1
|
Breusa S, Thomas E, Baldinotti N, Zilio S, Delcros JG, Hernandez-Palomino DM, Qi W, Guérin H, Gibert B, Mehlen P, Marigo I, Kryza D, Lollo G. Anti-Netrin-1 decorated nanoparticles combined with chemotherapy for the treatment of triple-negative breast cancer. BIOMATERIALS ADVANCES 2024; 161:213881. [PMID: 38749213 DOI: 10.1016/j.bioadv.2024.213881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/30/2024] [Accepted: 04/25/2024] [Indexed: 06/04/2024]
Abstract
Nanoparticle's success as drug delivery systems for cancer treatment has been achieved through passive targeting mechanisms. However, tumor heterogeneity and rapid drug clearance limit the treatment efficacy. Improved outcomes and selective drug release can be achieved by grafting ligands at the surface of nanocarriers that bind molecules overexpressed in the tumor microenvironment (TME). In this work, we developed a docetaxel-loaded nanoemulsions (NEs) binding an anti-netrin-1 monoclonal antibody (NP137) to selectively target the netrin-1 protein overexpressed in many different tumors. The goal is to refine a combined approach utilizing NP137 and docetaxel as an improved tumor-targeting chemotherapeutic agent for addressing triple-negative breast cancer (TNBC). Several factors have been considered for the optimization of the active targeted drug delivery system via the click-chemistry conjugation, as the impact of PEGylated surfactant that stabilize the NEs shell on conjugation efficiency, cytocompatibility with EMT6 cell line and colloidal stability over time of NEs. Results showed that a 660 Da PEG chain length contributed to NEs colloidal stability and had no impact on cell viability or on the antibody binding ability for its ligand after surface conjugation. Moreover, docetaxel was encapsulated into the oily core of NEs, with an encapsulation efficiency of 70 %. To validate our treatment strategy in vivo, the 4T1 murine breast cancer model was used. As a result, the comparison of active-targeted and non-targeted NEs revealed that only active-targeted NE could decrease the tumor growth rate.
Collapse
Affiliation(s)
- Silvia Breusa
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 boulevard du 11 novembre 1918, F-69100 Villeurbanne, France; Apoptosis, Cancer and Development Laboratory- Equipe labellisée 'La Ligue', LabEx DEVweCAN, Institut Convergence PLAsCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS, Université de Lyon1, 69008 Lyon, France
| | - Eloise Thomas
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 boulevard du 11 novembre 1918, F-69100 Villeurbanne, France
| | - Noemi Baldinotti
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 boulevard du 11 novembre 1918, F-69100 Villeurbanne, France
| | - Serena Zilio
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 boulevard du 11 novembre 1918, F-69100 Villeurbanne, France
| | - Jean-Guy Delcros
- Small molecules for biological targets, Centre de Recherche en Cancérologie de Lyon, INSERM 1052 - CNRS5286, ISPB Rockefeller, Université Lyon 1, 69008 Lyon, France
| | | | - Weisha Qi
- Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Hanäé Guérin
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 boulevard du 11 novembre 1918, F-69100 Villeurbanne, France
| | - Benjamin Gibert
- Apoptosis, Cancer and Development Laboratory- Equipe labellisée 'La Ligue', LabEx DEVweCAN, Institut Convergence PLAsCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS, Université de Lyon1, 69008 Lyon, France; Gastroenterology and technologies for health group, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS5286, Université Lyon 1, 69008 Lyon, France
| | - Patrick Mehlen
- Apoptosis, Cancer and Development Laboratory- Equipe labellisée 'La Ligue', LabEx DEVweCAN, Institut Convergence PLAsCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS, Université de Lyon1, 69008 Lyon, France; Netris Pharma, Lyon, France
| | - Ilaria Marigo
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Gattamelata 64, 35128 Padua, Italy; Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - David Kryza
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 boulevard du 11 novembre 1918, F-69100 Villeurbanne, France; Imthernat Plateform, Hospices Civils de Lyon, 69437 Lyon, France.
| | - Giovanna Lollo
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 boulevard du 11 novembre 1918, F-69100 Villeurbanne, France.
| |
Collapse
|
2
|
Gazzi R, Gelli R, Aleandri S, Carone M, Luciani P. Bioinspired and bioderived nanomedicine for inflammatory bowel disease. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1986. [PMID: 39140489 DOI: 10.1002/wnan.1986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 08/15/2024]
Abstract
Due to its chronic nature and complex pathophysiology, inflammatory bowel disease (IBD) poses significant challenges for treatment. The long-term therapies for patients, often diagnosed between the ages of 20 and 40, call for innovative strategies to target inflammation, minimize systemic drug exposure, and improve patients' therapeutic outcomes. Among the plethora of strategies currently pursued, bioinspired and bioderived nano-based formulations have garnered interest for their safety and versatility in the management of IBD. Bioinspired nanomedicine can host and deliver not only small drug molecules but also biotherapeutics, be made gastroresistant and mucoadhesive or mucopenetrating and, for these reasons, are largely investigated for oral administration, while surprisingly less for rectal delivery, recommended first-line treatment approach for several IBD patients. The use of bioderived nanocarriers, mostly extracellular vesicles (EVs), endowed with unique homing abilities, is still in its infancy with respect to the arsenal of nanomedicine under investigation for IBD treatment. An emerging source of EVs suited for oral administration is ingesta, that is, plants or milk, thanks to their remarkable ability to resist the harsh environment of the upper gastrointestinal tract. Inspired by the unparalleled properties of natural biomaterials, sophisticated avenues for enhancing therapeutic efficacy and advancing precision medicine approaches in IBD care are taking shape, although bottlenecks arising either from the complexity of the nanomedicine designed or from the lack of a clear regulatory pathway still hinder a smooth and efficient translation to the clinics. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Rafaela Gazzi
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Rita Gelli
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Florence, Italy
| | - Simone Aleandri
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Marianna Carone
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Paola Luciani
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| |
Collapse
|
3
|
Andretto V, Rosso A, Zilio S, Sidi-Boumedine J, Boschetti G, Sankar S, Buffier M, Miele AE, Denis M, Choffour PA, Briançon S, Nancey S, Kryza D, Lollo G. Peptide-Based Hydrogel for Nanosystems Encapsulation: the Next Generation of Localized Delivery Systems for the Treatment of Intestinal Inflammations. Adv Healthc Mater 2024; 13:e2303280. [PMID: 38445812 DOI: 10.1002/adhm.202303280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/10/2024] [Indexed: 03/07/2024]
Abstract
Conventional therapies for inflammatory bowel diseases are mainly based on systemic treatments which cause side effects and toxicity over long-term administration. Nanoparticles appear as a valid alternative to allow a preferential accumulation in inflamed tissues following oral administration while reducing systemic drug exposure. To increase their residence time in the inflamed intestine, the nanoparticles are here associated with a hydrogel matrix. A bioadhesive peptide-based hydrogel is mixed with nanoemulsions, creating a hybrid lipid-polymer nanocomposite. Mucopenetrating nanoemulsions of 100 nm are embedded in a scaffold constituted of the self-assembling peptide hydrogel product PuraStat. The nanocomposite is fully characterized to study the impact of lipid particles in the hydrogel structure. Rheological measurements and circular dichroism analyses are performed to investigate the system's microstructure and physical properties. Biodistribution studies demonstrate that the nanocomposite acts as a depot in the stomach and facilitates the slow release of the nanoemulsions in the intestine. Efficacy studies upon oral administration of the drug-loaded system show the improvement of the disease score in a mouse model of intestinal inflammation.
Collapse
Affiliation(s)
- Valentina Andretto
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, Villeurbanne, F-69622, France
| | - Annalisa Rosso
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, Villeurbanne, F-69622, France
| | - Serena Zilio
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, Villeurbanne, F-69622, France
- SATT, Ouest Valorisation, 14C Rue du Patis Tatelin, Renne, 35708, France
| | - Jacqueline Sidi-Boumedine
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, Villeurbanne, F-69622, France
| | - Gilles Boschetti
- Department of Gastroenterology, Lyon Sud Hospital, Hospices Civil de Lyon and CIRI, Lyon, 69495, France
| | - Sharanya Sankar
- 3-D Matrix Europe SAS, Medical Technology, Caluire-et-Cuire, 69300, France
| | - Marie Buffier
- 3-D Matrix Europe SAS, Medical Technology, Caluire-et-Cuire, 69300, France
| | - Adriana Erica Miele
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ISA UMR 5280, 5 rue de la Doua, Villeurbanne, F-69100, France
- Dept Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro 5, Rome, I-00185, Italy
| | - Morgane Denis
- Univ Lyon, Université Claude Bernard Lyon, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69008, France
- Antineo, R&D Department, Lyon, 69008, France
| | | | - Stéphanie Briançon
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, Villeurbanne, F-69622, France
| | - Stéphane Nancey
- Department of Gastroenterology, Lyon Sud Hospital, Hospices Civil de Lyon and CIRI, Lyon, 69495, France
| | - David Kryza
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, Villeurbanne, F-69622, France
- Hospices Civils de Lyon, Lyon, 69437, France
| | - Giovanna Lollo
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, Villeurbanne, F-69622, France
| |
Collapse
|
4
|
Zou X, Liu Y, Cui M, Wan Q, Chu X. The in vitro intestinal cell model: different co-cultured cells create different applications. J Drug Target 2024; 32:529-543. [PMID: 38537662 DOI: 10.1080/1061186x.2024.2333877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 03/16/2024] [Indexed: 06/20/2024]
Abstract
As a vitro absorption model, the Caco-2 cells originate from a human colon adenocarcinomas and can differentiate into a cell layer with enterocyte-like features. The Caco-2 cell model is popularly applied to explore drug transport mechanisms, to evaluate the permeability of drug and to predict the absorption of drugs or bioactive substances in the gut. However, there are limitations to the application of Caco-2 cell model due to lack of a mucus layer, the long culture period and the inability to accurately simulate the intestinal environment. The most frequent way to expand the Caco-2 cell model and address its limitations is by co-culturing it with other cells or substances. This article reviews the culture methods and applications of 3D and 2D co-culture cell models established around Caco-2 cells. It also concludes with a summary of model strengths and weaknesses.
Collapse
Affiliation(s)
- Xingyu Zou
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Yue Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Mengyao Cui
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Qing Wan
- Tongling Institutes for Food and Drug Control, Tongling, China
| | - Xiaoqin Chu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, China
- Engineering Technology Research Center of Modern Pharmaceutical Preparation, Anhui Province, Hefei, China
| |
Collapse
|
5
|
Wang X, An J, Cao T, Guo M, Han F. Application of Biosurfactants in Medical Sciences. Molecules 2024; 29:2606. [PMID: 38893481 PMCID: PMC11173561 DOI: 10.3390/molecules29112606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Biosurfactants derived from microorganisms have attracted widespread attention in scientific research due to their unique surface activity, low toxicity, biodegradability, antibacterial properties, and stability under extreme conditions. Biosurfactants are widely used in many fields, such as medicine, agriculture, and environmental protection. Therefore, this review aims to comprehensively review and analyze the various applications of biosurfactants in the medical field. The central roles of biosurfactants in crucial medical areas are explored, like drug delivery, induction of tumor cell differentiation or death, treating bacterial and viral effects, healing wounds, and immune regulation. Moreover, a new outlook is introduced on optimizing the capabilities of biosurfactants through modification and gene recombination for better use in medicine. The current research challenges and future research directions are described, aiming to provide valuable insights for continuous study of biosurfactants in medicine.
Collapse
Affiliation(s)
| | | | | | | | - Fu Han
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (X.W.); (J.A.); (T.C.); (M.G.)
| |
Collapse
|
6
|
Nandhini J, Karthikeyan E, Rajeshkumar S. Eco-friendly bio-nanocomposites: pioneering sustainable biomedical advancements in engineering. DISCOVER NANO 2024; 19:86. [PMID: 38724698 PMCID: PMC11082105 DOI: 10.1186/s11671-024-04007-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/08/2024] [Indexed: 05/12/2024]
Abstract
Biomedical nanocomposites, which are an upcoming breed of mischievous materials, have ushered in a new dimension in the healthcare sector. Incorporating these materials tends to boost features this component already possesses and give might to things these components could not withstand alone. The biopolymer, which carries the nanoparticles, can simultaneously improve the composite's stiffness and biological characteristics, and vice versa. This increases the options of the composite and the number of times it can be used. The bio-nanocomposites and nanoparticles enable the ecocompatibility of the medicine in their biodegradability, and they, in this way, have ecological sustainability. The outcome is the improved properties of medicine and its associated positive impact on the environment. They have broad applications in antimicrobial agents, drug carriers, tissue regeneration, wound care, dentistry, bioimaging, and bone filler, among others. The dissertation on the elements of bio-nanocomposites emphasizes production techniques, their diverse applications in medicine, match-up issues, and future-boasting prospects in the bio-nanocomposites field. Through the utilization of such materials, scientists can develop more suitable for the environment and healthy biomedical solutions, and world healthcare in this way improves as well.
Collapse
Affiliation(s)
- J Nandhini
- Department of Pharmaceutics, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, India
| | - E Karthikeyan
- Department of Pharmaceutical Chemistry, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, Tamilnadu, India.
| | - S Rajeshkumar
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| |
Collapse
|
7
|
Jamroży M, Kudłacik-Kramarczyk S, Drabczyk A, Krzan M. Advanced Drug Carriers: A Review of Selected Protein, Polysaccharide, and Lipid Drug Delivery Platforms. Int J Mol Sci 2024; 25:786. [PMID: 38255859 PMCID: PMC10815656 DOI: 10.3390/ijms25020786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 12/29/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Studies on bionanocomposite drug carriers are a key area in the field of active substance delivery, introducing innovative approaches to improve drug therapy. Such drug carriers play a crucial role in enhancing the bioavailability of active substances, affecting therapy efficiency and precision. The targeted delivery of drugs to the targeted sites of action and minimization of toxicity to the body is becoming possible through the use of these advanced carriers. Recent research has focused on bionanocomposite structures based on biopolymers, including lipids, polysaccharides, and proteins. This review paper is focused on the description of lipid-containing nanocomposite carriers (including liposomes, lipid emulsions, lipid nanoparticles, solid lipid nanoparticles, and nanostructured lipid carriers), polysaccharide-containing nanocomposite carriers (including alginate and cellulose), and protein-containing nanocomposite carriers (e.g., gelatin and albumin). It was demonstrated in many investigations that such carriers show the ability to load therapeutic substances efficiently and precisely control drug release. They also demonstrated desirable biocompatibility, which is a promising sign for their potential application in drug therapy. The development of bionanocomposite drug carriers indicates a novel approach to improving drug delivery processes, which has the potential to contribute to significant advances in the field of pharmacology, improving therapeutic efficacy while minimizing side effects.
Collapse
Affiliation(s)
- Mateusz Jamroży
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 8 Niezapominajek Str., 30-239 Krakow, Poland;
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland; (S.K.-K.); (A.D.)
| | - Sonia Kudłacik-Kramarczyk
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland; (S.K.-K.); (A.D.)
| | - Anna Drabczyk
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland; (S.K.-K.); (A.D.)
| | - Marcel Krzan
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 8 Niezapominajek Str., 30-239 Krakow, Poland;
| |
Collapse
|