1
|
Leslie K, Berry SS, Miller GJ, Mahon CS. Sugar-Coated: Can Multivalent Glycoconjugates Improve upon Nature's Design? J Am Chem Soc 2024; 146:27215-27232. [PMID: 39340450 PMCID: PMC11467903 DOI: 10.1021/jacs.4c08818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
Multivalent interactions between receptors and glycans play an important role in many different biological processes, including pathogen infection, self-recognition, and the immune response. The growth in the number of tools and techniques toward the assembly of multivalent glycoconjugates means it is possible to create synthetic systems that more and more closely resemble the diversity and complexity we observe in nature. In this Perspective we present the background to the recognition and binding enabled by multivalent interactions in nature, and discuss the strategies used to construct synthetic glycoconjugate equivalents. We highlight key discoveries and the current state of the art in their applications to glycan arrays, vaccines, and other therapeutic and diagnostic tools, with an outlook toward some areas we believe are of most interest for future work in this area.
Collapse
Affiliation(s)
- Kathryn
G. Leslie
- Department
of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - Sian S. Berry
- Centre
for Glycoscience and School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
| | - Gavin J. Miller
- Centre
for Glycoscience and School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
| | - Clare S. Mahon
- Department
of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
2
|
Li J, Xu T, Zheng Y, Liu D, Zhang C, Li J, Wang ZA, Du Y. In Silico Study on a Binding Mechanism of ssDNA Aptamers Targeting Glycosidic Bond-Containing Small Molecules. Anal Chem 2024; 96:5056-5064. [PMID: 38497564 DOI: 10.1021/acs.analchem.4c00927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Aptamer-based detection targeting glycoconjugates has attracted significant attention for its remarkable potential in identifying structural changes in saccharides in different stages of various diseases. However, the challenges in screening aptamers for small carbohydrates or glycoconjugates, which contain highly flexible and diverse glycosidic bonds, have hindered their application and commercialization. In this study, we investigated the binding conformations between three glycosidic bond-containing small molecules (GlySMs; glucose, N-acetylneuraminic acid, and neomycin) and their corresponding aptamers in silico, and analyzed factors contributing to their binding affinities. Based on the findings, a novel binding mechanism was proposed, highlighting the central role of the stem structure of the aptamer in binding and recognizing GlySMs and the auxiliary role of the mismatched bases in the adjacent loop. Guided by this binding mechanism, an aptamer with a higher 6'-sialyllactose binding affinity was designed, achieving a KD value of 4.54 ± 0.64 μM in vitro through a single shear and one mutation. The binding mechanism offers crucial guidance for designing high-affinity aptamers, enhancing the virtual screening efficiency for GlySMs. This streamlined workflow filters out ineffective binding sites, accelerating aptamer development and providing novel insights into glycan-nucleic acid interactions.
Collapse
Affiliation(s)
- Jiaqing Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 North second Street, Zhongguancun, Haidian District, Beijing 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, 1 North second Street, Zhongguancun, Haidian District, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, No.19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Tong Xu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 North second Street, Zhongguancun, Haidian District, Beijing 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, 1 North second Street, Zhongguancun, Haidian District, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, No.19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Yalan Zheng
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Dongdong Liu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 North second Street, Zhongguancun, Haidian District, Beijing 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, 1 North second Street, Zhongguancun, Haidian District, Beijing 100190, China
| | - Chen Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 North second Street, Zhongguancun, Haidian District, Beijing 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, 1 North second Street, Zhongguancun, Haidian District, Beijing 100190, China
| | - Jianjun Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 North second Street, Zhongguancun, Haidian District, Beijing 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, 1 North second Street, Zhongguancun, Haidian District, Beijing 100190, China
| | - Zhuo A Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 North second Street, Zhongguancun, Haidian District, Beijing 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, 1 North second Street, Zhongguancun, Haidian District, Beijing 100190, China
| | - Yuguang Du
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 North second Street, Zhongguancun, Haidian District, Beijing 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, 1 North second Street, Zhongguancun, Haidian District, Beijing 100190, China
| |
Collapse
|
3
|
Becker J, Terracciano R, Yilmaz G, Napier R, Becer CR. Step-Growth Glycopolymers with a Defined Tacticity for Selective Carbohydrate-Lectin Recognition. Biomacromolecules 2023; 24:1924-1933. [PMID: 36976928 PMCID: PMC10091353 DOI: 10.1021/acs.biomac.3c00133] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Glycopolymers are potent candidates for biomedical applications by exploiting multivalent carbohydrate-lectin interactions. Owing to their specific recognition capabilities, glycosylated polymers can be utilized for targeted drug delivery to certain cell types bearing the corresponding lectin receptors. A fundamental challenge in glycopolymer research, however, is the specificity of recognition to receptors binding to the same sugar unit (e.g., mannose). Variation of polymer backbone chirality has emerged as an effective method to distinguish between lectins on a molecular level. Herein, we present a facile route toward producing glycopolymers with a defined tacticity based on a step-growth polymerization technique using click chemistry. A set of polymers have been fabricated and further functionalized with mannose moieties to enable lectin binding to receptors relevant to the immune system (mannose-binding lectin, dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin, and dendritic and thymic epithelial cell-205). Surface plasmon resonance spectrometry was employed to determine the kinetic parameters of the step-growth glycopolymers. The results highlight the importance of structural complexity in advancing glycopolymer synthesis, yet multivalency remains a main driving force in lectin recognition.
Collapse
Affiliation(s)
- Jonas Becker
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | | | - Gokhan Yilmaz
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Richard Napier
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, U.K
| | - C Remzi Becer
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| |
Collapse
|