1
|
Ma B, Shi J, Zhang Y, Li Z, Yong H, Zhou YN, Liu S, A S, Zhou D. Enzymatically Activatable Polymers for Disease Diagnosis and Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306358. [PMID: 37992728 DOI: 10.1002/adma.202306358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/03/2023] [Indexed: 11/24/2023]
Abstract
The irregular expression or activity of enzymes in the human body leads to various pathological disorders and can therefore be used as an intrinsic trigger for more precise identification of disease foci and controlled release of diagnostics and therapeutics, leading to improved diagnostic accuracy, sensitivity, and therapeutic efficacy while reducing systemic toxicity. Advanced synthesis strategies enable the preparation of polymers with enzymatically activatable skeletons or side chains, while understanding enzymatically responsive mechanisms promotes rational incorporation of activatable units and predictions of the release profile of diagnostics and therapeutics, ultimately leading to promising applications in disease diagnosis and treatment with superior biocompatibility and efficiency. By overcoming the challenges, new opportunities will emerge to inspire researchers to develop more efficient, safer, and clinically reliable enzymatically activatable polymeric carriers as well as prodrugs.
Collapse
Affiliation(s)
- Bin Ma
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jiahao Shi
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yuhe Zhang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhili Li
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Haiyang Yong
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ya-Nan Zhou
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shuai Liu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Sigen A
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China
| | - Dezhong Zhou
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
2
|
Thermoresponsive Polymer Assemblies: From Molecular Design to Theranostics Application. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Shape-Memory Materials via Electrospinning: A Review. Polymers (Basel) 2022; 14:polym14050995. [PMID: 35267818 PMCID: PMC8914658 DOI: 10.3390/polym14050995] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/16/2022] [Accepted: 02/26/2022] [Indexed: 01/27/2023] Open
Abstract
This review aims to point out the importance of the synergic effects of two relevant and appealing polymeric issues: electrospun fibers and shape-memory properties. The attention is focused specifically on the design and processing of electrospun polymeric fibers with shape-memory capabilities and their potential application fields. It is shown that this field needs to be explored more from both scientific and industrial points of view; however, very promising results have been obtained up to now in the biomedical field and also as sensors and actuators and in electronics.
Collapse
|
4
|
Le‐Vinh B, Akkuş‐Dağdeviren ZB, Le NN, Nazir I, Bernkop‐Schnürch A. Alkaline Phosphatase: A Reliable Endogenous Partner for Drug Delivery and Diagnostics. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202100219] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Bao Le‐Vinh
- Department of Pharmaceutical Technology Institute of Pharmacy University of Innsbruck Innrain 80/82 Innsbruck 6020 Austria
- Department of Industrial Pharmacy Faculty of Pharmacy University of Medicine and Pharmacy at Ho Chi Minh City Ho Chi Minh City 700000 Viet Nam
| | - Zeynep Burcu Akkuş‐Dağdeviren
- Department of Pharmaceutical Technology Institute of Pharmacy University of Innsbruck Innrain 80/82 Innsbruck 6020 Austria
| | - Nguyet‐Minh Nguyen Le
- Department of Pharmaceutical Technology Institute of Pharmacy University of Innsbruck Innrain 80/82 Innsbruck 6020 Austria
- Department of Industrial Pharmacy Faculty of Pharmacy University of Medicine and Pharmacy at Ho Chi Minh City Ho Chi Minh City 700000 Viet Nam
| | - Imran Nazir
- Department of Pharmacy COMSATS University Islamabad Abbottabad Campus Abbottabad 22060 Pakistan
| | - Andreas Bernkop‐Schnürch
- Department of Pharmaceutical Technology Institute of Pharmacy University of Innsbruck Innrain 80/82 Innsbruck 6020 Austria
| |
Collapse
|
5
|
Preparation of Responsive Zwitterionic Diblock Copolymers Containing Phosphate and Phosphonate Groups. Macromol Res 2020. [DOI: 10.1007/s13233-020-8148-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
6
|
Kumar V, Munkhbat O, Secinti H, Thayumanavan S. Disassembly of polymeric nanoparticles with enzyme-triggered polymer unzipping: polyelectrolyte complexes vs. amphiphilic nanoassemblies. Chem Commun (Camb) 2020; 56:8456-8459. [PMID: 32583817 PMCID: PMC7390689 DOI: 10.1039/d0cc03257c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Alkaline phosphatase (ALP) responsive polymers, which can unzip from head to tail are reported. Hydrophilic and hydrophobic modification of the polymer was carried out for the formation of a polyelectrolyte complex and an amphiphilic nanoassembly, respectively, which offered distinct enzyme-triggered disassembly kinetics.
Collapse
Affiliation(s)
- Vikash Kumar
- Department of Chemistry, University of Massachusetts, Amherst, MA-01003, USA.
| | - Oyuntuya Munkhbat
- Department of Chemistry, University of Massachusetts, Amherst, MA-01003, USA.
| | - Hatice Secinti
- Department of Chemistry, University of Massachusetts, Amherst, MA-01003, USA.
| | - S Thayumanavan
- Department of Chemistry, University of Massachusetts, Amherst, MA-01003, USA. and Centre for Bioactive Delivery, Institute for Applied Life Science, University of Massachusetts, Amherst, MA-01003, USA and Molecular and Cellular Biology Program, University of Massachusetts, Amherst, MA-01003, USA
| |
Collapse
|
7
|
Buffington SL, Paul JE, Ali MM, Macios MM, Mather PT, Henderson JH. Enzymatically triggered shape memory polymers. Acta Biomater 2019; 84:88-97. [PMID: 30471473 DOI: 10.1016/j.actbio.2018.11.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/08/2018] [Accepted: 11/20/2018] [Indexed: 12/27/2022]
Abstract
Cytocompatible shape memory polymers activated by thermal or photothermal triggers have been developed and established as powerful "smart material" platforms for both basic and translational research. Shape memory polymers (SMPs) that could be triggered directly by biological activity have not, in contrast, been reported. The goal of this study was to develop an SMP that responds directly to enzymatic activity and can do so under isothermal cell culture conditions. To achieve this goal, we designed an SMP with a shape fixing component, poly(ε-caprolactone) (PCL), that is vulnerable to enzymatic degradation and a shape memory component, Pellethane, that is enzymatically stable - as the shape fixing component undergoes enzymatically-catalyzed degradation, the SMP returns to its original, programmed shape. We quantitatively and qualitatively analyzed material properties, shape memory performance, and cytocompatibility of the enzymatically-catalyzed shape memory response. The results demonstrate enzymatic recovery, as contraction of tensile specimens, using bulk enzymatic degradation experiments and show that shape recovery is achieved by degradation of the PCL shape-fixing phase. The results further showed that both the materials and the process of enzymatic shape recovery are cytocompatible. Thus, the SMP design reported here represents both an enzyme responsive material capable of applying a programmed shape change or direct mechanical force and an SMP that could respond directly to biological activity. STATEMENT OF SIGNIFICANCE: Cytocompatible shape memory polymers activated by thermal or photothermal triggers have become powerful "smart material" platforms for basic and translational research. Shape memory polymers that could be triggered directly by biological activity have not, in contrast, been reported. Here we report an enzymatically triggered shape memory polymer that changes its shape isothermally in response to enzymatic activity. We successfully demonstrate enzymatic recovery using bulk enzymatic degradation experiments and show that shape recovery is achieved by degradation of the shape-fixing phase. We further show that both the materials and the process of enzymatic shape recovery are cytocompatible. This new shape memory polymer design can be anticipated to enable new applications in basic and applied materials science as a stimulus responsive material.
Collapse
Affiliation(s)
- Shelby L Buffington
- Department of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, NY 13244, USA; Syracuse Biomaterials Institute, Syracuse University, 318 Bowne Hall, Syracuse, NY 13244, USA
| | - Justine E Paul
- Department of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, NY 13244, USA
| | - Matthew M Ali
- Department of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, NY 13244, USA; Syracuse Biomaterials Institute, Syracuse University, 318 Bowne Hall, Syracuse, NY 13244, USA; Department of Chemical Engineering, Bucknell University, 235 Dana Engineering Building, Lewisburg, PA 17837, USA
| | - Mark M Macios
- Department of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, NY 13244, USA
| | - Patrick T Mather
- Department of Chemical Engineering, Bucknell University, 235 Dana Engineering Building, Lewisburg, PA 17837, USA
| | - James H Henderson
- Department of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, NY 13244, USA; Syracuse Biomaterials Institute, Syracuse University, 318 Bowne Hall, Syracuse, NY 13244, USA.
| |
Collapse
|
8
|
Datta LP, Dutta D, Chakraborty A, Das TK. Tyrosine based cationic acrylates as potent antimicrobial agents against shigellosis. Biomater Sci 2019; 7:2611-2622. [DOI: 10.1039/c8bm01588k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Design of tyrosine-based cationic polymers with antimicrobial activities.
Collapse
Affiliation(s)
- Lakshmi Priya Datta
- Department of Biochemistry and Biophysics
- University of Kalyani
- Kalyani-741235
- India
| | - Debanjan Dutta
- Department of Biochemistry and Biophysics
- University of Kalyani
- Kalyani-741235
- India
| | - Arpita Chakraborty
- Department of Biochemistry and Biophysics
- University of Kalyani
- Kalyani-741235
- India
| | - Tapan Kumar Das
- Department of Biochemistry and Biophysics
- University of Kalyani
- Kalyani-741235
- India
| |
Collapse
|
9
|
Zhuang J, Seçinti H, Zhao B, Thayumanavan S. Propagation of Enzyme‐Induced Surface Events inside Polymer Nanoassemblies for a Fast and Tunable Response. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201803029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jiaming Zhuang
- Department of Chemistry University of Massachusetts Amherst Amherst MA 01003 USA
| | - Hatice Seçinti
- Department of Chemistry University of Massachusetts Amherst Amherst MA 01003 USA
| | - Bo Zhao
- Department of Chemistry University of Massachusetts Amherst Amherst MA 01003 USA
| | - S. Thayumanavan
- Department of Chemistry University of Massachusetts Amherst Amherst MA 01003 USA
| |
Collapse
|
10
|
Zhuang J, Seçinti H, Zhao B, Thayumanavan S. Propagation of Enzyme‐Induced Surface Events inside Polymer Nanoassemblies for a Fast and Tunable Response. Angew Chem Int Ed Engl 2018; 57:7111-7115. [DOI: 10.1002/anie.201803029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Jiaming Zhuang
- Department of Chemistry University of Massachusetts Amherst Amherst MA 01003 USA
| | - Hatice Seçinti
- Department of Chemistry University of Massachusetts Amherst Amherst MA 01003 USA
| | - Bo Zhao
- Department of Chemistry University of Massachusetts Amherst Amherst MA 01003 USA
| | - S. Thayumanavan
- Department of Chemistry University of Massachusetts Amherst Amherst MA 01003 USA
| |
Collapse
|
11
|
Phillips D, Harrison J, Richards SJ, Mitchell DE, Tichauer E, Hubbard ATM, Guy C, Hands-Portman I, Fullam E, Gibson MI. Evaluation of the Antimicrobial Activity of Cationic Polymers against Mycobacteria: Toward Antitubercular Macromolecules. Biomacromolecules 2017; 18:1592-1599. [PMID: 28365981 PMCID: PMC5435458 DOI: 10.1021/acs.biomac.7b00210] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/28/2017] [Indexed: 11/29/2022]
Abstract
Antimicrobial resistance is a global healthcare problem with a dwindling arsenal of usable drugs. Tuberculosis, caused by Mycobacterium tuberculosis, requires long-term combination therapy and multi- and totally drug resistant strains have emerged. This study reports the antibacterial activity of cationic polymers against mycobacteria, which are distinguished from other Gram-positive bacteria by their unique cell wall comprising a covalently linked mycolic acid-arabinogalactan-peptidoglycan complex (mAGP), interspersed with additional complex lipids which helps them persist in their host. The present study finds that poly(dimethylaminoethyl methacrylate) has particularly potent antimycobacterial activity and high selectivity over two Gram-negative strains. Removal of the backbone methyl group (poly(dimethylaminoethyl acrylate)) decreased antimycobacterial activity, and poly(aminoethyl methacrylate) also had no activity against mycobacteria. Hemolysis assays revealed poly(dimethylaminoethyl methacrylate) did not disrupt red blood cell membranes. Interestingly, poly(dimethylaminoethyl methacrylate) was not found to permeabilize mycobacterial membranes, as judged by dye exclusion assays, suggesting the mode of action is not simple membrane disruption, supported by electron microscopy analysis. These results demonstrate that synthetic polycations, with the correctly tuned structure are useful tools against mycobacterial infections, for which new drugs are urgently required.
Collapse
Affiliation(s)
- Daniel
J. Phillips
- Department of Chemistry, School of Life Sciences, and Warwick Medical School, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - James Harrison
- Department of Chemistry, School of Life Sciences, and Warwick Medical School, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Sarah-Jane Richards
- Department of Chemistry, School of Life Sciences, and Warwick Medical School, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Daniel E. Mitchell
- Department of Chemistry, School of Life Sciences, and Warwick Medical School, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Esther Tichauer
- Department of Chemistry, School of Life Sciences, and Warwick Medical School, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Alasdair T. M. Hubbard
- Department of Chemistry, School of Life Sciences, and Warwick Medical School, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Collette Guy
- Department of Chemistry, School of Life Sciences, and Warwick Medical School, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Ian Hands-Portman
- Department of Chemistry, School of Life Sciences, and Warwick Medical School, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Elizabeth Fullam
- Department of Chemistry, School of Life Sciences, and Warwick Medical School, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Matthew I. Gibson
- Department of Chemistry, School of Life Sciences, and Warwick Medical School, University of Warwick, Coventry, CV4 7AL, United Kingdom
| |
Collapse
|
12
|
Osváth Z, Iván B. The Dependence of the Cloud Point, Clearing Point, and Hysteresis of Poly(N-isopropylacrylamide) on Experimental Conditions: The Need for Standardization of Thermoresponsive Transition Determinations. MACROMOL CHEM PHYS 2016. [DOI: 10.1002/macp.201600470] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zsófia Osváth
- Polymer Chemistry Research Group; Institute of Materials and Environmental Chemistry; Research Centre for Natural Sciences; Hungarian Academy of Sciences; Magyar tudósok krt. 2 H-1117 Budapest Hungary
| | - Béla Iván
- Polymer Chemistry Research Group; Institute of Materials and Environmental Chemistry; Research Centre for Natural Sciences; Hungarian Academy of Sciences; Magyar tudósok krt. 2 H-1117 Budapest Hungary
| |
Collapse
|