1
|
Goodman HJ, Szabò LZ, Sugerman SM, Myloserdnyy A, Polt R. Design and synthesis of oxytocin glycosides for the treatment of pain and substance use disorder. Methods Enzymol 2024; 698:343-359. [PMID: 38886038 DOI: 10.1016/bs.mie.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Peptide drugs are a promising alternative to classical small molecule therapeutics with diverse applications, ranging from antibiotic resistant infection to prostate cancer. Oxytocin (OT) is a highly evolutionarily conserved peptide neurohormone and has been of interest for pharmaceutical use since 1909. Despite their increased safety profile relative to most small molecule drugs, peptides are poor candidates based on the pharmacokinetic (PK) properties from their peptide nature. Broad application of OT as a drug has been limited by these same PK issues. Several strategies have been proposed to overcome these limitations, among them glycosylation, which was used in combination with other sequence modifications to produce robust antinociception in mouse models, increased selectivity and potency at the OT receptor, and improved stability in rats.
Collapse
Affiliation(s)
- Hannah J Goodman
- Department of Chemistry & Biochemistry The University of Arizona, Tucson, AZ, USA
| | - Lajos Z Szabò
- Department of Chemistry & Biochemistry The University of Arizona, Tucson, AZ, USA
| | - Samuel M Sugerman
- Department of Chemistry & Biochemistry The University of Arizona, Tucson, AZ, USA
| | - Andriy Myloserdnyy
- Department of Chemistry & Biochemistry The University of Arizona, Tucson, AZ, USA
| | - Robin Polt
- Department of Chemistry & Biochemistry The University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
2
|
Designing Formulation Strategies for Enhanced Stability of Therapeutic Peptides in Aqueous Solutions: A Review. Pharmaceutics 2023; 15:pharmaceutics15030935. [PMID: 36986796 PMCID: PMC10056213 DOI: 10.3390/pharmaceutics15030935] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/04/2023] [Accepted: 03/09/2023] [Indexed: 03/15/2023] Open
Abstract
Over the past few decades, there has been a tremendous increase in the utilization of therapeutic peptides. Therapeutic peptides are usually administered via the parenteral route, requiring an aqueous formulation. Unfortunately, peptides are often unstable in aqueous solutions, affecting stability and bioactivity. Although a stable and dry formulation for reconstitution might be designed, from a pharmaco-economic and practical convenience point of view, a peptide formulation in an aqueous liquid form is preferred. Designing formulation strategies that optimize peptide stability may improve bioavailability and increase therapeutic efficacy. This literature review provides an overview of various degradation pathways and formulation strategies to stabilize therapeutic peptides in aqueous solutions. First, we introduce the major peptide stability issues in liquid formulations and the degradation mechanisms. Then, we present a variety of known strategies to inhibit or slow down peptide degradation. Overall, the most practical approaches to peptide stabilization are pH optimization and selecting the appropriate type of buffer. Other practical strategies to reduce peptide degradation rates in solution are the application of co-solvency, air exclusion, viscosity enhancement, PEGylation, and using polyol excipients.
Collapse
|
3
|
Brotherton EE, Smallridge MJ, Armes SP. Aldehyde-Functional Diblock Copolymer Nano-objects via RAFT Aqueous Dispersion Polymerization. Biomacromolecules 2021; 22:5382-5389. [PMID: 34814688 DOI: 10.1021/acs.biomac.1c01327] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the rational design of aldehyde-functional sterically stabilized diblock copolymer nano-objects in aqueous solution via polymerization-induced self-assembly. More specifically, reversible addition-fragmentation chain transfer aqueous dispersion polymerization of 2-hydroxypropyl methacrylate is conducted using a water-soluble precursor block in which every methacrylic repeat unit contains a pendent oligo(ethylene glycol) side chain capped with a cis-diol unit. Systematic variation of the reaction conditions enables the construction of a pseudo-phase diagram, which ensures the reproducible targeting of pure spheres, worms, or vesicles. Selective oxidation of the pendent cis-diol groups using aqueous sodium periodate under mild conditions introduces geminal diols (i.e., the hydrated form of an aldehyde obtained in the presence of water) into the steric stabilizer chains without loss of colloidal stability. In the case of diblock copolymer vesicles, such derivatization leads to the formation of a worm population, indicating partial loss of the original morphology. However, this problem can be circumvented by cross-linking the membrane-forming block prior to periodate oxidation. Moreover, such covalently stabilized aldehyde-functionalized vesicles can be subsequently reacted with either glycine or histidine in aqueous solution, followed by reductive amination to prevent hydrolysis of the labile imine bond. ζ potential measurements confirm that this derivatization significantly affects the electrophoretic behavior of these vesicles. Similarly, the membrane-crosslinked aldehyde-functionalized vesicles can be reacted with a model globular protein, bovine serum albumin, to produce "stealthy" protein-decorated vesicles.
Collapse
Affiliation(s)
- Emma E Brotherton
- Department of Chemistry, The University of Sheffield, Dainton Building, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - Mark J Smallridge
- GEO Specialty Chemicals, Hythe, Southampton, Hampshire SO45 3ZG, U.K
| | - Steven P Armes
- Department of Chemistry, The University of Sheffield, Dainton Building, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| |
Collapse
|
4
|
Brotherton EE, Jesson CP, Warren NJ, Smallridge MJ, Armes SP. New Aldehyde‐Functional Methacrylic Water‐Soluble Polymers. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Emma E. Brotherton
- Chemistry The University of Sheffield Dainton Building, Brook Hill Sheffield S3 7HF UK
| | - Craig P. Jesson
- Chemistry The University of Sheffield Dainton Building, Brook Hill Sheffield S3 7HF UK
| | - Nicholas J. Warren
- Chemistry The University of Sheffield Dainton Building, Brook Hill Sheffield S3 7HF UK
| | - Mark J. Smallridge
- GEO Specialty Chemicals Charleston Road, Hardley, Hythe Southampton SO45 3ZG UK
| | - Steven P. Armes
- Chemistry The University of Sheffield Dainton Building, Brook Hill Sheffield S3 7HF UK
| |
Collapse
|
5
|
Brotherton EE, Jesson CP, Warren NJ, Smallridge MJ, Armes SP. New Aldehyde-Functional Methacrylic Water-Soluble Polymers. Angew Chem Int Ed Engl 2021; 60:12032-12037. [PMID: 33617018 PMCID: PMC8252606 DOI: 10.1002/anie.202015298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/15/2021] [Indexed: 12/18/2022]
Abstract
Aldehyde groups enable facile conjugation to proteins, enzymes, oligonucleotides or fluorescent dyes, yet there are no literature examples of water-soluble aldehyde-functional vinyl monomers. We report the synthesis of a new hydrophilic cis-diol-based methacrylic monomer (GEO5MA) by transesterification of isopropylideneglycerol penta(ethylene glycol) using methyl methacrylate followed by acetone deprotection via acid hydrolysis. The corresponding water-soluble aldehyde monomer, AGEO5MA, is prepared by aqueous periodate oxidation of GEO5MA at 22 °C. RAFT polymerization of GEO5MA yields the water-soluble homopolymer, PGEO5MA. Aqueous periodate oxidation of the terminal cis-diol units on PGEO5MA at 22 °C affords a water-soluble aldehyde-functional homopolymer (PAGEO5MA). Moreover, a library of hydrophilic statistical copolymers bearing cis-diol and aldehyde groups was prepared using sub-stoichiometric periodate/cis-diol molar ratios. The aldehyde groups on PAGEO5MA homopolymer were reacted in turn with three amino acids to demonstrate synthetic utility.
Collapse
Affiliation(s)
- Emma E Brotherton
- Chemistry, The University of Sheffield, Dainton Building, Brook Hill, Sheffield, S3 7HF, UK
| | - Craig P Jesson
- Chemistry, The University of Sheffield, Dainton Building, Brook Hill, Sheffield, S3 7HF, UK
| | - Nicholas J Warren
- Chemistry, The University of Sheffield, Dainton Building, Brook Hill, Sheffield, S3 7HF, UK
| | - Mark J Smallridge
- GEO Specialty Chemicals, Charleston Road, Hardley, Hythe, Southampton, SO45 3ZG, UK
| | - Steven P Armes
- Chemistry, The University of Sheffield, Dainton Building, Brook Hill, Sheffield, S3 7HF, UK
| |
Collapse
|
6
|
Stadler B, Whittaker MR, Exintaris B, Middendorff R. Oxytocin in the Male Reproductive Tract; The Therapeutic Potential of Oxytocin-Agonists and-Antagonists. Front Endocrinol (Lausanne) 2020; 11:565731. [PMID: 33193084 PMCID: PMC7642622 DOI: 10.3389/fendo.2020.565731] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022] Open
Abstract
In this review, the role of oxytocin and oxytocin-like agents (acting via the oxytocin receptor and belonging to the oxytocin-family) in the male reproductive tract is considered. Previous research (dating back over 60 years) is revised and connected with recently found aspects of the role oxytocin plays in male reproductive health. The local expression of oxytocin and its receptor in the male reproductive tract of different species is summarized. Colocalization and possible crosstalk to other agents and receptors and their resulting effects are discussed. The role of the newly reported oxytocin focused signaling pathways in the male reproductive tract, other than mediating contractility, is critically examined. The structure and effect of the most promising oxytocin-agonists and -antagonists are reviewed for their potential in treating male disorders with origins in the male reproductive tract such as prostate diseases and ejaculatory disorders.
Collapse
Affiliation(s)
- Beatrix Stadler
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany
| | - Michael R. Whittaker
- Drug Discovery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Melbourne, VIC, Australia
| | - Betty Exintaris
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Melbourne, VIC, Australia
| | - Ralf Middendorff
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
7
|
Rasines Mazo A, Tran TN, Zhang W, Meng Y, Reyhani A, Pascual S, Fontaine L, Qiao GG, Piogé S. Blue LED light-activated RAFT polymerization of PEG acrylate with high chain-end fidelity for efficient PEGylation. Polym Chem 2020. [DOI: 10.1039/d0py00838a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Well-defined PPEGAs with high chain-end fidelity are synthesized through blue LED light-initiated RAFT, with their efficient PEGylation potential highlighted.
Collapse
Affiliation(s)
- Alicia Rasines Mazo
- Polymer Science Group
- The University of Melbourne
- Department of Chemical Engineering
- Parkville 3010
- Australia
| | - Thi Nga Tran
- Institut des Molécules et Matériaux du Mans
- UMR 6283 CNRS – Le Mans Université
- 72085 Le Mans Cedex 9
- France
| | - Wenhao Zhang
- Institut des Molécules et Matériaux du Mans
- UMR 6283 CNRS – Le Mans Université
- 72085 Le Mans Cedex 9
- France
| | - Yuwen Meng
- Institut des Molécules et Matériaux du Mans
- UMR 6283 CNRS – Le Mans Université
- 72085 Le Mans Cedex 9
- France
| | - Amin Reyhani
- Polymer Science Group
- The University of Melbourne
- Department of Chemical Engineering
- Parkville 3010
- Australia
| | - Sagrario Pascual
- Institut des Molécules et Matériaux du Mans
- UMR 6283 CNRS – Le Mans Université
- 72085 Le Mans Cedex 9
- France
| | - Laurent Fontaine
- Institut des Molécules et Matériaux du Mans
- UMR 6283 CNRS – Le Mans Université
- 72085 Le Mans Cedex 9
- France
| | - Greg G. Qiao
- Polymer Science Group
- The University of Melbourne
- Department of Chemical Engineering
- Parkville 3010
- Australia
| | - Sandie Piogé
- Institut des Molécules et Matériaux du Mans
- UMR 6283 CNRS – Le Mans Université
- 72085 Le Mans Cedex 9
- France
| |
Collapse
|
8
|
Belén LH, Rangel-Yagui CDO, Beltrán Lissabet JF, Effer B, Lee-Estevez M, Pessoa A, Castillo RL, Farías JG. From Synthesis to Characterization of Site-Selective PEGylated Proteins. Front Pharmacol 2019; 10:1450. [PMID: 31920645 PMCID: PMC6930235 DOI: 10.3389/fphar.2019.01450] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/12/2019] [Indexed: 02/06/2023] Open
Abstract
Covalent attachment of therapeutic proteins to polyethylene glycol (PEG) is widely used for the improvement of its pharmacokinetic and pharmacological properties, as well as the reduction in reactogenicity and related side effects. This technique named PEGylation has been successfully employed in several approved drugs to treat various diseases, even cancer. Some methods have been developed to obtain PEGylated proteins, both in multiple protein sites or in a selected amino acid residue. This review focuses mainly on traditional and novel examples of chemical and enzymatic methods for site-selective PEGylation, emphasizing in N-terminal PEGylation, that make it possible to obtain products with a high degree of homogeneity and preserve bioactivity. In addition, the main assay methods that can be applied for the characterization of PEGylated molecules in complex biological samples are also summarized in this paper.
Collapse
Affiliation(s)
- Lisandra Herrera Belén
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Temuco, Chile
| | - Carlota de Oliveira Rangel-Yagui
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Jorge F. Beltrán Lissabet
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Temuco, Chile
| | - Brian Effer
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Temuco, Chile
| | - Manuel Lee-Estevez
- Faculty of Health Sciences, Universidad Autónoma de Chile, Temuco, Chile
| | - Adalberto Pessoa
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Rodrigo L. Castillo
- Department of Internal Medicine East, Faculty of Medicine, University of Chile, Santiago de Chile, Chile
| | - Jorge G. Farías
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
9
|
Husband JT, Hill AC, O'Reilly RK. Utilizing functionalized bromomaleimides for fluorogenic conjugation and PEGylation of enzymes. POLYM INT 2019. [DOI: 10.1002/pi.5740] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | - Alice C Hill
- Department of ChemistryUniversity of Warwick Coventry UK
| | | |
Collapse
|
10
|
Leachable diphenylguanidine from rubber closures used in pre-filled syringes: A case study to understand solid and solution interactions with oxytocin. Int J Pharm 2017; 532:491-501. [PMID: 28935251 DOI: 10.1016/j.ijpharm.2017.09.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/30/2017] [Accepted: 09/16/2017] [Indexed: 11/20/2022]
Abstract
Leachables derived from multi-component drug-device syringe systems can result in changes to the quality of drug products. Diphenylguanidine (DPG), a leachable released from styrene butadiene rubber syringe plungers, interacts with Oxytocin to form protein-adducts. This study investigated the mechanism and kinetics of this interaction in both solid and solution states through in-vitro tests and spectroscopic methods For solid state interaction, the protein-adducts with DPG were characterized using SEM, XRD, DSC, FTIR, 13C ss NMR, and dissolution analysis. For solution state interaction, LC-HRMS was used to assess stability of Oxytocin solutions in presence of various concentrations of DPG at 25°C and 40°C for 4 weeks. Moreover, molecular docking analysis was used to identify possible molecular configurations of the interaction.Results were consistent with the formation of a new solid state with distorted surface morphology for oxytocin-DPG adducts, in which the oxytocin carbonyl group(s) and the secondary amine groups of DPG interact. This interaction was also confirmed by molecular docking analysis through hydrogen bonding (2.31Å) and Van der Waal attraction (3.14Å). Moreover, LC-HRMS analysis revealed an increase in Oxytocin stability and suppression of Oxytocin dimerization by DPG. A potential reduction in the rate of Oxytocin dissolution from the formed adducts was indicative of its strong association with DPG. Hence, the leaching potential of DPG from rubber closures and plungers should be monitored and controlled to maintain the quality and stability of the pharmaceutical product.
Collapse
|
11
|
Affiliation(s)
- Paul Wilson
- University of Warwick; Department of Chemistry; Coventry Library Rd CV4 7AL UK
| |
Collapse
|
12
|
Liu Y, Lee J, Mansfield KM, Ko JH, Sallam S, Wesdemiotis C, Maynard HD. Trehalose Glycopolymer Enhances Both Solution Stability and Pharmacokinetics of a Therapeutic Protein. Bioconjug Chem 2017; 28:836-845. [PMID: 28044441 DOI: 10.1021/acs.bioconjchem.6b00659] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Biocompatible polymers such as poly(ethylene glycol) (PEG) have been successfully conjugated to therapeutic proteins to enhance their pharmacokinetics. However, many of these polymers, including PEG, only improve the in vivo lifetimes and do not protect proteins against inactivation during storage and transportation. Herein, we report a polymer with trehalose side chains (PolyProtek) that is capable of improving both the external stability and the in vivo plasma half-life of a therapeutic protein. Insulin was employed as a model biologic, and high performance liquid chromatography and dynamic light scattering confirmed that addition of trehalose glycopolymer as an excipient or covalent conjugation prevented thermal or agitation-induced aggregation of insulin. The insulin-trehalose glycopolymer conjugate also showed significantly prolonged plasma circulation time in mice, similar to the analogous insulin-PEG conjugate. The insulin-trehalose glycopolymer conjugate was active as tested by insulin tolerance tests in mice and retained bioactivity even after exposure to high temperatures. The trehalose glycopolymer was shown to be nontoxic to mice up to at least 1.6 mg/kg dosage. These results together suggest that the trehalose glycopolymer should be further explored as an alternative to PEG for long circulating protein therapeutics.
Collapse
Affiliation(s)
- Yang Liu
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles , 607 Charles E. Young Drive, East, Los Angeles, California 90095, United States.,Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University , Irvine, California 92618, United States
| | - Juneyoung Lee
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles , 607 Charles E. Young Drive, East, Los Angeles, California 90095, United States
| | - Kathryn M Mansfield
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles , 607 Charles E. Young Drive, East, Los Angeles, California 90095, United States
| | - Jeong Hoon Ko
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles , 607 Charles E. Young Drive, East, Los Angeles, California 90095, United States
| | - Sahar Sallam
- Department of Chemistry, The University of Akron , 190 East Buchtel Common, Akron, Ohio 44325, United States
| | - Chrys Wesdemiotis
- Department of Chemistry, The University of Akron , 190 East Buchtel Common, Akron, Ohio 44325, United States
| | - Heather D Maynard
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles , 607 Charles E. Young Drive, East, Los Angeles, California 90095, United States
| |
Collapse
|
13
|
Wang D, Guo S, Zhang Q, Wilson P, Haddleton DM. Mussel-inspired thermoresponsive polymers with a tunable LCST by Cu(0)-LRP for the construction of smart TiO2 nanocomposites. Polym Chem 2017. [DOI: 10.1039/c7py00736a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Thermoresponsive polymers with different microstructures, a tunable LCST and terminal catechol anchors were synthesized by Cu(0)-LRP for the surface functionalization of TiO2 nanoparticles.
Collapse
Affiliation(s)
- Donghao Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- P. R. China
| | - Shutong Guo
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- P. R. China
| | - Qiang Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- P. R. China
| | - Paul Wilson
- Department of Chemistry
- University of Warwick
- Coventry
- UK
| | | |
Collapse
|
14
|
Collins J, Wallis SJ, Simula A, Whittaker MR, McIntosh MP, Wilson P, Davis TP, Haddleton DM, Kempe K. Comb Poly(Oligo(2-Ethyl-2-Oxazoline)Methacrylate)-Peptide Conjugates Prepared by Aqueous Cu(0)-Mediated Polymerization and Reductive Amination. Macromol Rapid Commun 2016; 38. [DOI: 10.1002/marc.201600534] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/05/2016] [Indexed: 01/14/2023]
Affiliation(s)
- Jennifer Collins
- Chemistry Department; University of Warwick; Coventry CV4 7AL UK
| | - Sacha J. Wallis
- Chemistry Department; University of Warwick; Coventry CV4 7AL UK
| | - Alexandre Simula
- Chemistry Department; University of Warwick; Coventry CV4 7AL UK
| | - Michael R. Whittaker
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology; Monash Institute of Pharmaceutical Sciences; Monash University; Parkville VIC 3052 Australia
| | - Michelle P. McIntosh
- Monash Institute of Pharmaceutical Sciences; Monash University; Parkville VIC 3052 Australia
| | - Paul Wilson
- Chemistry Department; University of Warwick; Coventry CV4 7AL UK
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology; Monash Institute of Pharmaceutical Sciences; Monash University; Parkville VIC 3052 Australia
| | - Thomas P. Davis
- Chemistry Department; University of Warwick; Coventry CV4 7AL UK
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology; Monash Institute of Pharmaceutical Sciences; Monash University; Parkville VIC 3052 Australia
| | - David M. Haddleton
- Chemistry Department; University of Warwick; Coventry CV4 7AL UK
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology; Monash Institute of Pharmaceutical Sciences; Monash University; Parkville VIC 3052 Australia
| | - Kristian Kempe
- Chemistry Department; University of Warwick; Coventry CV4 7AL UK
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology; Monash Institute of Pharmaceutical Sciences; Monash University; Parkville VIC 3052 Australia
| |
Collapse
|