1
|
Yue J, Liu Z, Wang L, Wang M, Pan G. Recent advances in bioactive hydrogel microspheres: Material engineering strategies and biomedical prospects. Mater Today Bio 2025; 31:101614. [PMID: 40104647 PMCID: PMC11919335 DOI: 10.1016/j.mtbio.2025.101614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 03/20/2025] Open
Abstract
Hydrogel microspheres are a class of hydrophilic polymeric particles in microscale, which has been developed as a new type of functional biomaterials for wide-range biomedical applications in recent years. This review provides a comprehensive overview of the preparation methods for hydrogel microspheres, including droplet microfluidics, electrospray and emulsion was first summarized. At the same time, we analyze the impacts of these methods on the properties of hydrogel microspheres and explore various functionalization strategies for enhancing their bioactivity and expanding their biomedical applications. In addition, we discuss the recent advances and the further prospect of hydrogel microspheres in life science applications, particularly in cell biology research, bioanalysis and detection, as well as tissue repair and regeneration. By synthesizing the latest developments, this review aims to offer valuable insights and strategies for optimizing hydrogel microspheres in diverse application scenarios and inspire future research and practical innovations.
Collapse
Affiliation(s)
- Junjiang Yue
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Zhengbiao Liu
- Department of Orthopedics, Suzhou Industrial Park Xinghu Hospital, No. 1 Tingsheng Street, Suzhou, Jiangsu 215000, China
| | - Lu Wang
- Department of Orthopedics, Suzhou Industrial Park Xinghu Hospital, No. 1 Tingsheng Street, Suzhou, Jiangsu 215000, China
| | - Miao Wang
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Guoqing Pan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
2
|
Cui X, Gao Z, Han X, Yu Q, Cauduro VH, Flores EMM, Ashokkumar M, Qiu X, Cui J. Ultrasound-assisted preparation of shikonin-loaded emulsions for the treatment of bacterial infections. ULTRASONICS SONOCHEMISTRY 2025; 115:107302. [PMID: 40056870 PMCID: PMC11930738 DOI: 10.1016/j.ultsonch.2025.107302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/26/2025] [Accepted: 03/04/2025] [Indexed: 03/10/2025]
Abstract
Bacteria can encapsulate themselves in a self-generated matrix of hydrated extracellular polymeric substances such as polysaccharides, proteins, and nucleic acids, thereby forming bacterial biofilm infections. These biofilms are drug resistant and will diminish the efficacy of antimicrobial agents, rendering treatment of such infections challenging. Herein, an innovative strategy is proposed to synergistically degrade bacterial biofilms and eradicate the entrapped bacteria through integrating α-amylase (α-Amy), shikonin (SK) and epigallocatechin gallate (EGCG) within an emulsion. The natural protein α-Amy is deployed to enzymatically hydrolyze the polysaccharide of biofilms. Due to the amphipilic properties of α-Amy and the cross-linking capability of EGCG, the formed α-Amy/SK@EGCG emulsion possess high stability. SK was encapsulated within the emulsion through ultrasound-assisted assembly, targeting to treat bacterial infection after biofilm degradation. In vitro and in vivo experiments demonstrate that the polyphenol-protein stabilized emulsion loaded with antibacterial SK achieves profound penetration into the biofilms due to the extracellular polysaccharide hydrolysis mediated by α-Amy. As a result, the α-Amy/SK@EGCG emulsion can significantly alleviate inflammation symptoms and accelerate the healing process of biofilm-infected wounds. This study provides a promising therapeutic strategy for the development of novel materials aimed for the enhanced treatment of bacterial biofilm infections.
Collapse
Affiliation(s)
- Xiaomiao Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Zhiliang Gao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Xinxin Han
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Qun Yu
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Vitoria H Cauduro
- Department of Chemistry, Federal University of Santa Maria, Santa Maria 97105-900 RS, Brazil
| | - Erico M M Flores
- Department of Chemistry, Federal University of Santa Maria, Santa Maria 97105-900 RS, Brazil
| | | | - Xiaoyong Qiu
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China; Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, Shandong University, Jinan, Shandong 250100, China.
| |
Collapse
|
3
|
Catania G, Guerriero G, Bakrin N, Pourchez J, Kaouane G, Leclerc L, Augeul L, Haegebaert R, Remaut K, Kryza D, Lollo G. Generation of continuous production of polymeric nanoparticles via microfluidics for aerosolised localised drug delivery. Int J Pharm 2025; 675:125532. [PMID: 40154816 DOI: 10.1016/j.ijpharm.2025.125532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/25/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Transferring the production of nanoparticles from laboratory batches to large-scale production for preclinical and clinical applications represents a challenge due to difficulties in scaling up formulations and lack of suitable preclinical models for testing. Here, we transpose the production of hyaluronic acid and polyarginine-based nanoparticles encapsulating the platinum-derivative dichloro(1,2 diaminocyclohexane)platinum(II), from conventional bulk method to continuous production using microfluidics. The microfluidic-based drug delivery system is then tested in a customised preclinical setup to assess its suitability for pressurised intraperitoneal aerosol chemotherapy (PIPAC), a locoregional chemotherapy used to treat peritoneal carcinomatosis. PIPAC consists of the aerosolization of drugs under pressure using laparoscopy. In our preclinical setup, two clinical aerosol devices, CapnoPen® and TOPOL®, are used in conjunction with syringe pump to achieve the clinically optimal aerosol droplet size range (25-50 μm). Aerosol droplet sizes of 38 and 64 μm are obtained at upstream pressures of 14.7 and 7.4 bar and flow rates of 0.4 and 1.1 mL/s, for CapnoPen® and TOPOL®, respectively. To study the spatial distribution of the aerosol, our preclinical setup is then coupled to an ex-vivo model (inverted porcine urinary bladder) that mimics the physiological peritoneal cavity environment. The smaller droplet size obtained with CapnoPen® provided more homogeneous aerosol distribution in the bladder cavity, crucial for maximising treatment coverage within the peritoneal cavity. Furthermore, stability studies reveal that nanoparticles maintained their physicochemical properties and anticancer activity post-aerosolization. Overall, this study provides a scalable approach for the production of platinum-derivative-loaded polymeric nanoparticles and demonstrates the suitability of this DDS for PIPAC.
Collapse
Affiliation(s)
| | - Giulia Guerriero
- University of Lyon 1, CNRS, LAGEPP UMR 5007, Villeurbanne, France
| | - Naoual Bakrin
- Department of Surgical Oncology, Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Lyon, France
| | - Jérémie Pourchez
- École Nationale Supérieure des Mines de Saint-Etienne, Mines Saint-Etienne, INSERM, U1059 Sainbiose, Centre CIS, Université de Lyon, Université Jean Monnet, 158 Cours Fauriel, CS 62362, 42023, Saint-Etienne Cedex 2, France
| | - Ghalia Kaouane
- École Nationale Supérieure des Mines de Saint-Etienne, Mines Saint-Etienne, INSERM, U1059 Sainbiose, Centre CIS, Université de Lyon, Université Jean Monnet, 158 Cours Fauriel, CS 62362, 42023, Saint-Etienne Cedex 2, France
| | - Lara Leclerc
- École Nationale Supérieure des Mines de Saint-Etienne, Mines Saint-Etienne, INSERM, U1059 Sainbiose, Centre CIS, Université de Lyon, Université Jean Monnet, 158 Cours Fauriel, CS 62362, 42023, Saint-Etienne Cedex 2, France
| | - Lionel Augeul
- Laboratoire CarMeN-IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, INSA-Lyon, University of Lyon, Bron, France
| | - Ragna Haegebaert
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Katrien Remaut
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - David Kryza
- University of Lyon 1, CNRS, LAGEPP UMR 5007, Villeurbanne, France; Imthernat Plateform, Centre Léon Bérard, Lyon, France
| | - Giovanna Lollo
- University of Lyon 1, CNRS, LAGEPP UMR 5007, Villeurbanne, France; Institut universitaire de FranceFrance (IUF), Paris, France.
| |
Collapse
|
4
|
De Soricellis C, Amante C, Russo P, Aquino RP, Del Gaudio P. Prilling as an Effective Tool for Manufacturing Submicrometric and Nanometric PLGA Particles for Controlled Drug Delivery to Wounds: Stability and Curcumin Release. Pharmaceutics 2025; 17:129. [PMID: 39861775 PMCID: PMC11768656 DOI: 10.3390/pharmaceutics17010129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES This study investigates for the first time the use of the prilling technique in combination with solvent evaporation to produce nano- and submicrometric PLGA particles to deliver properly an active pharmaceutical ingredient. Curcumin (CCM), a hydrophobic compound classified under BCS (Biopharmaceutics Classification System) class IV, was selected as the model drug. METHODS Key process parameters, including polymer concentration, solvent type, nozzle size, and surfactant levels, were optimized to obtain stable particles with a narrow size distribution determined by DLS analysis. RESULTS Particles mean diameter (d50) 316 and 452 nm, depending on drug-loaded cargo as Curcumin-loaded PLGA nanoparticles demonstrated high encapsulation efficiency, assessed via HPLC analysis, stability, and controlled release profiles. In vitro studies revealed a faster release for lower drug loadings (90% release in 6 h) compared to sustained release over 7 days for higher-loaded nanoparticles, attributed to polymer degradation and drug-polymer interactions on the surface of the particles, as confirmed by FTIR analyses. CONCLUSIONS These findings underline the potential of this scalable technique for biomedical applications, offering a versatile platform for designing drug delivery systems with tailored release characteristics.
Collapse
Affiliation(s)
| | | | | | | | - Pasquale Del Gaudio
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| |
Collapse
|
5
|
Breusa S, Thomas E, Baldinotti N, Zilio S, Delcros JG, Hernandez-Palomino DM, Qi W, Guérin H, Gibert B, Mehlen P, Marigo I, Kryza D, Lollo G. Anti-Netrin-1 decorated nanoparticles combined with chemotherapy for the treatment of triple-negative breast cancer. BIOMATERIALS ADVANCES 2024; 161:213881. [PMID: 38749213 DOI: 10.1016/j.bioadv.2024.213881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/30/2024] [Accepted: 04/25/2024] [Indexed: 06/04/2024]
Abstract
Nanoparticle's success as drug delivery systems for cancer treatment has been achieved through passive targeting mechanisms. However, tumor heterogeneity and rapid drug clearance limit the treatment efficacy. Improved outcomes and selective drug release can be achieved by grafting ligands at the surface of nanocarriers that bind molecules overexpressed in the tumor microenvironment (TME). In this work, we developed a docetaxel-loaded nanoemulsions (NEs) binding an anti-netrin-1 monoclonal antibody (NP137) to selectively target the netrin-1 protein overexpressed in many different tumors. The goal is to refine a combined approach utilizing NP137 and docetaxel as an improved tumor-targeting chemotherapeutic agent for addressing triple-negative breast cancer (TNBC). Several factors have been considered for the optimization of the active targeted drug delivery system via the click-chemistry conjugation, as the impact of PEGylated surfactant that stabilize the NEs shell on conjugation efficiency, cytocompatibility with EMT6 cell line and colloidal stability over time of NEs. Results showed that a 660 Da PEG chain length contributed to NEs colloidal stability and had no impact on cell viability or on the antibody binding ability for its ligand after surface conjugation. Moreover, docetaxel was encapsulated into the oily core of NEs, with an encapsulation efficiency of 70 %. To validate our treatment strategy in vivo, the 4T1 murine breast cancer model was used. As a result, the comparison of active-targeted and non-targeted NEs revealed that only active-targeted NE could decrease the tumor growth rate.
Collapse
Affiliation(s)
- Silvia Breusa
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 boulevard du 11 novembre 1918, F-69100 Villeurbanne, France; Apoptosis, Cancer and Development Laboratory- Equipe labellisée 'La Ligue', LabEx DEVweCAN, Institut Convergence PLAsCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS, Université de Lyon1, 69008 Lyon, France
| | - Eloise Thomas
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 boulevard du 11 novembre 1918, F-69100 Villeurbanne, France
| | - Noemi Baldinotti
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 boulevard du 11 novembre 1918, F-69100 Villeurbanne, France
| | - Serena Zilio
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 boulevard du 11 novembre 1918, F-69100 Villeurbanne, France
| | - Jean-Guy Delcros
- Small molecules for biological targets, Centre de Recherche en Cancérologie de Lyon, INSERM 1052 - CNRS5286, ISPB Rockefeller, Université Lyon 1, 69008 Lyon, France
| | | | - Weisha Qi
- Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Hanäé Guérin
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 boulevard du 11 novembre 1918, F-69100 Villeurbanne, France
| | - Benjamin Gibert
- Apoptosis, Cancer and Development Laboratory- Equipe labellisée 'La Ligue', LabEx DEVweCAN, Institut Convergence PLAsCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS, Université de Lyon1, 69008 Lyon, France; Gastroenterology and technologies for health group, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS5286, Université Lyon 1, 69008 Lyon, France
| | - Patrick Mehlen
- Apoptosis, Cancer and Development Laboratory- Equipe labellisée 'La Ligue', LabEx DEVweCAN, Institut Convergence PLAsCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS, Université de Lyon1, 69008 Lyon, France; Netris Pharma, Lyon, France
| | - Ilaria Marigo
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Gattamelata 64, 35128 Padua, Italy; Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - David Kryza
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 boulevard du 11 novembre 1918, F-69100 Villeurbanne, France; Imthernat Plateform, Hospices Civils de Lyon, 69437 Lyon, France.
| | - Giovanna Lollo
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 boulevard du 11 novembre 1918, F-69100 Villeurbanne, France.
| |
Collapse
|
6
|
Gazzi R, Gelli R, Aleandri S, Carone M, Luciani P. Bioinspired and bioderived nanomedicine for inflammatory bowel disease. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1986. [PMID: 39140489 DOI: 10.1002/wnan.1986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 08/15/2024]
Abstract
Due to its chronic nature and complex pathophysiology, inflammatory bowel disease (IBD) poses significant challenges for treatment. The long-term therapies for patients, often diagnosed between the ages of 20 and 40, call for innovative strategies to target inflammation, minimize systemic drug exposure, and improve patients' therapeutic outcomes. Among the plethora of strategies currently pursued, bioinspired and bioderived nano-based formulations have garnered interest for their safety and versatility in the management of IBD. Bioinspired nanomedicine can host and deliver not only small drug molecules but also biotherapeutics, be made gastroresistant and mucoadhesive or mucopenetrating and, for these reasons, are largely investigated for oral administration, while surprisingly less for rectal delivery, recommended first-line treatment approach for several IBD patients. The use of bioderived nanocarriers, mostly extracellular vesicles (EVs), endowed with unique homing abilities, is still in its infancy with respect to the arsenal of nanomedicine under investigation for IBD treatment. An emerging source of EVs suited for oral administration is ingesta, that is, plants or milk, thanks to their remarkable ability to resist the harsh environment of the upper gastrointestinal tract. Inspired by the unparalleled properties of natural biomaterials, sophisticated avenues for enhancing therapeutic efficacy and advancing precision medicine approaches in IBD care are taking shape, although bottlenecks arising either from the complexity of the nanomedicine designed or from the lack of a clear regulatory pathway still hinder a smooth and efficient translation to the clinics. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Rafaela Gazzi
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Rita Gelli
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Florence, Italy
| | - Simone Aleandri
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Marianna Carone
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Paola Luciani
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| |
Collapse
|
7
|
Andretto V, Rosso A, Zilio S, Sidi-Boumedine J, Boschetti G, Sankar S, Buffier M, Miele AE, Denis M, Choffour PA, Briançon S, Nancey S, Kryza D, Lollo G. Peptide-Based Hydrogel for Nanosystems Encapsulation: the Next Generation of Localized Delivery Systems for the Treatment of Intestinal Inflammations. Adv Healthc Mater 2024; 13:e2303280. [PMID: 38445812 DOI: 10.1002/adhm.202303280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/10/2024] [Indexed: 03/07/2024]
Abstract
Conventional therapies for inflammatory bowel diseases are mainly based on systemic treatments which cause side effects and toxicity over long-term administration. Nanoparticles appear as a valid alternative to allow a preferential accumulation in inflamed tissues following oral administration while reducing systemic drug exposure. To increase their residence time in the inflamed intestine, the nanoparticles are here associated with a hydrogel matrix. A bioadhesive peptide-based hydrogel is mixed with nanoemulsions, creating a hybrid lipid-polymer nanocomposite. Mucopenetrating nanoemulsions of 100 nm are embedded in a scaffold constituted of the self-assembling peptide hydrogel product PuraStat. The nanocomposite is fully characterized to study the impact of lipid particles in the hydrogel structure. Rheological measurements and circular dichroism analyses are performed to investigate the system's microstructure and physical properties. Biodistribution studies demonstrate that the nanocomposite acts as a depot in the stomach and facilitates the slow release of the nanoemulsions in the intestine. Efficacy studies upon oral administration of the drug-loaded system show the improvement of the disease score in a mouse model of intestinal inflammation.
Collapse
Affiliation(s)
- Valentina Andretto
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, Villeurbanne, F-69622, France
| | - Annalisa Rosso
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, Villeurbanne, F-69622, France
| | - Serena Zilio
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, Villeurbanne, F-69622, France
- SATT, Ouest Valorisation, 14C Rue du Patis Tatelin, Renne, 35708, France
| | - Jacqueline Sidi-Boumedine
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, Villeurbanne, F-69622, France
| | - Gilles Boschetti
- Department of Gastroenterology, Lyon Sud Hospital, Hospices Civil de Lyon and CIRI, Lyon, 69495, France
| | - Sharanya Sankar
- 3-D Matrix Europe SAS, Medical Technology, Caluire-et-Cuire, 69300, France
| | - Marie Buffier
- 3-D Matrix Europe SAS, Medical Technology, Caluire-et-Cuire, 69300, France
| | - Adriana Erica Miele
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ISA UMR 5280, 5 rue de la Doua, Villeurbanne, F-69100, France
- Dept Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro 5, Rome, I-00185, Italy
| | - Morgane Denis
- Univ Lyon, Université Claude Bernard Lyon, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69008, France
- Antineo, R&D Department, Lyon, 69008, France
| | | | - Stéphanie Briançon
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, Villeurbanne, F-69622, France
| | - Stéphane Nancey
- Department of Gastroenterology, Lyon Sud Hospital, Hospices Civil de Lyon and CIRI, Lyon, 69495, France
| | - David Kryza
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, Villeurbanne, F-69622, France
- Hospices Civils de Lyon, Lyon, 69437, France
| | - Giovanna Lollo
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, Villeurbanne, F-69622, France
| |
Collapse
|
8
|
Zou X, Liu Y, Cui M, Wan Q, Chu X. The in vitro intestinal cell model: different co-cultured cells create different applications. J Drug Target 2024; 32:529-543. [PMID: 38537662 DOI: 10.1080/1061186x.2024.2333877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 03/16/2024] [Indexed: 06/20/2024]
Abstract
As a vitro absorption model, the Caco-2 cells originate from a human colon adenocarcinomas and can differentiate into a cell layer with enterocyte-like features. The Caco-2 cell model is popularly applied to explore drug transport mechanisms, to evaluate the permeability of drug and to predict the absorption of drugs or bioactive substances in the gut. However, there are limitations to the application of Caco-2 cell model due to lack of a mucus layer, the long culture period and the inability to accurately simulate the intestinal environment. The most frequent way to expand the Caco-2 cell model and address its limitations is by co-culturing it with other cells or substances. This article reviews the culture methods and applications of 3D and 2D co-culture cell models established around Caco-2 cells. It also concludes with a summary of model strengths and weaknesses.
Collapse
Affiliation(s)
- Xingyu Zou
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Yue Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Mengyao Cui
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Qing Wan
- Tongling Institutes for Food and Drug Control, Tongling, China
| | - Xiaoqin Chu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, China
- Engineering Technology Research Center of Modern Pharmaceutical Preparation, Anhui Province, Hefei, China
| |
Collapse
|
9
|
Wang X, An J, Cao T, Guo M, Han F. Application of Biosurfactants in Medical Sciences. Molecules 2024; 29:2606. [PMID: 38893481 PMCID: PMC11173561 DOI: 10.3390/molecules29112606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Biosurfactants derived from microorganisms have attracted widespread attention in scientific research due to their unique surface activity, low toxicity, biodegradability, antibacterial properties, and stability under extreme conditions. Biosurfactants are widely used in many fields, such as medicine, agriculture, and environmental protection. Therefore, this review aims to comprehensively review and analyze the various applications of biosurfactants in the medical field. The central roles of biosurfactants in crucial medical areas are explored, like drug delivery, induction of tumor cell differentiation or death, treating bacterial and viral effects, healing wounds, and immune regulation. Moreover, a new outlook is introduced on optimizing the capabilities of biosurfactants through modification and gene recombination for better use in medicine. The current research challenges and future research directions are described, aiming to provide valuable insights for continuous study of biosurfactants in medicine.
Collapse
Affiliation(s)
| | | | | | | | - Fu Han
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (X.W.); (J.A.); (T.C.); (M.G.)
| |
Collapse
|
10
|
Nandhini J, Karthikeyan E, Rajeshkumar S. Eco-friendly bio-nanocomposites: pioneering sustainable biomedical advancements in engineering. DISCOVER NANO 2024; 19:86. [PMID: 38724698 PMCID: PMC11082105 DOI: 10.1186/s11671-024-04007-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/08/2024] [Indexed: 05/12/2024]
Abstract
Biomedical nanocomposites, which are an upcoming breed of mischievous materials, have ushered in a new dimension in the healthcare sector. Incorporating these materials tends to boost features this component already possesses and give might to things these components could not withstand alone. The biopolymer, which carries the nanoparticles, can simultaneously improve the composite's stiffness and biological characteristics, and vice versa. This increases the options of the composite and the number of times it can be used. The bio-nanocomposites and nanoparticles enable the ecocompatibility of the medicine in their biodegradability, and they, in this way, have ecological sustainability. The outcome is the improved properties of medicine and its associated positive impact on the environment. They have broad applications in antimicrobial agents, drug carriers, tissue regeneration, wound care, dentistry, bioimaging, and bone filler, among others. The dissertation on the elements of bio-nanocomposites emphasizes production techniques, their diverse applications in medicine, match-up issues, and future-boasting prospects in the bio-nanocomposites field. Through the utilization of such materials, scientists can develop more suitable for the environment and healthy biomedical solutions, and world healthcare in this way improves as well.
Collapse
Affiliation(s)
- J Nandhini
- Department of Pharmaceutics, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, India
| | - E Karthikeyan
- Department of Pharmaceutical Chemistry, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, Tamilnadu, India.
| | - S Rajeshkumar
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| |
Collapse
|
11
|
Jamroży M, Kudłacik-Kramarczyk S, Drabczyk A, Krzan M. Advanced Drug Carriers: A Review of Selected Protein, Polysaccharide, and Lipid Drug Delivery Platforms. Int J Mol Sci 2024; 25:786. [PMID: 38255859 PMCID: PMC10815656 DOI: 10.3390/ijms25020786] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 12/29/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Studies on bionanocomposite drug carriers are a key area in the field of active substance delivery, introducing innovative approaches to improve drug therapy. Such drug carriers play a crucial role in enhancing the bioavailability of active substances, affecting therapy efficiency and precision. The targeted delivery of drugs to the targeted sites of action and minimization of toxicity to the body is becoming possible through the use of these advanced carriers. Recent research has focused on bionanocomposite structures based on biopolymers, including lipids, polysaccharides, and proteins. This review paper is focused on the description of lipid-containing nanocomposite carriers (including liposomes, lipid emulsions, lipid nanoparticles, solid lipid nanoparticles, and nanostructured lipid carriers), polysaccharide-containing nanocomposite carriers (including alginate and cellulose), and protein-containing nanocomposite carriers (e.g., gelatin and albumin). It was demonstrated in many investigations that such carriers show the ability to load therapeutic substances efficiently and precisely control drug release. They also demonstrated desirable biocompatibility, which is a promising sign for their potential application in drug therapy. The development of bionanocomposite drug carriers indicates a novel approach to improving drug delivery processes, which has the potential to contribute to significant advances in the field of pharmacology, improving therapeutic efficacy while minimizing side effects.
Collapse
Affiliation(s)
- Mateusz Jamroży
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 8 Niezapominajek Str., 30-239 Krakow, Poland;
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland; (S.K.-K.); (A.D.)
| | - Sonia Kudłacik-Kramarczyk
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland; (S.K.-K.); (A.D.)
| | - Anna Drabczyk
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland; (S.K.-K.); (A.D.)
| | - Marcel Krzan
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 8 Niezapominajek Str., 30-239 Krakow, Poland;
| |
Collapse
|