1
|
Lyu Z, Ralahy B, Perles-Barbacaru TA, Ding L, Jiang Y, Lian B, Roussel T, Liu X, Galanakou C, Laurini E, Tintaru A, Giorgio S, Pricl S, Liu X, Bernard M, Iovanna J, Viola A, Peng L. Self-assembling dendrimer nanosystems for specific fluorine magnetic resonance imaging and effective theranostic treatment of tumors. Proc Natl Acad Sci U S A 2024; 121:e2322403121. [PMID: 38865273 PMCID: PMC11194563 DOI: 10.1073/pnas.2322403121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/13/2024] [Indexed: 06/14/2024] Open
Abstract
Fluorine magnetic resonance imaging (19F-MRI) is particularly promising for biomedical applications owing to the absence of fluorine in most biological systems. However, its use has been limited by the lack of safe and water-soluble imaging agents with high fluorine contents and suitable relaxation properties. We report innovative 19F-MRI agents based on supramolecular dendrimers self-assembled by an amphiphilic dendrimer composed of a hydrophobic alkyl chain and a hydrophilic dendron. Specifically, this amphiphilic dendrimer bears multiple negatively charged terminals with high fluorine content, which effectively prevented intra- and intermolecular aggregation of fluorinated entities via electrostatic repulsion. This permitted high fluorine nuclei mobility alongside good water solubility with favorable relaxation properties for use in 19F-MRI. Importantly, the self-assembling 19F-MRI agent was able to encapsulate the near-infrared fluorescence (NIRF) agent DiR and the anticancer drug paclitaxel for multimodal 19F-MRI and NIRF imaging of and theranostics for pancreatic cancer, a deadly disease for which there remains no adequate early detection method or efficacious treatment. The 19F-MRI and multimodal 19F-MRI and NIRF imaging studies on human pancreatic cancer xenografts in mice confirmed the capability of both imaging modalities to specifically image the tumors and demonstrated the efficacy of the theranostic agent in cancer treatment, largely outperforming the clinical anticancer drug paclitaxel. Consequently, these dendrimer nanosystems constitute promising 19F-MRI agents for effective cancer management. This study offers a broad avenue to the construction of 19F-MRI agents and theranostics, exploiting self-assembling supramolecular dendrimer chemistry.
Collapse
Affiliation(s)
- Zhenbin Lyu
- Aix Marseille University, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (UMR 7325), Equipe Labellisée Ligue Contre le Cancer, Marseille13288, France
- Aix Marseille University, CNRS, Institut de Chimie Radicalaire, UMR 7273, Marseille13013, France
| | - Brigino Ralahy
- Aix Marseille University, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (UMR 7325), Equipe Labellisée Ligue Contre le Cancer, Marseille13288, France
| | | | - Ling Ding
- Aix Marseille University, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (UMR 7325), Equipe Labellisée Ligue Contre le Cancer, Marseille13288, France
- Aix Marseille University, CNRS, Centre de Résonance Magnétique Biologique et Médicale, UMR 7339, Marseille13385, France
| | - Yifan Jiang
- Aix Marseille University, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (UMR 7325), Equipe Labellisée Ligue Contre le Cancer, Marseille13288, France
| | - Baoping Lian
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing211198, People’s Republic of China
| | - Tom Roussel
- Aix Marseille University, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (UMR 7325), Equipe Labellisée Ligue Contre le Cancer, Marseille13288, France
| | - Xi Liu
- Aix Marseille University, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (UMR 7325), Equipe Labellisée Ligue Contre le Cancer, Marseille13288, France
- Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS, UMR 7258, Institut Paoli-Calmettes, Aix Marseille Université, Marseille13273, France
| | - Christina Galanakou
- Aix Marseille University, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (UMR 7325), Equipe Labellisée Ligue Contre le Cancer, Marseille13288, France
| | - Erik Laurini
- Molecular Biology and Nanotechnology Laboratory, Department of Engineering and Architecture, University of Trieste, Trieste34127, Italy
| | - Aura Tintaru
- Aix Marseille University, CNRS, Institut de Chimie Radicalaire, UMR 7273, Marseille13013, France
| | - Suzanne Giorgio
- Aix Marseille University, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (UMR 7325), Equipe Labellisée Ligue Contre le Cancer, Marseille13288, France
| | - Sabrina Pricl
- Molecular Biology and Nanotechnology Laboratory, Department of Engineering and Architecture, University of Trieste, Trieste34127, Italy
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz90-236, Poland
| | - Xiaoxuan Liu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing211198, People’s Republic of China
| | - Monique Bernard
- Aix Marseille University, CNRS, Centre de Résonance Magnétique Biologique et Médicale, UMR 7339, Marseille13385, France
| | - Juan Iovanna
- Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS, UMR 7258, Institut Paoli-Calmettes, Aix Marseille Université, Marseille13273, France
| | - Angèle Viola
- Aix Marseille University, CNRS, Centre de Résonance Magnétique Biologique et Médicale, UMR 7339, Marseille13385, France
| | - Ling Peng
- Aix Marseille University, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (UMR 7325), Equipe Labellisée Ligue Contre le Cancer, Marseille13288, France
| |
Collapse
|
2
|
Duan Z, Liu C, Tang J, Zhang R, Peng D, Lu R, Cao Z, Wu D. Fluorinated hydrogel nanoparticles with regulable fluorine contents and T2 relaxation times as 19F MRI contrast agents. RSC Adv 2023; 13:22335-22345. [PMID: 37497094 PMCID: PMC10366653 DOI: 10.1039/d3ra02827e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/10/2023] [Indexed: 07/28/2023] Open
Abstract
Medical imaging contrast agents that are able to provide detailed biological information have attracted increasing attention. Among the new emerging imaging contrast agents, 19F magnetic resonance imaging contrast agents (19F MRI CAs) are extremely promising for their weak background disturbing signal from the body. However, to prepare 19F MRI CAs with a long T2 relaxation time and excellent biocompatibility in a simple and highly effective strategy is still a challenge. Herein, we report a new type of 19F MRI hydrogel nanocontrast agents (19F MRI HNCAs) synthesized by a surfactant-free emulsion polymerization with commercial fluorinated monomers. The T2 relaxation time of 19F MRI HNCA-1 was found to be 25-40 ms, guaranteeing its good imaging ability in vitro. In addition, according to an investigation into the relationship between the fluorine content and 19F MRI signal intensity, the 19F MRI signal intensity was not only determined by the fluorine content in 19F MRI HNCAs but also by the hydration microenvironment around the fluorine atoms. Moreover, 19F MRI HNCAs demonstrated excellent biocompatibility and imaging capability inside cells. The primary exploration demonstrated that 19F MRI HNCAs as a new type of 19F MRI contrast agent hold potential for imaging lesion sites and tracking cells in vivo by 19F MRI technology.
Collapse
Affiliation(s)
- Ziwei Duan
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University Shenzhen 518107 China
| | - Changjiang Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University Shenzhen 518107 China
| | - Junjie Tang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University Shenzhen 518107 China
| | - Ruling Zhang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University Shenzhen 518107 China
| | - Danfeng Peng
- Shenzhen International Institute for Biomedical Research Shenzhen 518109 China
| | - Ruitao Lu
- Shenzhen International Institute for Biomedical Research Shenzhen 518109 China
| | - Zong Cao
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University Shenzhen 518107 China
| | - Dalin Wu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University Shenzhen 518107 China
| |
Collapse
|
3
|
Alhaidari LM, Spain SG. Synthesis of 5-Fluorouracil Polymer Conjugate and 19F NMR Analysis of Drug Release for MRI Monitoring. Polymers (Basel) 2023; 15:polym15071778. [PMID: 37050392 PMCID: PMC10097235 DOI: 10.3390/polym15071778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 04/05/2023] Open
Abstract
To monitor the release of fluorinated drugs from polymeric carriers, a novel 19F MRI enzyme-responsive contrast agent was developed and tested. This contrast agent was prepared by conjugation of 5-fluorouracil (5-FU) to hyperbranched poly(N,N-dimethylacrylamide) (HB-PDMA) via an enzyme-degradable peptide linker. Due to the different molecular sizes, the release of 5-FU from the 5-FU polymer conjugate resulted in a sufficiently substantial difference in spin-spin T2 19F NMR/MRI relaxation time that enabled differentiating between attached and released drug states. The 5-FU polymer conjugate exhibited a broad signal and short T2 relaxation time under 19F NMR analysis. Incubation with the enzyme induced the release of 5-FU, accompanied by an extension of T2 relaxation times and an enhancement in the 19F MRI signal. This approach is promising for application in the convenient monitoring of 5-FU drug release and can be used to monitor the release of other fluorinated drugs.
Collapse
Affiliation(s)
- Laila M. Alhaidari
- Department of Chemistry, Faculty of Science, University of Majmaah, Majmaah 11952, Saudi Arabia
| | - Sebastian G. Spain
- Department of Chemistry, Dainton Building, University of Sheffield, Sheffield S3 7HF, UK
| |
Collapse
|
4
|
Li Y, Cui J, Li C, Zhou H, Chang J, Aras O, An F. 19 F MRI Nanotheranostics for Cancer Management: Progress and Prospects. ChemMedChem 2022; 17:e202100701. [PMID: 34951121 PMCID: PMC9432482 DOI: 10.1002/cmdc.202100701] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/23/2021] [Indexed: 12/24/2022]
Abstract
Fluorine magnetic resonance imaging (19 F MRI) is a promising imaging technique for cancer diagnosis because of its excellent soft tissue resolution and deep tissue penetration, as well as the inherent high natural abundance, almost no endogenous interference, quantitative analysis, and wide chemical shift range of the 19 F nucleus. In recent years, scientists have synthesized various 19 F MRI contrast agents. By further integrating a wide variety of nanomaterials and cutting-edge construction strategies, magnetically equivalent 19 F atoms are super-loaded and maintain satisfactory relaxation efficiency to obtain high-intensity 19 F MRI signals. In this review, the nuclear magnetic resonance principle underlying 19 F MRI is first described. Then, the construction and performance of various fluorinated contrast agents are summarized. Finally, challenges and future prospects regarding the clinical translation of 19 F MRI nanoprobes are considered. This review will provide strategic guidance and panoramic expectations for designing new cancer theranostic regimens and realizing their clinical translation.
Collapse
Affiliation(s)
- Yanan Li
- College of Medical Imaging, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Jing Cui
- College of Medical Imaging, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Chenlong Li
- College of Medical Imaging, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Huimin Zhou
- College of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Jun Chang
- College of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Omer Aras
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Feifei An
- School of Public Health, Health Science Center, Xi'an Jiaotong University, No.76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| |
Collapse
|
5
|
Zhang X, Wang P, Xu Y, Wang J, Shi Y, Niu W, Song W, Liu R, Yu CY, Wei H. Facile synthesis and self-assembly behaviors of biodegradable amphiphilic hyperbranched copolymers with reducible poly(caprolactone) grafts. Polym Chem 2022. [DOI: 10.1039/d2py01112c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A reducible hydrophobic macromonomer, HEMA-g-PCL, developed herein provides a facile yet robust strategy for biodegradable amphiphilic hyperbranched copolymers.
Collapse
Affiliation(s)
- Xianshuo Zhang
- School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
| | - Peipei Wang
- School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
| | - Yaoyu Xu
- School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
| | - Jun Wang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Pharmacy and Pharmacology, University of South China, Hengyang, 421001, China
| | - Yunfeng Shi
- School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
| | - Wenxu Niu
- School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
| | - Wenjing Song
- School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
| | - Ruru Liu
- School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Pharmacy and Pharmacology, University of South China, Hengyang, 421001, China
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Pharmacy and Pharmacology, University of South China, Hengyang, 421001, China
| |
Collapse
|
6
|
Yang C, Lin ZI, Chen JA, Xu Z, Gu J, Law WC, Yang JHC, Chen CK. Organic/Inorganic Self-Assembled Hybrid Nano-Architectures for Cancer Therapy Applications. Macromol Biosci 2021; 22:e2100349. [PMID: 34735739 DOI: 10.1002/mabi.202100349] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/25/2021] [Indexed: 12/20/2022]
Abstract
Since the conceptualization of nanomedicine, numerous nanostructure-mediated drug formulations have progressed into clinical trials for treating cancer. However, recent clinical trial results indicate such kind of drug formulations has a limited improvement on the antitumor efficacy. This is due to the biological barriers associated with those formulations, for example, circulation stability, extravasation efficiency in tumor, tumor penetration ability, and developed multi-drug resistance. When employing for nanomedicine formulations, pristine organic-based and inorganic-based nanostructures have their own limitations. Accordingly, organic/inorganic (O/I) hybrids have been developed to integrate the merits of both, and to minimize their intrinsic drawbacks. In this context, the recent development in O/I hybrids resulting from a self-assembly strategy will be introduced. Through such a strategy, organic and inorganic building blocks can be self-assembled via either chemical covalent bonds or physical interactions. Based on the self-assemble procedure, the hybridization of four organic building blocks including liposomes, micelles, dendrimers, and polymeric nanocapsules with five functional inorganic nanoparticles comprising gold nanostructures, magnetic nanoparticles, carbon-based materials, quantum dots, and silica nanoparticles will be highlighted. The recent progress of these O/I hybrids in advanced modalities for combating cancer, such as, therapeutic agent delivery, photothermal therapy, photodynamic therapy, and immunotherapy will be systematically reviewed.
Collapse
Affiliation(s)
- Chengbin Yang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Zheng-Ian Lin
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Jian-An Chen
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Zhourui Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Jiayu Gu
- Department of Pharmacy, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, 518020, China
| | - Wing-Cheung Law
- Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Jason Hsiao Chun Yang
- Department of Fiber and Composite Materials, Feng Chia University, Taichung, 40724, Taiwan
| | - Chih-Kuang Chen
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| |
Collapse
|
7
|
Reis M, Gusev F, Taylor NG, Chung SH, Verber MD, Lee YZ, Isayev O, Leibfarth FA. Machine-Learning-Guided Discovery of 19F MRI Agents Enabled by Automated Copolymer Synthesis. J Am Chem Soc 2021; 143:17677-17689. [PMID: 34637304 PMCID: PMC10833148 DOI: 10.1021/jacs.1c08181] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Modern polymer science suffers from the curse of multidimensionality. The large chemical space imposed by including combinations of monomers into a statistical copolymer overwhelms polymer synthesis and characterization technology and limits the ability to systematically study structure-property relationships. To tackle this challenge in the context of 19F magnetic resonance imaging (MRI) agents, we pursued a computer-guided materials discovery approach that combines synergistic innovations in automated flow synthesis and machine learning (ML) method development. A software-controlled, continuous polymer synthesis platform was developed to enable iterative experimental-computational cycles that resulted in the synthesis of 397 unique copolymer compositions within a six-variable compositional space. The nonintuitive design criteria identified by ML, which were accomplished by exploring <0.9% of the overall compositional space, lead to the identification of >10 copolymer compositions that outperformed state-of-the-art materials.
Collapse
Affiliation(s)
- Marcus Reis
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Filipp Gusev
- Department of Chemistry, Mellon College of Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Nicholas G Taylor
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Sang Hun Chung
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Matthew D Verber
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Yueh Z Lee
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Olexandr Isayev
- Department of Chemistry, Mellon College of Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Frank A Leibfarth
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
8
|
Jiang C, Zhang L, Xu X, Qi M, Zhang J, He S, Tian Q, Song S. Engineering a Smart Agent for Enhanced Immunotherapy Effect by Simultaneously Blocking PD-L1 and CTLA-4. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102500. [PMID: 34473430 PMCID: PMC8529437 DOI: 10.1002/advs.202102500] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/04/2021] [Indexed: 05/06/2023]
Abstract
Combinations of immune checkpoint therapies show encouraging results in the treatment of many human cancers. However, the higher costs and greater side effects of such combinations compared with single-agent immunotherapies limit their further applications. In this work, a novel smart agent, KN046@19 F-ZIF-8, is developed to overcome these limitations. KN046 is a novel recombinant humanized PD-L1/CTLA-4 bispecific single-domain antibody-Fc fusion protein, which can bind to both PD-L1 and CTLA-4 effectively. ZIF-8 is a smart delivery system, which can safely and effectively deliver KN406 to a tumor. In vitro and in vivo results demonstrate that the smart agent KN046@19 F-ZIF-8 not only improves the immune response rate of the antibody drug in treatment of tumors but also reduces its toxic side effects, thereby achieving excellent antitumor efficacy. This study provides an engineering strategy for clinical applications of a more effective immunotherapy.
Collapse
Affiliation(s)
- Chunjuan Jiang
- Department of Nuclear MedicineFudan University Shanghai Cancer CenterShanghai200032China
- Center for Biomedical ImagingFudan UniversityShanghai200032China
- Shanghai Engineering Research Center of Molecular Imaging ProbesShanghai200032China
| | - Le Zhang
- Department of Nuclear MedicineFudan University Shanghai Cancer CenterShanghai200032China
- Center for Biomedical ImagingFudan UniversityShanghai200032China
- Shanghai Engineering Research Center of Molecular Imaging ProbesShanghai200032China
- Department of Research and DevelopmentShanghai Proton and Heavy Ion CenterShanghai201321China
| | - Xiaoping Xu
- Department of Nuclear MedicineFudan University Shanghai Cancer CenterShanghai200032China
- Center for Biomedical ImagingFudan UniversityShanghai200032China
- Shanghai Engineering Research Center of Molecular Imaging ProbesShanghai200032China
| | - Ming Qi
- Department of Nuclear MedicineFudan University Shanghai Cancer CenterShanghai200032China
- Center for Biomedical ImagingFudan UniversityShanghai200032China
- Shanghai Engineering Research Center of Molecular Imaging ProbesShanghai200032China
| | - Jianping Zhang
- Department of Nuclear MedicineFudan University Shanghai Cancer CenterShanghai200032China
- Center for Biomedical ImagingFudan UniversityShanghai200032China
- Shanghai Engineering Research Center of Molecular Imaging ProbesShanghai200032China
| | - Simin He
- Department of Nuclear MedicineFudan University Shanghai Cancer CenterShanghai200032China
- Center for Biomedical ImagingFudan UniversityShanghai200032China
- Shanghai Engineering Research Center of Molecular Imaging ProbesShanghai200032China
| | - Qiwei Tian
- Shanghai Key Laboratory of Molecular ImagingShanghai University of Medicine and Health SciencesShanghai201318China
| | - Shaoli Song
- Department of Nuclear MedicineFudan University Shanghai Cancer CenterShanghai200032China
- Center for Biomedical ImagingFudan UniversityShanghai200032China
- Shanghai Engineering Research Center of Molecular Imaging ProbesShanghai200032China
- Department of Research and DevelopmentShanghai Proton and Heavy Ion CenterShanghai201321China
| |
Collapse
|
9
|
Kaberov LI, Kaberova Z, Murmiliuk A, Trousil J, Sedláček O, Konefal R, Zhigunov A, Pavlova E, Vít M, Jirák D, Hoogenboom R, Filippov SK. Fluorine-Containing Block and Gradient Copoly(2-oxazoline)s Based on 2-(3,3,3-Trifluoropropyl)-2-oxazoline: A Quest for the Optimal Self-Assembled Structure for 19F Imaging. Biomacromolecules 2021; 22:2963-2975. [PMID: 34180669 DOI: 10.1021/acs.biomac.1c00367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The use of fluorinated contrast agents in magnetic resonance imaging (MRI) facilitates improved image quality due to the negligible amount of endogenous fluorine atoms in the body. In this work, we present a comprehensive study of the influence of the amphiphilic polymer structure and composition on its applicability as contrast agents in 19F MRI. Three series of novel fluorine-containing poly(2-oxazoline) copolymers and terpolymers, hydrophilic-fluorophilic, hydrophilic-lipophilic-fluorophilic, and hydrophilic-thermoresponsive-fluorophilic, with block and gradient distributions of the fluorinated units, were synthesized. It was discovered that the CF3 in the 2-(3,3,3-trifluoropropyl)-2-oxazoline (CF3EtOx) group activated the cationic chain end, leading to faster copolymerization kinetics, whereby spontaneous monomer gradients were formed with accelerated incorporation of 2-methyl-2-oxazoline or 2-n-propyl-2-oxazoline with a gradual change to the less-nucleophilic CF3EtOx monomer. The obtained amphiphilic copolymers and terpolymers form spherical or wormlike micelles in water, which was confirmed using transmission electron microscopy (TEM), while small-angle X-ray scattering (SAXS) revealed the core-shell or core-double-shell morphologies of these nanoparticles. The core and shell sizes obey the scaling laws for starlike micelles predicted by the scaling theory. Biocompatibility studies confirm that all copolymers obtained are noncytotoxic and, at the same time, exhibit high sensitivity during in vitro 19F MRI studies. The gradient copolymers provide the best 19F MRI signal-to-noise ratio in comparison with the analogue block copolymer structures, making them most promising as 19F MRI contrast agents.
Collapse
Affiliation(s)
- Leonid I Kaberov
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague, Czech Republic
| | - Zhansaya Kaberova
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague, Czech Republic
| | - Anastasiia Murmiliuk
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague, Czech Republic
| | - Jiří Trousil
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague, Czech Republic
| | - Ondřej Sedláček
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague, Czech Republic.,Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Rafal Konefal
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague, Czech Republic
| | - Alexander Zhigunov
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague, Czech Republic
| | - Ewa Pavlova
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague, Czech Republic
| | - Martin Vít
- Faculty of Mechatronics Informatics and Interdisciplinary Studies, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec, Czech Republic
| | - Daniel Jirák
- Institute for Clinical and Experimental Medicine, Vídeňská 9, 140 21 Prague, Czech Republic.,Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University in Prague, Salmovská 1, 120 00 Prague, Czech Republic
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Sergey K Filippov
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland.,Department of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, 050040 Almaty, Kazakhstan
| |
Collapse
|
10
|
Chimala P, Perera MM, Wade A, McKenzie T, Allor J, Ayres N. Hyperbranched polymer hydrogels with large stimuli-responsive changes in storage moduli and peroxide-induced healing. Polym Chem 2021. [DOI: 10.1039/d1py00560j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogels prepared using hyperbranched polymers with dynamic disulfide bonds show larger changes in moduli upon exposure to chemical stimuli for both softening and stiffening responses compared to linear polymers.
Collapse
Affiliation(s)
| | - M. Mario Perera
- Department of Chemistry
- The University of Cincinnati
- Cincinnati
- USA
| | - Aissatou Wade
- Department of Chemistry
- The University of Cincinnati
- Cincinnati
- USA
| | - Tucker McKenzie
- Department of Chemistry
- The University of Cincinnati
- Cincinnati
- USA
| | - Joshua Allor
- Department of Chemistry
- The University of Cincinnati
- Cincinnati
- USA
| | - Neil Ayres
- Department of Chemistry
- The University of Cincinnati
- Cincinnati
- USA
| |
Collapse
|
11
|
Lv J, Cheng Y. Fluoropolymers in biomedical applications: state-of-the-art and future perspectives. Chem Soc Rev 2021; 50:5435-5467. [DOI: 10.1039/d0cs00258e] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biomedical applications of fluoropolymers in gene delivery, protein delivery, drug delivery, 19F MRI, PDT, anti-fouling, anti-bacterial, cell culture, and tissue engineering.
Collapse
Affiliation(s)
- Jia Lv
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai
- China
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai
- China
| |
Collapse
|
12
|
|
13
|
Sedlacek O, Jirak D, Vit M, Ziołkowska N, Janouskova O, Hoogenboom R. Fluorinated Water-Soluble Poly(2-oxazoline)s as Highly Sensitive 19F MRI Contrast Agents. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01228] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Ondrej Sedlacek
- Supramolecular Chemistry Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova, 2030, 128 40 Prague 2, Czech Republic
| | - Daniel Jirak
- Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic
- Institute of Biophysics and Informatics, 1st Medicine Faculty, Charles University, Salmovská 1, 120 00 Prague 2, Czech Republic
| | - Martin Vit
- Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic
- Faculty of Mechatronics Informatics and Interdisciplinary Studies, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec, Czech Republic
| | - Natalia Ziołkowska
- Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic
- Institute of Biophysics and Informatics, 1st Medicine Faculty, Charles University, Salmovská 1, 120 00 Prague 2, Czech Republic
| | - Olga Janouskova
- Institute of Macromolecular Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| |
Collapse
|
14
|
Taylor NG, Chung SH, Kwansa AL, Johnson RR, Teator AJ, Milliken NJB, Koshlap KM, Yingling YG, Lee YZ, Leibfarth FA. Partially Fluorinated Copolymers as Oxygen Sensitive
19
F MRI Agents. Chemistry 2020; 26:9982-9990. [DOI: 10.1002/chem.202001505] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/19/2020] [Indexed: 01/03/2023]
Affiliation(s)
- Nicholas G. Taylor
- Department of Chemistry The University of North Carolina at Chapel Hill 125 South Rd Chapel Hill NC 27599 USA
| | - Sang Hun Chung
- Department of Radiology The University of North Carolina at Chapel Hill 101 Manning Dr Chapel Hill NC 27599 USA
| | - Albert L. Kwansa
- Department of Materials Science and Engineering North Carolina State University 911 Partners Way Raleigh NC 27695 USA
| | - Rob R. Johnson
- Department of Chemistry The University of North Carolina at Chapel Hill 125 South Rd Chapel Hill NC 27599 USA
| | - Aaron J. Teator
- Department of Chemistry The University of North Carolina at Chapel Hill 125 South Rd Chapel Hill NC 27599 USA
| | - Nina J. B. Milliken
- Department of Materials Science and Engineering North Carolina State University 911 Partners Way Raleigh NC 27695 USA
| | - Karl M. Koshlap
- Eshelman School of Pharmacy The University of North Carolina at Chapel Hill 301 Pharmacy Ln Chapel Hill NC 27599 USA
| | - Yaroslava G. Yingling
- Department of Materials Science and Engineering North Carolina State University 911 Partners Way Raleigh NC 27695 USA
| | - Yueh Z. Lee
- Department of Radiology The University of North Carolina at Chapel Hill 101 Manning Dr Chapel Hill NC 27599 USA
| | - Frank A. Leibfarth
- Department of Chemistry The University of North Carolina at Chapel Hill 125 South Rd Chapel Hill NC 27599 USA
| |
Collapse
|
15
|
Cuneo T, Gao H. Recent advances on synthesis and biomaterials applications of hyperbranched polymers. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1640. [DOI: 10.1002/wnan.1640] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/14/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Timothy Cuneo
- Department of Chemistry and Biochemistry University of Notre Dame Indiana USA
| | - Haifeng Gao
- Department of Chemistry and Biochemistry University of Notre Dame Indiana USA
| |
Collapse
|
16
|
Kavand A, Anton N, Vandamme T, Serra CA, Chan-Seng D. Synthesis and functionalization of hyperbranched polymers for targeted drug delivery. J Control Release 2020; 321:285-311. [DOI: 10.1016/j.jconrel.2020.02.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 02/07/2023]
|
17
|
Mann J, Rossi RL, Smith AAA, Appel EA. Universal Scaling Behavior during Network Formation in Controlled Radical Polymerizations. Macromolecules 2019; 52:9456-9465. [PMID: 31894160 PMCID: PMC6933816 DOI: 10.1021/acs.macromol.9b02109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/15/2019] [Indexed: 01/14/2023]
Abstract
Despite the ubiquity of branched and network polymers in biological, electronic, and rheological applications, it remains difficult to predict the network structure arising from polymerization of vinyl and multivinyl monomers. While controlled radical polymerization (CRP) techniques afford modularity and control in the synthesis of (hyper)branched polymers, a unifying understanding of network formation providing grounded predictive power is still lacking. A current limitation is the inability to predict the number and weight average molecular weights that arise during the synthesis of (hyper)branched polymers using CRP. This study addresses this literature gap through first building intuition via a growth boundary analysis on how certain environmental cues (concentration, monomer choice, and cross-linker choice) affect the cross-link efficiency during network formation through experimental gel point measurements. We then demonstrate, through experimental gel point normalization, universal scaling behavior of molecular weights in the synthesis of branched polymers corroborated by previous literature experiments. Moreover, the normalization employed in this analysis reveals trends in the macroscopic mechanical properties of networks synthesized using CRP techniques. Gel point normalization employed in this analysis both enables a polymer chemist to target specific number and weight average molecular weights of (hyper)branched polymers using CRP and demonstrates the utility of CRP for gel synthesis.
Collapse
Affiliation(s)
- Joseph
L. Mann
- Department of Materials Science
and Engineering, Stanford University, Stanford, California 94305, United States
| | - Rachel L. Rossi
- Department of Materials Science
and Engineering, Stanford University, Stanford, California 94305, United States
| | - Anton A. A. Smith
- Department of Materials Science
and Engineering, Stanford University, Stanford, California 94305, United States
| | - Eric A. Appel
- Department of Materials Science
and Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
18
|
Cho MH, Shin SH, Park SH, Kadayakkara DK, Kim D, Choi Y. Targeted, Stimuli-Responsive, and Theranostic 19F Magnetic Resonance Imaging Probes. Bioconjug Chem 2019; 30:2502-2518. [DOI: 10.1021/acs.bioconjchem.9b00582] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Mi Hyeon Cho
- National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10408, Republic of Korea
| | - Soo Hyun Shin
- National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10408, Republic of Korea
| | - Sang Hyun Park
- National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10408, Republic of Korea
| | - Deepak Kana Kadayakkara
- Department of Medicine, Bridgeport Hospital−Yale New Haven Health, Bridgeport, Connecticut 06610, United States
| | - Daehong Kim
- National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10408, Republic of Korea
| | - Yongdoo Choi
- National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10408, Republic of Korea
| |
Collapse
|
19
|
Cuneo T, Graff RW, Wang X, Gao H. Synthesis of Highly Branched Copolymers in Microemulsion. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201800546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Timothy Cuneo
- Department of Chemistry and Biochemistry; University of Notre Dame; Notre Dame IN 46556 USA
| | - Robert W. Graff
- Department of Chemistry and Biochemistry; University of Notre Dame; Notre Dame IN 46556 USA
| | - Xiaofeng Wang
- Department of Chemistry and Biochemistry; University of Notre Dame; Notre Dame IN 46556 USA
| | - Haifeng Gao
- Department of Chemistry and Biochemistry; University of Notre Dame; Notre Dame IN 46556 USA
| |
Collapse
|
20
|
Munkhbat O, Canakci M, Zheng S, Hu W, Osborne B, Bogdanov AA, Thayumanavan S. 19F MRI of Polymer Nanogels Aided by Improved Segmental Mobility of Embedded Fluorine Moieties. Biomacromolecules 2019; 20:790-800. [PMID: 30563327 PMCID: PMC6449047 DOI: 10.1021/acs.biomac.8b01383] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Using fluorinated probes for 19F MRI imaging is an emerging field with potential utility in cellular imaging and cell tracking in vivo, which complements conventional 1H MRI. An attractive feature of 19F-based imaging is that this is a bio-orthogonal nucleus and the naturally abundant isotope is NMR active. A significant hurdle however in the 19F MRI arises from the tendency of organic macromolecules, with multiple fluorocarbon substitutions, to aggregate in the aqueous phase. This aggregation results in significant loss of sensitivity, because the T2 relaxation times of these aggregated 19F species tend to be significantly lower. In this report, we have developed a strategy to covalently trap nanoscopic states with an optimal degree of 19F substitutions, followed by significant enhancement in T2 relaxation times through increased segmental mobility of the side chain substituents facilitated by the stimulus-responsive elements in the polymeric nanogel. In addition to NMR relaxation time based evaluations, the ability to obtain such signals are also evaluated in mouse models. The propensity of these nanoscale assemblies to encapsulate hydrophobic drug molecules and the availability of surfaces for convenient introduction of fluorescent labels suggest the potential of these nanoscale architectures for use in multimodal imaging and therapeutic applications.
Collapse
Affiliation(s)
- Oyuntuya Munkhbat
- Department of Chemistry , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - Mine Canakci
- Molecular and Cellular Biology Program , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - Shaokuan Zheng
- Department of Radiology and the Laboratory of Molecular Imaging Probes and The Chemical Biology Interface Program , University of Massachusetts Medical School , Worcester , Massachusetts 01655 , United States
| | - Weiguo Hu
- Department of Polymer Science and Engineering , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - Barbara Osborne
- Molecular and Cellular Biology Program , University of Massachusetts , Amherst , Massachusetts 01003 , United States
- The Center for Bioactive Delivery, Institute for Applied Life Sciences , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - Alexei A Bogdanov
- Department of Radiology and the Laboratory of Molecular Imaging Probes and The Chemical Biology Interface Program , University of Massachusetts Medical School , Worcester , Massachusetts 01655 , United States
| | - S Thayumanavan
- Department of Chemistry , University of Massachusetts , Amherst , Massachusetts 01003 , United States
- Molecular and Cellular Biology Program , University of Massachusetts , Amherst , Massachusetts 01003 , United States
- The Center for Bioactive Delivery, Institute for Applied Life Sciences , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| |
Collapse
|
21
|
A Hyperfluorinated Hydrophilic Molecule for Aqueous 19F MRI Contrast Media. CONTRAST MEDIA & MOLECULAR IMAGING 2018; 2018:1693513. [PMID: 30538612 PMCID: PMC6260405 DOI: 10.1155/2018/1693513] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/02/2018] [Accepted: 10/09/2018] [Indexed: 12/24/2022]
Abstract
Fluorine-19 (19F) magnetic resonance imaging (MRI) has the potential for a wide range of in vivo applications but is limited by lack of flexibility in exogenous probe formulation. Most 19F MRI probes are composed of perfluorocarbons (PFCs) or perfluoropolyethers (PFPEs) with intrinsic properties which limit formulation options. Hydrophilic organofluorine molecules can provide more flexibility in formulation options. We report herein a hyperfluorinated hydrophilic organoflourine, ET1084, with ∼24 wt. % 19F content. It dissolves in water and aqueous buffers to give solutions with ≥8 M 19F. 19F MRI phantom studies at 9.4T employing a 10-minute multislice multiecho (MSME) scan sequence show a linear increase in signal-to-noise ratio (SNR) with increasing concentrations of the molecule and a detection limit of 5 mM. Preliminary cytotoxicity and genotoxicity assessments suggest it is safe at concentrations of up to 20 mM.
Collapse
|
22
|
Zhang C, Moonshi SS, Wang W, Ta HT, Han Y, Han FY, Peng H, Král P, Rolfe BE, Gooding JJ, Gaus K, Whittaker AK. High F-Content Perfluoropolyether-Based Nanoparticles for Targeted Detection of Breast Cancer by 19F Magnetic Resonance and Optical Imaging. ACS NANO 2018; 12:9162-9176. [PMID: 30118590 DOI: 10.1021/acsnano.8b03726] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Two important challenges in the field of 19F magnetic resonance imaging (MRI) are the maintenance of high fluorine content without compromising imaging performance, and effective targeting of small particles to diseased tissue. To address these challenges, we have developed a series of perfluoropolyether (PFPE)-based hyperbranched (HBPFPE) nanoparticles with attached peptide aptamer as targeting ligands for specific in vivo detection of breast cancer with high 19F MRI sensitivity. A detailed comparison of the HBPFPE nanoparticles (NPs) with the previously reported trifluoroethyl acrylate (TFEA)-based polymers demonstrates that the mobility of fluorinated segments of the HBPFPE nanoparticles is significantly enhanced (19F T2 > 80 ms vs 31 ms), resulting in superior MR imaging sensitivity. Selective targeting was confirmed by auto- and pair correlation analysis of fluorescence microscopy data, in vitro immunofluorescence, in vivo 19F MRI, ex vivo fluorescence and 19F NMR. The results highlight the high efficiency of aptamers for targeting and the excellent sensitivity of the PFPE moieties for 19F MRI. Of relevance to in vivo applications, the PFPE-based polymers exhibit much faster clearance from the body than the previously introduced perfluorocarbon emulsions ( t1/2 ∼ 20 h vs up to months). Moreover, the aptamer-conjugated NPs show significantly higher tumor-penetration, demonstrating the potential of these imaging agents for therapeutic applications. This report of the synthesis of polymeric aptamer-conjugated PFPE-based 19F MRI CAs with high fluorine content (∼10 wt %) demonstrates that these NPs are exciting candidates for detecting diseases with high imaging sensitivity.
Collapse
Affiliation(s)
| | | | | | | | | | - Felicity Y Han
- Centre for Integrated Preclinical Drug Development , The University of Queensland , Brisbane , Qld 4072 , Australia
| | | | - Petr Král
- Department of Biopharmaceutical Sciences , University of Illinois at Chicago , Chicago , Illinois 60612 , United States
| | | | | | | | | |
Collapse
|
23
|
Mu B, Liu T, Tian W. Long‐Chain Hyperbranched Polymers: Synthesis, Properties, and Applications. Macromol Rapid Commun 2018; 40:e1800471. [DOI: 10.1002/marc.201800471] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 07/30/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Bin Mu
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions and Shaanxi Key Laboratory of Macromolecular Science and TechnologySchool of ScienceNorthwestern Polytechnical University Xi'an 710072 P. R. China
| | - Tingting Liu
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions and Shaanxi Key Laboratory of Macromolecular Science and TechnologySchool of ScienceNorthwestern Polytechnical University Xi'an 710072 P. R. China
| | - Wei Tian
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions and Shaanxi Key Laboratory of Macromolecular Science and TechnologySchool of ScienceNorthwestern Polytechnical University Xi'an 710072 P. R. China
| |
Collapse
|
24
|
Zhang C, Kim DS, Lawrence J, Hawker CJ, Whittaker AK. Elucidating the Impact of Molecular Structure on the 19F NMR Dynamics and MRI Performance of Fluorinated Oligomers. ACS Macro Lett 2018; 7:921-926. [PMID: 35650966 DOI: 10.1021/acsmacrolett.8b00433] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
To understand molecular factors that impact the performance of polymeric 19F magnetic resonance imaging (MRI) agents, a series of discrete fluorinated oligoacrylates with precisely defined structure were prepared through the combination of controlled polymerization and chromatographic separation techniques. These discrete oligomers enabled thorough elucidation of the dependence of 19F NMR and MRI properties on molecular structure, for example, the chain length. Importantly, the oligomer size and dispersity strongly influence NMR dynamics (T1 and T2 relaxation times) and MR imaging properties with higher signal-to-noise ratio (SNR) observed for oligomers with longer chain length and shorter T1. Our approach enables an effective pathway and thus opportunities to rationally design effective polymeric 19F MR imaging agents with optimized molecular structure and NMR relaxivity.
Collapse
Affiliation(s)
| | - Dong Sub Kim
- Materials Research Laboratory, Materials Department and Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Jimmy Lawrence
- Materials Research Laboratory, Materials Department and Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Craig J. Hawker
- Materials Research Laboratory, Materials Department and Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | | |
Collapse
|
25
|
Fu C, Zhang C, Peng H, Han F, Baker C, Wu Y, Ta H, Whittaker AK. Enhanced Performance of Polymeric 19F MRI Contrast Agents through Incorporation of Highly Water-Soluble Monomer MSEA. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01190] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
Moonshi SS, Zhang C, Peng H, Puttick S, Rose S, Fisk NM, Bhakoo K, Stringer BW, Qiao GG, Gurr PA, Whittaker AK. A unique 19F MRI agent for the tracking of non phagocytic cells in vivo. NANOSCALE 2018; 10:8226-8239. [PMID: 29682654 DOI: 10.1039/c8nr00703a] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
There is currently intense interest in new methods for understanding the fate of therapeutically-relevant cells, such as mesenchymal stem cells (MSCs). The absence of a confounding background signal and consequent unequivocal assignment makes 19F MRI one of the most attractive modalities for the tracking of injected cells in vivo. We describe here the synthesis of novel partly-fluorinated polymeric nanoparticles with small size and high fluorine content as MRI agents. The polymers, constructed from perfluoropolyether methacrylate (PFPEMA) and oligo(ethylene glycol) methacrylate (OEGMA) have favourable cell uptake profiles and excellent MRI performance. To facilitate cell studies the polymer was further conjugated with a fluorescent dye creating a dual-modal imaging agent. The efficacy of labelling of MSCs was assessed using 19F NMR, flow cytometry and confocal microscopy. The labelling efficiency of 2.6 ± 0.1 × 1012 19F atoms per cell, and viability of >90% demonstrates high uptake and good tolerance by the cells. This loading translates to a minimum 19F MRI detection sensitivity of ∼7.4 × 103 cells per voxel. Importantly, preliminary in vivo data demonstrate that labelled cells can be readily detected within a short acquisition scan period (12 minutes). Hence, these copolymers show outstanding potential for 19F MRI cellular tracking and for quantification of non-phagocytic and therapeutically-relevant cells in vivo.
Collapse
Affiliation(s)
- Shehzahdi S Moonshi
- Australian Institute for Bioengineering and Nanotechnology and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, QLD 4072, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ekkelenkamp AE, Elzes MR, Engbersen JFJ, Paulusse JMJ. Responsive crosslinked polymer nanogels for imaging and therapeutics delivery. J Mater Chem B 2018; 6:210-235. [DOI: 10.1039/c7tb02239e] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nanogels are water-soluble crosslinked polymer networks with tremendous potential in targeted imaging and controlled drug and gene delivery.
Collapse
Affiliation(s)
- Antonie E. Ekkelenkamp
- Department of Biomolecular Nanotechnology
- MESA+ Institute for Nanotechnology
- Faculty of Science and Technology
- University of Twente
- Enschede
| | - M. Rachèl Elzes
- Department of Biomolecular Nanotechnology
- MESA+ Institute for Nanotechnology
- Faculty of Science and Technology
- University of Twente
- Enschede
| | - Johan F. J. Engbersen
- Department of Controlled Drug Delivery
- MIRA Institute for Biomedical Technology and Technical Medicine
- Faculty of Science and Technology
- University of Twente
- Enschede
| | - Jos M. J. Paulusse
- Department of Biomolecular Nanotechnology
- MESA+ Institute for Nanotechnology
- Faculty of Science and Technology
- University of Twente
- Enschede
| |
Collapse
|
28
|
Liu H, Lu G, Feng C, Huang X. A new difluoromethoxyl-containing acrylate monomer for PEG-b-PDFMOEA amphiphilic diblock copolymers. Polym Chem 2018. [DOI: 10.1039/c8py00942b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This article reports the first synthesis of a well-defined difluoromethoxyl-containing polyacrylate via ATRP.
Collapse
Affiliation(s)
- Haoyu Liu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Guolin Lu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Chun Feng
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Xiaoyu Huang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| |
Collapse
|
29
|
Guo C, Xu S, Arshad A, Wang L. A pH-responsive nanoprobe for turn-on 19F-magnetic resonance imaging. Chem Commun (Camb) 2018; 54:9853-9856. [DOI: 10.1039/c8cc06129g] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A pH-responsive MRI nanoprobe was developed by partially replacing organic linkers in ZIF-8, which displays pH-responsive in vivo19F MRI ability.
Collapse
Affiliation(s)
- Chang Guo
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Suying Xu
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Anila Arshad
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Leyu Wang
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| |
Collapse
|
30
|
Xu M, Guo C, Hu G, Xu S, Wang L. Organic Nanoprobes for Fluorescence and 19
F Magnetic Resonance Dual-Modality Imaging. CHINESE J CHEM 2017. [DOI: 10.1002/cjoc.201700382] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Minmin Xu
- State Key Laboratory of Chemical Resource Engineering; Beijing University of Chemical Technology; Beijing 100029 China
| | - Chang Guo
- State Key Laboratory of Chemical Resource Engineering; Beijing University of Chemical Technology; Beijing 100029 China
| | - Gaofei Hu
- State Key Laboratory of Chemical Resource Engineering; Beijing University of Chemical Technology; Beijing 100029 China
| | - Suying Xu
- State Key Laboratory of Chemical Resource Engineering; Beijing University of Chemical Technology; Beijing 100029 China
| | - Leyu Wang
- State Key Laboratory of Chemical Resource Engineering; Beijing University of Chemical Technology; Beijing 100029 China
| |
Collapse
|
31
|
Zhang C, Moonshi SS, Han Y, Puttick S, Peng H, Magoling BJA, Reid JC, Bernardi S, Searles DJ, Král P, Whittaker AK. PFPE-Based Polymeric 19F MRI Agents: A New Class of Contrast Agents with Outstanding Sensitivity. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01285] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Cheng Zhang
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld 4072, Australia
- ARC Centre of
Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Shehzahdi Shebbrin Moonshi
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld 4072, Australia
- ARC Centre of
Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, Qld 4072, Australia
| | | | - Simon Puttick
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld 4072, Australia
- ARC Centre of
Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Hui Peng
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld 4072, Australia
- ARC Centre of
Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Bryan John Abel Magoling
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld 4072, Australia
| | - James C. Reid
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Stefano Bernardi
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Debra J. Searles
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld 4072, Australia
- School
of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Petr Král
- Department
of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Andrew K. Whittaker
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld 4072, Australia
- ARC Centre of
Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, Qld 4072, Australia
| |
Collapse
|
32
|
Recent Progress on Hyperbranched Polymers Synthesized via Radical-Based Self-Condensing Vinyl Polymerization. Polymers (Basel) 2017; 9:polym9060188. [PMID: 30970866 PMCID: PMC6431861 DOI: 10.3390/polym9060188] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 05/16/2017] [Accepted: 05/18/2017] [Indexed: 01/27/2023] Open
|
33
|
Zhao W, Ta HT, Zhang C, Whittaker AK. Polymerization-Induced Self-Assembly (PISA) - Control over the Morphology of 19F-Containing Polymeric Nano-objects for Cell Uptake and Tracking. Biomacromolecules 2017; 18:1145-1156. [DOI: 10.1021/acs.biomac.6b01788] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wei Zhao
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, St. Lucia, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Brisbane, Queensland 4072, Australia
| | - Hang T. Ta
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, St. Lucia, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Brisbane, Queensland 4072, Australia
| | - Cheng Zhang
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, St. Lucia, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Brisbane, Queensland 4072, Australia
| | - Andrew K. Whittaker
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, St. Lucia, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Brisbane, Queensland 4072, Australia
| |
Collapse
|
34
|
Fu C, Herbst S, Zhang C, Whittaker AK. Polymeric 19F MRI agents responsive to reactive oxygen species. Polym Chem 2017. [DOI: 10.1039/c7py00986k] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Medical imaging agents that can report on the biological state are attracting increasing interest.
Collapse
Affiliation(s)
- Changkui Fu
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- Brisbane
- Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
| | - Shauna Herbst
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- Brisbane
- Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
| | - Cheng Zhang
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- Brisbane
- Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
| | - Andrew K. Whittaker
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- Brisbane
- Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
| |
Collapse
|
35
|
Wallat JD, Czapar AE, Wang C, Wen AM, Wek KS, Yu X, Steinmetz NF, Pokorski JK. Optical and Magnetic Resonance Imaging Using Fluorous Colloidal Nanoparticles. Biomacromolecules 2016; 18:103-112. [PMID: 27992176 DOI: 10.1021/acs.biomac.6b01389] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Improved imaging of cancerous tissue has the potential to aid prognosis and improve patient outcome through longitudinal imaging of treatment response and disease progression. While nuclear imaging has made headway in cancer imaging, fluorinated tracers that enable magnetic resonance imaging (19F MRI) hold promise, particularly for repeated imaging sessions because nonionizing radiation is used. Fluorine MRI detects molecular signatures by imaging a fluorinated tracer and takes advantage of the spatial and anatomical resolution afforded by MRI. This manuscript describes a fluorous polymeric nanoparticle that is capable of 19F MR imaging and fluorescent tracking for in vitro and in vivo monitoring of immune cells and cancerous tissue. The fluorous particle is derived from low-molecular-weight amphiphilic copolymers that self-assemble into micelles with a hydrodynamic diameter of 260 nm. The polymer is MR-active at concentrations as low as 2.1 mM in phantom imaging studies. The fluorinated particle demonstrated rapid uptake into immune cells for potential cell-tracking or delineation of the tumor microenvironment and showed negligible toxicity. Systemic administration indicates significant uptake into two tumor types, triple-negative breast cancer and ovarian cancer, with little accumulation in off-target tissue. These results indicate a robust platform imaging agent capable of immune cell tracking and systemic disease monitoring with exceptional uptake of the nanoparticle in multiple cancer models.
Collapse
Affiliation(s)
- Jaqueline D Wallat
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Case School of Engineering , Cleveland, Ohio 44106, United States
| | - Anna E Czapar
- Department of Pathology, Case Western Reserve University School of Medicine , Cleveland, Ohio 44106, United States
| | - Charlie Wang
- Department of Biomedical Engineering, Case Western Reserve University School of Medicine and Case School of Engineering , Cleveland, Ohio 44106, United States
| | - Amy M Wen
- Department of Biomedical Engineering, Case Western Reserve University School of Medicine and Case School of Engineering , Cleveland, Ohio 44106, United States
| | - Kristen S Wek
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Case School of Engineering , Cleveland, Ohio 44106, United States
| | - Xin Yu
- Department of Biomedical Engineering, Case Western Reserve University School of Medicine and Case School of Engineering , Cleveland, Ohio 44106, United States
| | - Nicole F Steinmetz
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Case School of Engineering , Cleveland, Ohio 44106, United States.,Department of Biomedical Engineering, Case Western Reserve University School of Medicine and Case School of Engineering , Cleveland, Ohio 44106, United States.,Department of Radiology, Case Western Reserve University School of Medicine , Cleveland, Ohio 44106, United States.,Department of Materials Science and Engineering, Case Western Reserve University , Cleveland, Ohio 44106, United States.,Case Comprehensive Cancer Center, Division of General Medical Sciences-Oncology, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Jonathan K Pokorski
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Case School of Engineering , Cleveland, Ohio 44106, United States
| |
Collapse
|
36
|
Xiao Q, Rubien JD, Wang Z, Reed EH, Hammer DA, Sahoo D, Heiney PA, Yadavalli SS, Goulian M, Wilner SE, Baumgart T, Vinogradov SA, Klein ML, Percec V. Self-Sorting and Coassembly of Fluorinated, Hydrogenated, and Hybrid Janus Dendrimers into Dendrimersomes. J Am Chem Soc 2016; 138:12655-63. [PMID: 27580315 DOI: 10.1021/jacs.6b08069] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The modular synthesis of a library containing seven self-assembling amphiphilic Janus dendrimers is reported. Three of these molecules contain environmentally friendly chiral-racemic fluorinated dendrons in their hydrophobic part (RF), one contains achiral hydrogenated dendrons (RH), while one denoted hybrid Janus dendrimer, contains a combination of chiral-racemic fluorinated and achiral hydrogenated dendrons (RHF) in its hydrophobic part. Two Janus dendrimers contain either chiral-racemic fluorinated dendrons and a green fluorescent dye conjugated to its hydrophilic part (RF-NBD) or achiral hydrogenated and a red fluorescent dye in its hydrophilic part (RH-RhB). These RF, RH, and RHF Janus dendrimers self-assembled into unilamellar or onion-like soft vesicular dendrimersomes (DSs), with similar thicknesses to biological membranes by simple injection from ethanol solution into water or buffer. Since RF and RH dendrons are not miscible, RF-NBD and RH-RhB were employed to investigate by fluorescence microscopy the self-sorting and coassembly of RF and RH as well as of phospholipids into hybrid DSs mediated by the hybrid hydrogenated-fluorinated RHF Janus dendrimer. The hybrid RHF Janus dendrimer coassembled with both RF and RH. Three-component hybrid DSs containing RH, RF, and RHF were formed when the proportion of RHF was higher than 40%. With low concentration of RHF and in its absence, RH and RF self-sorted into individual RH or RF DSs. Phospholipids were also coassembled with hybrid RHF Janus dendrimers. The simple synthesis and self-assembly of DSs and hybrid DSs, their similar thickness with biological membranes and their imaging by fluorescence and (19)F-MRI make them important tools for synthetic biology.
Collapse
Affiliation(s)
- Qi Xiao
- Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6323, United States
| | - Jack D Rubien
- Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6323, United States
| | - Zhichun Wang
- Department of Bioengineering, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6321, United States
| | - Ellen H Reed
- Department of Bioengineering, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6321, United States
| | - Daniel A Hammer
- Department of Bioengineering, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6321, United States.,Department of Chemical and Biomolecular Engineering, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6391, United States
| | - Dipankar Sahoo
- Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6323, United States.,Department of Physics and Astronomy, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6396, United States
| | - Paul A Heiney
- Department of Physics and Astronomy, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6396, United States
| | - Srujana S Yadavalli
- Department of Biology, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6313, United States
| | - Mark Goulian
- Department of Biology, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6313, United States
| | - Samantha E Wilner
- Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6323, United States
| | - Tobias Baumgart
- Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6323, United States
| | - Sergei A Vinogradov
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6059, United States
| | - Michael L Klein
- Institute of Computational Molecular Science, Temple University , Philadelphia, Pennsylvania 19122, United States
| | - Virgil Percec
- Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
37
|
Wang X, Shi Y, Graff RW, Cao X, Gao H. Synthesis of Hyperbranched Polymers with High Molecular Weight in the Homopolymerization of Polymerizable Trithiocarbonate Transfer Agent without Thermal Initiator. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b00994] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xiaofeng Wang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556-5670, United States
| | - Yi Shi
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556-5670, United States
| | - Robert W. Graff
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556-5670, United States
| | - Xiaosong Cao
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556-5670, United States
| | - Haifeng Gao
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556-5670, United States
| |
Collapse
|
38
|
Haldar U, Roy SG, De P. POSS tethered hybrid “inimer” derived hyperbranched and star-shaped polymers via SCVP-RAFT technique. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.05.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
39
|
Wang K, Peng H, Thurecht KJ, Whittaker AK. Fluorinated POSS‐Star Polymers for
19
F MRI. MACROMOL CHEM PHYS 2016. [DOI: 10.1002/macp.201600084] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Kewei Wang
- Australian Institute for Bioengineering and Nanotechnology and Centre for Advanced Imaging The University of Queensland St. Lucia Queensland 4072 Australia
| | - Hui Peng
- Australian Institute for Bioengineering and Nanotechnology and Centre for Advanced Imaging The University of Queensland St. Lucia Queensland 4072 Australia
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology The University of Queensland St. Lucia Queensland 4072 Australia
| | - Kristofer J. Thurecht
- Australian Institute for Bioengineering and Nanotechnology and Centre for Advanced Imaging The University of Queensland St. Lucia Queensland 4072 Australia
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology The University of Queensland St. Lucia Queensland 4072 Australia
| | - Andrew K. Whittaker
- Australian Institute for Bioengineering and Nanotechnology and Centre for Advanced Imaging The University of Queensland St. Lucia Queensland 4072 Australia
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology The University of Queensland St. Lucia Queensland 4072 Australia
| |
Collapse
|
40
|
Wang K, Peng H, Thurecht KJ, Puttick S, Whittaker AK. Multifunctional hyperbranched polymers for CT/19F MRI bimodal molecular imaging. Polym Chem 2016. [DOI: 10.1039/c5py01707f] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multifunctional hyperbranched polymers containing iodine and fluorine were synthesised by reversible addition–fragmentation chain transfer (RAFT) polymerisation, and evaluated as novel contrast agents for CT/19F MRI bimodal molecular imaging.
Collapse
Affiliation(s)
- Kewei Wang
- Australian Institute for Bioengineering and Nanotechnology
- Centre for Advanced Imaging
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
- The University of Queensland
- St. Lucia
| | - Hui Peng
- Australian Institute for Bioengineering and Nanotechnology
- Centre for Advanced Imaging
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
- The University of Queensland
- St. Lucia
| | - Kristofer J. Thurecht
- Australian Institute for Bioengineering and Nanotechnology
- Centre for Advanced Imaging
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
- The University of Queensland
- St. Lucia
| | - Simon Puttick
- Australian Institute for Bioengineering and Nanotechnology
- Centre for Advanced Imaging
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
- The University of Queensland
- St. Lucia
| | - Andrew K. Whittaker
- Australian Institute for Bioengineering and Nanotechnology
- Centre for Advanced Imaging
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
- The University of Queensland
- St. Lucia
| |
Collapse
|