrogen carbonate.
Collapse
Affiliation(s)
- Hikaru Nagata
- Department
of Applied Chemistry, Yamaguchi University, Tokiwadai 2-16-1, Ube 755-8611, Japan
| | - Makoto Yoshimoto
- Department
of Applied Chemistry, Yamaguchi University, Tokiwadai 2-16-1, Ube 755-8611, Japan
| | - Peter Walde
- Department
of Materials, ETH-Zürich, Leopold-Ruzicka-Weg 4, Zürich 8093, Switzerland
| |
Collapse
|
15
|
Nandi S, Nair KS, Bajaj H. Bacterial Outer-Membrane-Mimicking Giant Unilamellar Vesicle Model for Detecting Antimicrobial Permeability. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5891-5900. [PMID: 37036429 DOI: 10.1021/acs.langmuir.3c00378] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The construction of bacterial outer membrane models with native lipids like lipopolysaccharide (LPS) is a barrier to understanding antimicrobial permeability at the membrane interface. Here, we engineer bacterial outer membrane (OM)-mimicking giant unilamellar vesicles (GUVs) by constituting LPS under different pH conditions and assembled GUVs with controlled dimensions. We quantify the LPS reconstituted in GUV membranes and reveal their arrangement in the leaflets of the vesicles. Importantly, we demonstrate the applications of OM vesicles by exploring antimicrobial permeability activity across membranes. Model peptides, melittin and magainin-2, are examined where both peptides exhibit lower membrane activity in OM vesicles than vesicles devoid of LPS. Our findings reveal the mode of action of antimicrobial peptides in bacterial-membrane-mimicking models. Notably, the critical peptide concentration required to elicit activity on model membranes correlates with the cell inhibitory concentrations that revalidate our models closely mimic bacterial membranes. In conclusion, we provide an OM-mimicking model capable of quantifying antimicrobial permeability across membranes.
Collapse
Affiliation(s)
- Samir Nandi
- Microbial Processes and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019, Kerala, India
| | - Karthika S Nair
- Microbial Processes and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, Ghaziabad 201002, India
| | - Harsha Bajaj
- Microbial Processes and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, Ghaziabad 201002, India
| |
Collapse
|
16
|
Vu TQ, Sant'Anna LE, Kamat NP. Tuning Targeted Liposome Avidity to Cells via Lipid Phase Separation. Biomacromolecules 2023; 24:1574-1584. [PMID: 36943688 PMCID: PMC10874583 DOI: 10.1021/acs.biomac.2c01338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
The addition of both cell-targeting moieties and polyethylene glycol (PEG) to nanoparticle (NP) drug delivery systems is a standard approach to improve the biodistribution, specificity, and uptake of therapeutic cargo. The spatial presentation of these molecules affects avidity of the NP to target cells in part through an interplay between the local ligand concentration and the steric hindrance imposed by PEG molecules. Here, we show that lipid phase separation in nanoparticles can modulate liposome avidity by changing the proximity of PEG and targeting protein molecules on a nanoparticle surface. Using lipid-anchored nickel-nitrilotriacetic acid (Ni-NTA) as a model ligand, we demonstrate that the attachment of lipid anchored Ni-NTA and PEG molecules to distinct lipid domains in nanoparticles can enhance liposome binding to cancer cells by increasing ligand clustering and reducing steric hindrance. We then use this technique to enhance the binding of RGD-modified liposomes, which can bind to integrins overexpressed on many cancer cells. These results demonstrate the potential of lipid phase separation to modulate the spatial presentation of targeting and shielding molecules on lipid nanocarriers, offering a powerful tool to enhance the efficacy of NP drug delivery systems.
Collapse
Affiliation(s)
- Timothy Q Vu
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, McCormick School of Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Lucas E Sant'Anna
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, McCormick School of Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Neha P Kamat
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, McCormick School of Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
17
|
Zhang Y, Xu C, Zhang D, Chen X. Proteinosomes via Self-Assembly of Thermoresponsive Miktoarm Polymer Protein Bioconjugates. Biomacromolecules 2023; 24:1994-2002. [PMID: 37002865 DOI: 10.1021/acs.biomac.2c01368] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
To fabricate nanoscale proteinosomes, thermoresponsive miktoarm polymer protein bioconjugates were prepared through highly efficient molecular recognition between the β-cyclodextrin modified BSA (CD-BSA) and the adamantyl group anchored at the junction point of the thermoresponsive block copolymer poly(ethylene glycol)-b-poly(di(ethylene glycol) methyl ether methacrylate) (PEG-b-PDEGMA). PEG-b-PDEGMA was synthesized by the Passerini reaction of benzaldehyde-modified PEG, 2-bromo-2-methylpropionic acid, and 1-isocyanoadamantane, followed by the atom transfer radical polymerization of DEGMA. Two block copolymers with different chain lengths of PDEGMA were prepared, and both self-assembled into polymersomes at a temperature above their lower critical solution temperatures (LCST). The two copolymers can undergo molecular recognition with the CD-BSA and form miktoarm star-like bioconjugates. The bioconjugates self-assembled into ∼160 nm proteinosomes at a temperature above their LCSTs, and the miktoarm star-like structure has a great effect on the formation of the proteinosomes. Most of the secondary structure and esterase activity of BSA in the proteinosomes were maintained. The proteinosomes exhibited low toxicity to the 4T1 cells and could deliver model drug doxorubicin into the 4T1 cells.
Collapse
Affiliation(s)
- Yue Zhang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
- Hebei Key Laboratory of Functional Polymers, Tianjin 300130, China
| | - Changlan Xu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
- Hebei Key Laboratory of Functional Polymers, Tianjin 300130, China
| | - Daowen Zhang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
- Hebei Key Laboratory of Functional Polymers, Tianjin 300130, China
| | - Xiaoai Chen
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
- Hebei Key Laboratory of Functional Polymers, Tianjin 300130, China
| |
Collapse
|
18
|
Milchev A, Petkov P. Concave polymer brushes inwardly grafted in spherical cavities. J Chem Phys 2023; 158:094903. [PMID: 36889952 DOI: 10.1063/5.0141450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
The structure and scaling properties of inwardly curved polymer brushes, tethered under good solvent conditions to the inner surface of spherical shells such as membranes and vesicles, are studied by extensive molecular dynamics simulations and compared with earlier scaling and self-consistent field theory predictions for different molecular weights of the polymer chains N and grafting densities σg in the case of strong surface curvature, R-1. We examine the variation of the critical radius R*(σg), separating the regimes of weak concave brushes and compressed brushes, predicted earlier by Manghi et al. [Eur. Phys. J. E 5, 519-530 (2001)], as well as various structural properties such as the radial monomer- and chain-end density profiles, orientation of bonds, and brush thickness. The impact of chain stiffness, κ, on concave brush conformations is briefly considered as well. Eventually, we present the radial profiles of the local pressure normal, PN, and tangential, PT, to the grafting surface, and the surface tension γ(σg), for soft and rigid brushes, and find a new scaling relationship PN(R)∝σg 4, independent of the degree of chain stiffness.
Collapse
Affiliation(s)
- Andrey Milchev
- Institute of Physical Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Peicho Petkov
- Sofia University St. Kliment Ohridski, Faculty of Physics, Sofia, Bulgaria
| |
Collapse
|
19
|
Assembly methods for asymmetric lipid and polymer-lipid vesicles. Emerg Top Life Sci 2022; 6:609-617. [PMID: 36533596 DOI: 10.1042/etls20220055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022]
Abstract
Asymmetric unilamellar vesicles are aqueous bodies surrounded by two dissimilar leaflets made from lipids, polymers, or both. They are great models for cell membranes and attractive vehicles in potential biomedicine applications. Despite their promise, asymmetric unilamellar vesicles are not widely studied or adopted in applications. This is largely due to the complexity in generating asymmetric membranes. Recent technical advances in microfluidics have opened doors to high throughput fabrication of asymmetric unilamellar vesicles. In this review, we focus on microfluidic methods for generating asymmetric lipid vesicles, with two dissimilar lipid leaflets, and asymmetric lipid-polymer vesicles, with one lipid leaflet and one polymer leaflet. We also review a few standard non-microfluidic methods for generating asymmetric vesicles. We hope to highlight the improved capability in obtaining asymmetric vesicles through a variety of methods and encourage the wider scientific community to adopt some of these for their own work.
Collapse
|
20
|
He X, Xue Y, Dong J, Li X. Multiple Pickering emulsions fabricated by a single block copolymer amphiphile in one-step. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Uchida K, Obayashi H, Minamihata K, Wakabayashi R, Goto M, Shimokawa N, Takagi M, Kamiya N. Artificial Palmitoylation of Proteins Controls the Lipid Domain-Selective Anchoring on Biomembranes and the Raft-Dependent Cellular Internalization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9640-9648. [PMID: 35882009 DOI: 10.1021/acs.langmuir.2c01205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Protein palmitoylation, a post-translational modification, is universally observed in eukaryotic cells. The localization of palmitoylated proteins to highly dynamic, sphingolipid- and cholesterol-rich microdomains (called lipid rafts) on the plasma membrane has been shown to play an important role in signal transduction in cells. However, this complex biological system is not yet completely understood. Here, we used a combined approach where an artificial lipidated protein was applied to biomimetic model membranes and plasma membranes in cells to illuminate chemical and physiological properties of the rafts. Using cell-sized giant unilamellar vesicles, we demonstrated the selective partitioning of enhanced green fluorescent protein modified with a C-terminal palmitoyl moiety (EGFP-Pal) into the liquid-ordered phase consisting of saturated phospholipids and cholesterol. Using Jurkat T cells treated with an immunostimulant (concanavalin A), we observed the vesicular transport of EGFP-Pal. Further cellular studies with the treatment of methyl β-cyclodextrin revealed the cholesterol-dependent internalization of EGFP-Pal, which can be explained by a raft-dependent, caveolae-mediated endocytic pathway. The present synthetic approach using artificial and natural membrane systems can be further extended to explore the potential utility of artificially lipidated proteins at biological and artificial interfaces.
Collapse
Affiliation(s)
- Kazuki Uchida
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hiroki Obayashi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kosuke Minamihata
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Rie Wakabayashi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masahiro Goto
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Division of Biotechnology, Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Naofumi Shimokawa
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Masahiro Takagi
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Noriho Kamiya
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Division of Biotechnology, Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|