Plianwong S, Sirirak T. Cellulose nanocrystals from marine algae Cladophora glomerata by using microwave-assisted extraction.
Int J Biol Macromol 2024;
260:129422. [PMID:
38219928 DOI:
10.1016/j.ijbiomac.2024.129422]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/20/2023] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
Algae of the order Cladophorales are the source of a unique nanocellulose with high crystallinity and a large aspect ratio, enabling broad surface modification. Cellulose nanocrystals (CNCs) are obtained via acid hydrolysis of nanocellulose, which is highly crystalline. However, the production of CNCs from Cladophorales algae is limited and still uses a conventional heating method. Thus, this study aimed to develop a microwave-assisted extraction (MAE) method for fast and efficient extraction of CNCs from Cladophora glomerata algae. Additionally, we replaced the use of hypochlorite with H2O2, which is more environmentally friendly, and compared the CNCs obtained from the conventional methods with our new method. The functional structure of CNCs was confirmed by Fourier-transform infrared spectroscopy. Single-step H2O2 bleaching with MAE yielded the smallest-sized CNCs. Our developed method resulted in the production of CNCs with a high crystallinity index, high thermal stability, and high purity of native cellulose. Additionally, none of the CNCs were toxic to primary normal human dermal fibroblasts. The properties of the isolated CNCs may make them useful materials in pharmaceutical and cosmetic formulations.
Collapse