1
|
Wang H, Cheng Y. Polymers for mRNA Delivery. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2025; 17:e70002. [PMID: 39763235 DOI: 10.1002/wnan.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/22/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025]
Abstract
mRNA delivery has emerged as a transformative approach in biotechnology and medicine, offering a versatile platform for the development of novel therapeutics. Unlike traditional small molecule drugs or protein-based biologics, mRNA therapeutics have the unique ability to direct cells to generate therapeutic proteins, allowing for precise modulation of biological processes. The delivery of mRNA into target cells is a critical step in realizing the therapeutic potential of this technology. In this review, our focus is on the latest advancements in designing functional polymers to achieve efficient mRNA delivery. Biodegradable polymers and low molecular weight polymers in addressing the balance in mRNA binding and release are summarized. Benefiting from the excellent performance of lipid nanoparticles in mRNA delivery, polymer/lipid hybrid nanostructures are also included. Finally, the challenges and future prospects in the development of polymer-based mRNA delivery systems are discussed.
Collapse
Affiliation(s)
- Hui Wang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, China
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
2
|
Li H, Liu R, Li X, Xu K, Cao J. Root-inspired grafting of wood surfaces with hyperbranched polymers for enhanced interfacial adhesion with impregnated decorative paper. RSC Adv 2024; 14:38706-38720. [PMID: 39654920 PMCID: PMC11626439 DOI: 10.1039/d4ra07688e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 11/29/2024] [Indexed: 12/12/2024] Open
Abstract
A root-like waterborne hyperbranched polymer, synthesized from diethylenetriamine (DETA) and methyl acrylate (MA) monomers, was inspired by the effect of solidifying soil with tree roots. This polymer was then blended with aqueous isocyanate SK615, known as MD-HBP-NH2, to serve as a surface modifier for blockboards. The blockboards were treated with a modifier to enhance the interfacial adhesion with melamine-formaldehyde (MF) resin-impregnated decorative paper, thereby preventing surface cracks. The polycondensation reaction temperatures of the modifiers were compared. These results indicated that a hyperbranched root-structured polymer emulsion was formed through Michael addition reactions. Following this modification, the blockboards demonstrated enhanced planeness and dimensional stability. Furthermore, the isocyanate groups reacted with the exposed hydroxyl groups, and the amino groups reacted with the aldehyde groups in the MF resin, thereby enhancing the interfacial bonding strength between the wood and the impregnated decorative paper. At a polycondensation temperature of 155 °C, optimal overall performance was attained, with the ability to penetrate the wood surface to a depth of 1.28 mm, and exhibited superior surface crack resistance. Moreover, this waterborne hyperbranched polymer modifier is eco-friendly, green, and non-toxic, with lower levels of volatile organic compounds. This presents a promising avenue for the development of eco-friendly modifiers to prevent surface cracking in wood-based panels with impregnated decorative paper.
Collapse
Affiliation(s)
- Hui Li
- School of Materials Science and Technology, Beijing Key Laboratory of Wooden Material Science and Application, Beijing Forestry University Haidian Beijing 100083 China
| | - Ru Liu
- Research Institute of Wood Industry, Chinese Academy of Forestry Haidian Beijing 100091 China
| | - Xinyu Li
- Guangdong Tianyuan Huibang New Materials Co., Ltd Foshan Guangdong 523000 China
| | - Kun Xu
- Guangdong Tianyuan Huibang New Materials Co., Ltd Foshan Guangdong 523000 China
| | - Jinzhen Cao
- School of Materials Science and Technology, Beijing Key Laboratory of Wooden Material Science and Application, Beijing Forestry University Haidian Beijing 100083 China
| |
Collapse
|
3
|
Al Hoque A, Kannaboina P, Abraham Y, Mehedi M, Sibi MP, Quadir M. Furan-rich, biobased transfection agents as potential oligomeric candidates for intracellular plasmid DNA delivery. RSC Adv 2024; 14:32637-32647. [PMID: 39411251 PMCID: PMC11476585 DOI: 10.1039/d4ra05978f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
Biobased, DNA delivery vectors have been synthesized with a core motif composed of 2,5-bishydroxymethylfuran (BHMF) readily available from an important biomass feedstock 5-hydroxymethyl furfural (HMF). To generate the product, BHMF was first converted to 2,5-furan bishydroxymethyl diacrylate (2,5-FDA), which was later conjugated with different types of secondary amines. Rich in tertiary nitrogen, these oligomeric FDA-amino esters demonstrated stable electrostatic interactions with negatively charged plasmid DNA in an aqueous environment. We evaluated synthetic routes toward these plasmid DNA-binding amino esters (pFASTs), identified their nanoscale features, and attempted to establish their structure-property relationship in the context of the DNA delivery. Our preliminary studies show that the pFASTs formed stable complexes with the plasmid DNA. Dynamic light scattering indicated that the DNA polyplexes of pFASTs have hydrodynamic diameters within the size range of 100-150 nm with a surface charge (ζ-potential) ranging from -10 to +33 mV, depending on pFAST type. These oligomeric amino esters rich in furan motif were also found to successfully transfect the GFP-expressing plasmid DNA intracellularly. Collectively, this study establishes a new route to produce DNA transfection agents from sustainable resources that can be used for transferring genetic materials for humans, veterinary, and agrochemical purposes.
Collapse
Affiliation(s)
- Ashique Al Hoque
- Department of Coatings and Polymeric Materials, North Dakota State University Fargo ND 58108 USA +1-701-231-6283
- Department of Pharmaceutical Technology, Jadavpur University Kolkata India
| | - Prakash Kannaboina
- Department of Chemistry Biochemistry, North Dakota State University Fargo ND 58108 USA
| | - Yeabstega Abraham
- Department of Biomedical Sciences, University of North Dakota, School of Medicine & Health Grand Forks ND 58202 USA
| | - Masfique Mehedi
- Department of Biomedical Sciences, University of North Dakota, School of Medicine & Health Grand Forks ND 58202 USA
| | - Mukund P Sibi
- Department of Chemistry Biochemistry, North Dakota State University Fargo ND 58108 USA
| | - Mohiuddin Quadir
- Department of Coatings and Polymeric Materials, North Dakota State University Fargo ND 58108 USA +1-701-231-6283
| |
Collapse
|
4
|
Pu X, Li Z, Chen R, Shi J, Qin J, Zhu Y, Du J. Lung-selective nucleic acid vectors generated by in vivo lung-targeting-protein decoration of polyplexes. Biomater Sci 2024; 12:3600-3609. [PMID: 38836707 DOI: 10.1039/d4bm00502c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Nucleic acid drugs show immense therapeutic potential, but achieving selective organ targeting (SORT) for pulmonary disease therapy remains a formidable challenge due to the high mortality rate caused by pulmonary embolism via intravenous administration or the mucus barrier in the respiratory tract via nebulized delivery. To meet this important challenge, we propose a new strategy to prepare lung-selective nucleic-acid vectors generated by in vivo decoration of lung-targeting proteins on bioreducible polyplexes. First, we synthesized polyamidoamines, named pabol and polylipo, to encapsulate and protect nucleic acids, forming polyamidoamines/mRNA polyplexes. Second, bovine serum albumin (BSA) was coated on the surface of these polyplexes, called BSA@polyplexes, including BSA@pabol polyplexes and BSA@polylipo polyplexes, to neutralize excess positive charge, thereby enhancing biosafety. Finally, after subcutaneous injection, proteins, especially vitronectin and fibronectins, attached to the polyplexes, resulting in the formation of lung-selective nucleic-acid vectors that achieve efficient lung targeting.
Collapse
Affiliation(s)
- Xu Pu
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China.
| | - Zejuan Li
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China.
| | - Ran Chen
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China.
| | - Junqiu Shi
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China.
| | - Jinlong Qin
- Department of Gynecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
| | - Yunqing Zhu
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China.
| | - Jianzhong Du
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China.
- Department of Gynecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
| |
Collapse
|
5
|
Karpov SV, Iakunkov A, Chernyaev DA, Kurbatov VG, Malkov GV, Badamshina ER. A Theoretical Investigation of the Polyaddition of an AB 2+A 2+B 4 Monomer Mixture. Polymers (Basel) 2024; 16:426. [PMID: 38337315 DOI: 10.3390/polym16030426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Hyperbranched polymers (HBPs) are widely applied nowadays as functional materials for biomedicine needs, nonlinear optics, organic semiconductors, etc. One of the effective and promising ways to synthesize HBPs is a polyaddition of AB2+A2+B4 monomers that is generated in the A2+CB2, AA'+B3, A2+B'B2, and A2+C2+B3 systems or using other approaches. It is clear that all the foundational features of HBPs that are manufactured by a polyaddition reaction are defined by the component composition of the monomer mixture. For this reason, we have designed a structural kinetic model of AB2+A2+B4 monomer mixture polyaddition which makes it possible to predict the impact of the monomer mixture's composition on the molecular weight characteristics of hyperbranched polymers (number average (DPn) and weight average (DPw) degree of polymerization), as well as the degree of branching (DB) and gel point (pg). The suggested model also considers the possibility of a positive or negative substitution effect during polyaddition. The change in the macromolecule parameters of HBPs formed by polyaddition of AB2+A2+B4 monomers is described as an infinite system of kinetic equations. The solution for the equation system was found using the method of generating functions. The impact of both the component's composition and the substitution effect during the polyaddition of AB2+A2+B4 monomers on structural and molecular weight HBP characteristics was investigated. The suggested model is fairly versatile; it makes it possible to describe every possible case of polyaddition with various monomer combinations, such as A2+AB2, AB2+B4, AB2, or A2+B4. The influence of each monomer type on the main characteristics of hyperbranched polymers that are obtained by the polyaddition of AB2+A2+B4 monomers has been investigated. Based on the results obtained, an empirical formula was proposed to estimate the pg = pA during the polyaddition of an AB2+A2+B4 monomer mixture: pg = pA = (-0.53([B]0/[A]0)1/2 + 0.78)υAB2 + (1/3)1/2([B]0/[A]0)1/2, where (1/3)1/2([B]0/[A]0)1/2 is the Flory equation for the A2+B4 polyaddition, [A]0 and [B]0 are the A and B group concentration from A2 and B4, respectively, and υAB2 is the mole fraction of the AB2 monomer in the mixture. The equation obtained allows us to accurately predict the pg value, with an AB2 monomer content of up to 80%.
Collapse
Affiliation(s)
- Sergei V Karpov
- Department of Polymers and Composites, Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of Russian Academy of Sciences, 1 Academician Semenov Avenue, Chernogolovka 142432, Russia
| | - Artem Iakunkov
- School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Dmitry A Chernyaev
- Department of Polymers and Composites, Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of Russian Academy of Sciences, 1 Academician Semenov Avenue, Chernogolovka 142432, Russia
| | - Vladimir G Kurbatov
- Department of Polymers and Composites, Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of Russian Academy of Sciences, 1 Academician Semenov Avenue, Chernogolovka 142432, Russia
| | - Georgiy V Malkov
- Department of Polymers and Composites, Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of Russian Academy of Sciences, 1 Academician Semenov Avenue, Chernogolovka 142432, Russia
| | - Elmira R Badamshina
- Department of Polymers and Composites, Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of Russian Academy of Sciences, 1 Academician Semenov Avenue, Chernogolovka 142432, Russia
| |
Collapse
|
6
|
Su M, Hu Z, Sun Y, Qi Y, Yu B, Xu FJ. Hydroxyl-rich branched polycations for nucleic acid delivery. Biomater Sci 2024; 12:581-595. [PMID: 38014423 DOI: 10.1039/d3bm01394d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Recently, nucleic acid delivery has become an amazing route for the treatment of various malignant diseases, and polycationic vectors are attracting more and more attention among gene vectors. However, conventional polycationic vectors still face many obstacles in nucleic acid delivery, such as significant cytotoxicity, high protein absorption behavior, and unsatisfactory blood compatibility caused by a high positive charge density. To solve these problems, the fabrication of hydroxyl-rich branched polycationic vectors has been proposed. For the synthesis of hydroxyl-rich branched polycations, a one-pot method is considered as the preferred method due to its simple preparation process. In this review, typical one-pot methods for fabricating hydroxyl-rich polycations are presented. In particular, amine-epoxide ring-opening polymerization as a novel approach is mainly introduced. In addition, various therapeutic scenarios of hydroxyl-rich branched polycations via one-pot fabrication are also generalized. We believe that this review will motivate the optimized design of hydroxyl-rich branched polycations for potential nucleic acid delivery and their bio-applications.
Collapse
Affiliation(s)
- Mengrui Su
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Zichen Hu
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Yujie Sun
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Yu Qi
- China Meat Food Research Center, Beijing Academy of Food Sciences, Beijing 100068, PR China.
- Beijing Forestry University, Beijing, 100083, PR China
| | - Bingran Yu
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Fu-Jian Xu
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
7
|
Gao X, Dong D, Zhang C, Deng Y, Ding J, Niu S, Tan S, Sun L. Chitosan-Functionalized Poly(β-Amino Ester) Hybrid System for Gene Delivery in Vaginal Mucosal Epithelial Cells. Pharmaceutics 2024; 16:154. [PMID: 38276521 PMCID: PMC10818660 DOI: 10.3390/pharmaceutics16010154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Gene therapy displays great promise in the treatment of cervical cancer. The occurrence of cervical cancer is highly related to persistent human papilloma virus (HPV) infection. The HPV oncogene can be cleaved via gene editing technology to eliminate carcinogenic elements. However, the successful application of the gene therapy method depends on effective gene delivery into the vagina. To improve mucosal penetration and adhesion ability, quaternized chitosan was introduced into the poly(β-amino ester) (PBAE) gene-delivery system in the form of quaternized chitosan-g-PBAE (QCP). At a mass ratio of PBAE:QCP of 2:1, the polymers exhibited the highest green fluorescent protein (GFP) transfection efficiency in HEK293T and ME180 cells, which was 1.1 and 5.4 times higher than that of PEI 25 kD. At this mass ratio, PBAE-QCP effectively compressed the GFP into spherical polyplex nanoparticles (PQ-GFP NPs) with a diameter of 255.5 nm. In vivo results indicated that owing to the mucopenetration and adhesion capability of quaternized CS, the GFP transfection efficiency of the PBAE-QCP hybrid system was considerably higher than those of PBAE and PEI 25 kD in the vaginal epithelial cells of Sprague-Dawley rats. Furthermore, the new system demonstrated low toxicity and good safety, laying an effective foundation for its further application in gene therapy.
Collapse
Affiliation(s)
- Xueqin Gao
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
| | - Dirong Dong
- Department of Obstetrics and Gynecology, Zhongnan Hospital, Wuhan University, Wuhan 430062, China;
| | - Chong Zhang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (C.Z.); (Y.D.); (J.D.); (S.N.)
- Health Bureau of Luannan Country, Tangshan 063599, China
| | - Yuxing Deng
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (C.Z.); (Y.D.); (J.D.); (S.N.)
| | - Jiahui Ding
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (C.Z.); (Y.D.); (J.D.); (S.N.)
| | - Shiqi Niu
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (C.Z.); (Y.D.); (J.D.); (S.N.)
| | - Songwei Tan
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (C.Z.); (Y.D.); (J.D.); (S.N.)
| | - Lili Sun
- Department of Obstetrics and Gynecology, Zhongnan Hospital, Wuhan University, Wuhan 430062, China;
| |
Collapse
|
8
|
Yan Z, Zhang T, Wang Y, Xiao S, Gao J. Extracellular vesicle biopotentiated hydrogels for diabetic wound healing: The art of living nanomaterials combined with soft scaffolds. Mater Today Bio 2023; 23:100810. [PMID: 37810755 PMCID: PMC10550777 DOI: 10.1016/j.mtbio.2023.100810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/08/2023] [Accepted: 09/21/2023] [Indexed: 10/10/2023] Open
Abstract
Diabetic wounds (DWs) pose a major challenge for the public health system owing to their high incidence, complex pathogenesis, and long recovery time; thus, there is an urgent need to develop innovative therapies to accelerate the healing process of diabetic wounds. As natural nanovesicles, extracellular vesicles (EVs) are rich in sources with low immunogenicity and abundant nutritive molecules and exert potent therapeutic effects on diabetic wound healing. To avoid the rapid removal of EVs, a suitable delivery system is required for their controlled release. Owing to the advantages of high porosity, good biocompatibility, and adjustable physical and chemical properties of hydrogels, EV biopotentiated hydrogels can aid in achieving precise and favorable therapy against diabetic wounds. This review highlights the different design strategies, therapeutic effects, and mechanisms of EV biopotentiated hydrogels. We also discussed the future challenges and opportunities of using EV biopotentiated hydrogels for diabetic wound healing.
Collapse
Affiliation(s)
- Zhenzhen Yan
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People's Republic of China
| | - Tinglin Zhang
- Changhai Clinical Research Unit, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People's Republic of China
| | - Yuxiang Wang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People's Republic of China
| | - Shichu Xiao
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People's Republic of China
| | - Jie Gao
- Changhai Clinical Research Unit, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People's Republic of China
| |
Collapse
|
9
|
Li Y, He Z, Wang X, Li Z, Johnson M, Foley R, Sigen A, Lyu J, Wang W. Branch Unit Distribution Matters for Gene Delivery. ACS Macro Lett 2023; 12:780-786. [PMID: 37220212 PMCID: PMC10286303 DOI: 10.1021/acsmacrolett.3c00152] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/19/2023] [Indexed: 05/25/2023]
Abstract
As a key nonviral gene therapy vector, poly(β-amino ester) (PAE) has demonstrated great potential for clinical application after two decades of development. However, even after extensive efforts in structural optimizations, including screening chemical composition, molecular weight (MW), terminal groups, and topology, their DNA delivery efficiency still lags behind that of viral vectors. To break through this bottleneck, in this work, a thorough investigation of highly branched PAEs (HPAEs) was conducted to correlate their fundamental internal structure with their gene transfection performance. We show that an essential structural factor, branch unit distribution (BUD), plays an important role for HPAE transfection capability and that HPAEs with a more uniform distribution of branch units display better transfection efficacy. By optimizing BUD, a high-efficiency HPAE that surpasses well-known commercial reagents (e.g., Lipofectamine 3000 (Lipo3000), jetPEI, and Xfect) can be generated. This work opens an avenue for the structural control and molecular design of high-performance PAE gene delivery vectors.
Collapse
Affiliation(s)
- Yinghao Li
- Charles
Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland, D04 V1W8
| | - Zhonglei He
- Charles
Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland, D04 V1W8
| | - Xianqing Wang
- Charles
Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland, D04 V1W8
| | - Zishan Li
- Charles
Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland, D04 V1W8
| | - Melissa Johnson
- Charles
Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland, D04 V1W8
| | - Ruth Foley
- Charles
Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland, D04 V1W8
- Branca
Bunús Ltd, NovaUCD Belfield Innovation Centre, Dublin 4, Ireland, D04 V1W8
| | - A. Sigen
- Charles
Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland, D04 V1W8
| | - Jing Lyu
- Charles
Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland, D04 V1W8
| | - Wenxin Wang
- Charles
Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland, D04 V1W8
| |
Collapse
|
10
|
Masaeli SE, Teimouri M, Adhikari B, Attarroshan M, Akin JW, Raju S, Stokes SL, Emerson JP. Sodium Trifluoroacetate mediated Copper-Catalyzed aza-Michael addition of α,β-unsaturated olefins with aromatic amines. Tetrahedron Lett 2023; 122:154520. [PMID: 37694227 PMCID: PMC10486139 DOI: 10.1016/j.tetlet.2023.154520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
We present a sodium trifluoroacetate (CF3CO2Na) mediated copper-catalyzed aza-Michael addition of aromatic amines with activated olefins under mild, aqueous reaction conditions. This simplistic protocol employs a copper catalyst (10 mol%) and water as solvent. This transformation occurs precisely with aromatic substituted amines containing both electron-donating (EDG) and electron-withdrawing (EWG) groups. A broad range of substrates were tested under the optimized conditions, which are producing good to moderate yields.
Collapse
Affiliation(s)
- S. Erfan Masaeli
- Department of Chemistry, Mississippi State University, MS 39762, USA
| | - Mohsen Teimouri
- Department of Chemistry, Mississippi State University, MS 39762, USA
| | | | | | - James W. Akin
- Department of Chemistry, Mississippi State University, MS 39762, USA
| | - Selvam Raju
- Department of Chemistry, Mississippi State University, MS 39762, USA
| | - Sean L. Stokes
- Department of Chemistry, Mississippi State University, MS 39762, USA
| | - Joseph P. Emerson
- Department of Chemistry, Mississippi State University, MS 39762, USA
| |
Collapse
|
11
|
Ma S, Wang L, Zhou Y, Zhang H. Fully Room Temperature Reprogrammable, Recyclable, and Photomobile Soft Actuators from Physically Cross-Linked Main-Chain Azobenzene Liquid Crystalline Polymers. Molecules 2023; 28:molecules28104174. [PMID: 37241914 DOI: 10.3390/molecules28104174] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Fully room temperature three-dimensional (3D) shape-reprogrammable, recyclable, and photomobile azobenzene (azo) polymer actuators hold much promise in many photoactuating applications, but their development is challenging. Herein, we report on the efficient synthesis of a series of main-chain azo liquid crystalline polymers (LCPs) with such performances via Michael addition polymerization. They have both ester groups and two kinds of hydrogen bond-forming groups (i.e., amide and secondary amino groups) and different flexible spacer length in the backbones. Such poly(ester-amide-secondary amine)s (PEAsAs) show low glass transition temperatures (Tg ≤ 18.4 °C), highly ordered smectic liquid crystalline phases, and reversible photoresponsivity. Their uniaxially oriented fibers fabricated via the melt spinning method exhibit good mechanical strength and photoinduced reversible bending/unbending and large stress at room temperature, which are largely influenced by the flexible spacer length of the polymers. Importantly, all these fibers can be easily reprogrammed under strain at 25 °C into stable fiber springs capable of showing a totally different photomobile mode (i.e., unwinding/winding), mainly owing to the presence of low Tg and both dynamic hydrogen bonding and stable crystalline domains (induced by the uniaxial drawing during the fiber formation). They can also be recycled from a solution at 25 °C. This work not only presents the first azo LCPs with 3D shape reprogrammability, recyclability, and photomobility at room temperature, but also provides some important knowledge of their structure-property relationship, which is useful for designing more advanced photodeformable azo polymers.
Collapse
Affiliation(s)
- Shengkui Ma
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), and College of Chemistry, Nankai University, Tianjin 300071, China
| | - Lei Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), and College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yan Zhou
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), and College of Chemistry, Nankai University, Tianjin 300071, China
| | - Huiqi Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), and College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
12
|
Wang J, Zhang C, Zhang Y, Chen G, Poli R, Xie X, Xue Z. Facile Assembly of C–N Bond-Containing Polymer Electrolytes Enabled by Lithium Salt-Catalyzed Aza-Michael Addition. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
Affiliation(s)
- Jirong Wang
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Chi Zhang
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yong Zhang
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Gong Chen
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Rinaldo Poli
- CNRS, LCC (Laboratoire de Chimie de Coordination), UPS, INPT, Université de Toulouse, 205 route de Nar-bonne, F-31077 Toulouse, Cedex 4, France
| | - Xiaolin Xie
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Zhigang Xue
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
13
|
Dong B, Qu H, Yan L, Liu C, Mao Y, Zheng L. Colorimetric detection of 2-tert-butyl-1,4-benzoquinone in edible oils based on a chromogenic reaction with commercial chemicals. Food Chem 2023; 400:134037. [DOI: 10.1016/j.foodchem.2022.134037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/21/2022] [Accepted: 08/24/2022] [Indexed: 11/28/2022]
|
14
|
Wang X, Zhang Z, Hadjichristidis N. Poly(amino ester)s as an emerging synthetic biodegradable polymer platform: Recent developments and future trends. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Alden NA, Arrizabalaga JH, Liu Y, Amin S, Gowda K, Yao S, Archetti M, Glick AB, Hayes DJ. Delivery of Therapeutic miR-148b Mimic via Poly(β Amino Ester) Polyplexes for Post-transcriptional Gene Regulation and Apoptosis of A549 Cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9833-9843. [PMID: 35916504 PMCID: PMC10496413 DOI: 10.1021/acs.langmuir.2c00913] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this study, we utilized selectively modified, biodegradable polymer-based polyplexes to deliver custom, exogenous miR-148b mimics to induce apoptosis in human lung cancer (A549) cells. The gene regulatory effects of the payload miRNA mimics (miR-148b-3p) were first evaluated through bioinformatic analyses to uncover specific gene targets involved in critical carcinogenic pathways. Hyperbranched poly(β amino ester) polyplexes (hPBAE) loaded with custom miR-148b mimics were then developed for targeted therapy. When evaluated in vitro, these hPBAE-based polyplexes sustained high intracellular uptake, low cytotoxicity, and efficient escape from endosomes to deliver functionally intact miRNA mimics to the cytosol. High-resolution confocal microscopy revealed successful intracellular uptake, cell viability was assessed through qualitative fluorescence microscopy and fluorescence-based DNA quantification, and successful cytosolic delivery of intact miRNA mimics was evaluated using real-time polymerase chain reaction (RT-PCR) to demonstrate target gene knockdown. The hPBAE-miRNA mimic polyplexes were shown to induce apoptosis among A549 cells through direct modulation of intracellular protein expression, targeting multiple potential carcinogenic pathways at the gene level. These results indicated that spatially controlled miR-148b mimic delivery can promote efficient cancer cell death in vitro and may lead to an enhanced therapeutic design for in vivo application.
Collapse
Affiliation(s)
- Nick A Alden
- The Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Julien H Arrizabalaga
- The Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Yiming Liu
- The Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Shantu Amin
- Penn State Hershey Cancer Institute, The Pennsylvania State University, College of Medicine, Hershey, Pennsylvania 17033, United States
- The Department of Pharmacology, The Pennsylvania State University, College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Krishne Gowda
- Penn State Hershey Cancer Institute, The Pennsylvania State University, College of Medicine, Hershey, Pennsylvania 17033, United States
- The Department of Pharmacology, The Pennsylvania State University, College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Shun Yao
- The Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Marco Archetti
- The Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- The Huck Institute of the Life Sciences, Millennium Science Complex, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Adam B Glick
- The Huck Institute of the Life Sciences, Millennium Science Complex, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- The Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Daniel J Hayes
- The Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- The Huck Institute of the Life Sciences, Millennium Science Complex, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Materials Research Institute, Millennium Science Complex, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
16
|
Jancirani A, Kohila V, Meenarathi B, Anbarasan R. Effect of substituents on the adsorption behaviour of aza-Michael addition polymers: a comparative study. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03801-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
Avais M, Chattopadhyay S. Divergent Synthesis of Biocompatible Nearly Monodisperse Multi‐functional Poly(ethylene glycol) Periodic Copolymers. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mohd. Avais
- Department of Chemistry Indian Institute of Technology Patna Bihta Patna Bihar 801106 India
| | - Subrata Chattopadhyay
- Department of Chemistry Indian Institute of Technology Patna Bihta Patna Bihar 801106 India
| |
Collapse
|
18
|
Zhou Y, Wang L, Ma S, Zhang H. Fully Room-Temperature Reprogrammable, Reprocessable, and Photomobile Soft Actuators from a High-Molecular-Weight Main-Chain Azobenzene Crystalline Poly(ester-amide). ACS APPLIED MATERIALS & INTERFACES 2022; 14:3264-3273. [PMID: 34991314 DOI: 10.1021/acsami.1c18647] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Azobenzene (azo) polymer photoactuators with full room-temperature reprogrammability, reprocessability, and photomobility are highly desirable for large-scale applications, but their development remains a daunting challenge. Herein, a strategy is first presented for fabricating such advanced photoactuators from a high-molecular-weight main-chain azo crystalline poly(ester-amide) (PEA) prepared via Michael addition polymerization. This azo PEA can be readily processed into both physically cross-linked, uniaxially oriented fibers and films with high mechanical robustness and reversible photoinduced bending/unbending at room temperature. Importantly, the presence of both amide unit-induced hydrogen bonding and crystalline domains in such films and fibers endows them with dynamic, yet stable cross-linking points, which enable their easy reprogrammability under strain at room temperature into various three-dimensional (3D) shapes (e.g., film helicoid and spiral ribbon, fiber spring) capable of showing completely different shape-dependent photomobile modes. In particular, these reshaped photoactuators can maintain their accurate 3D shapes and highly reversible photoinduced motions even after being kept at 80 °C for 20 days or at 100 °C for 2 days. They can also be reprocessed and recycled from solution at room temperature. Such a multifunctional main-chain azo crystalline PEA can serve as a versatile platform for fabricating various photoactuators with desired 3D shapes and motion modes under mild ambient conditions.
Collapse
Affiliation(s)
- Yan Zhou
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), and College of Chemistry, Nankai University, Tianjin 300071, China
| | - Lei Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), and College of Chemistry, Nankai University, Tianjin 300071, China
| | - Shengkui Ma
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), and College of Chemistry, Nankai University, Tianjin 300071, China
| | - Huiqi Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), and College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
19
|
Javed MN, Akhter MH, Taleuzzaman M, Faiyazudin M, Alam MS. Cationic nanoparticles for treatment of neurological diseases. FUNDAMENTALS OF BIONANOMATERIALS 2022:273-292. [DOI: 10.1016/b978-0-12-824147-9.00010-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
|
20
|
Zhou Y, Wang L, Zhang H. Enhancing the performances of physically cross-linked photodeformable main-chain azobenzene poly(ester-amide)s via chemical structure engineering. Polym Chem 2022. [DOI: 10.1039/d2py00492e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of physically cross-linked photodeformable main-chain azobenzene poly(ester-amide)s with enhanced performances via chemical structure engineering and obtention of their detailed structure–property relationship are first described.
Collapse
Affiliation(s)
- Yan Zhou
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), and College of Chemistry, Nankai University, Tianjin 300071, China
| | - Lei Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), and College of Chemistry, Nankai University, Tianjin 300071, China
| | - Huiqi Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), and College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
21
|
Suwardi A, Wang F, Xue K, Han MY, Teo P, Wang P, Wang S, Liu Y, Ye E, Li Z, Loh XJ. Machine Learning-Driven Biomaterials Evolution. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2102703. [PMID: 34617632 DOI: 10.1002/adma.202102703] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Biomaterials is an exciting and dynamic field, which uses a collection of diverse materials to achieve desired biological responses. While there is constant evolution and innovation in materials with time, biomaterials research has been hampered by the relatively long development period required. In recent years, driven by the need to accelerate materials development, the applications of machine learning in materials science has progressed in leaps and bounds. The combination of machine learning with high-throughput theoretical predictions and high-throughput experiments (HTE) has shifted the traditional Edisonian (trial and error) paradigm to a data-driven paradigm. In this review, each type of biomaterial and their key properties and use cases are systematically discussed, followed by how machine learning can be applied in the development and design process. The discussions are classified according to various types of materials used including polymers, metals, ceramics, and nanomaterials, and implants using additive manufacturing. Last, the current gaps and potential of machine learning to further aid biomaterials discovery and application are also discussed.
Collapse
Affiliation(s)
- Ady Suwardi
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - FuKe Wang
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Kun Xue
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Ming-Yong Han
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Peili Teo
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Pei Wang
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Shijie Wang
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Ye Liu
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Enyi Ye
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Zibiao Li
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| |
Collapse
|
22
|
Zhang X, Hong K, Sun Q, Zhu Y, Du J. Bioreducible, arginine-rich polydisulfide-based siRNA nanocomplexes with excellent tumor penetration for efficient gene silencing. Biomater Sci 2021; 9:5275-5292. [PMID: 34180478 DOI: 10.1039/d1bm00643f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
RNA interference (RNAi) technology has great potential in cancer therapy, e.g., small interfering RNA (siRNA) can be exploited to silence specific oncogenes related to tumor growth and progression. However, it is critical to achieve high transfection efficiency while reducing cytotoxicity. In this paper, we report an siRNA delivery strategy targeting the oncogene KRAS based on arginine-modified poly(disulfide amine)/siRNA nanocomplexes. The poly(disulfide amine) is synthesized via aza-Michael polyaddition followed by the introduction of arginine groups onto its backbone to afford poly((N,N'-bis(acryloyl)cystamine-co-ethylenediamine)-g-Nω-p-tosyl-l-arginine) (PBR) polycations. Thus multiple interactions including electrostatic interaction, hydrogen bonding and a hydrophobic effect are introduced simultaneously between PBR and siRNA or cell membranes to improve transfection efficiency. By optimizing the grafting density of arginine groups, PBR/siRNA nanocomplexes achieve high cellular uptake efficiency, successful endosomal/lysosomal escape, and rapid biodegradation in the presence of high GSH concentration in the cytoplasm, and finally release siRNA to activate the RNAi mechanism. Additionally, compared to commercially available PEI 25K, PBR/siRNA nanocomplexes possess a significantly increased gene silencing effect on human pancreatic cancer cells (PANC-1) with decreased cytotoxicity and enhanced tumor penetration ability in PANC-1 multicellular spheroids in vitro. Overall, with both GSH-responsiveness and excellent tumor penetration, this safe and efficient poly(disulfide amine)-based siRNA delivery system is expected to provide a new strategy for gene therapy of pancreatic cancer and other stromal-rich tumors.
Collapse
Affiliation(s)
- Xinyue Zhang
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University, 301 Middle Yanchang Road, Shanghai 200072, China. and Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Kai Hong
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Qingmei Sun
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Yunqing Zhu
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University, 301 Middle Yanchang Road, Shanghai 200072, China. and Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Jianzhong Du
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University, 301 Middle Yanchang Road, Shanghai 200072, China. and Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| |
Collapse
|
23
|
Yang X, Xie H, Xu Z, Feng J, Fu Q, Li H, Jia Y. Malononitrile‐involved Michael addition polymerization: An efficient and facile route for cyano‐rich polyesters with programmable thermal and mechanical properties. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiaoxia Yang
- School of Textile Materials and Engineering Wuyi University Jiangmen China
- China‐Australia Institute for Advanced Materials and Manufacturing Jiaxing University Jiaxing China
| | - Hongyan Xie
- China‐Australia Institute for Advanced Materials and Manufacturing Jiaxing University Jiaxing China
| | - Zhiguang Xu
- China‐Australia Institute for Advanced Materials and Manufacturing Jiaxing University Jiaxing China
| | - Jiabing Feng
- China‐Australia Institute for Advanced Materials and Manufacturing Jiaxing University Jiaxing China
| | - Qiwei Fu
- College of Material and Textile Engineering Jiaxing University Jiaxing China
| | - Haidong Li
- College of Material and Textile Engineering Jiaxing University Jiaxing China
| | - Yongtang Jia
- School of Textile Materials and Engineering Wuyi University Jiangmen China
| |
Collapse
|
24
|
Gungor B, Daglar O, Gunay US, Hizal G, Tunca U, Durmaz H. One‐Step Modification of Diacid‐Functional Polythioethers via Simultaneous Passerini and Esterification Reactions. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Begum Gungor
- Department of Chemistry Istanbul Technical University Maslak Istanbul 34469 Turkey
| | - Ozgun Daglar
- Department of Chemistry Istanbul Technical University Maslak Istanbul 34469 Turkey
| | - Ufuk Saim Gunay
- Department of Chemistry Istanbul Technical University Maslak Istanbul 34469 Turkey
| | - Gurkan Hizal
- Department of Chemistry Istanbul Technical University Maslak Istanbul 34469 Turkey
| | - Umit Tunca
- Department of Chemistry Istanbul Technical University Maslak Istanbul 34469 Turkey
| | - Hakan Durmaz
- Department of Chemistry Istanbul Technical University Maslak Istanbul 34469 Turkey
| |
Collapse
|
25
|
Wang X, Wu D. Reduction‐Responsive Disulfide‐Containing Polymers for Biomedical Applications. SULFUR‐CONTAINING POLYMERS 2021:393-428. [DOI: 10.1002/9783527823819.ch12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
26
|
Ghaemi A, Bagheri E, Abnous K, Taghdisi SM, Ramezani M, Alibolandi M. CRISPR-cas9 genome editing delivery systems for targeted cancer therapy. Life Sci 2020; 267:118969. [PMID: 33385410 DOI: 10.1016/j.lfs.2020.118969] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023]
Abstract
The prokaryotic CRISPR-Cas systems could be applied as revolutionized genome editing tool in live cells of various species to modify, visualize and identify definite sequences of DNA and RNA. CRISPR-Cas could edit the genome by homology-directed repair and non-homologous end joining mechanisms. Furthermore, DNA-targeting modification by CRISPR-Cas methodology provides opportunity for diagnosis, therapy and the genetic disorders investigation. Here, we summarized delivery systems employed for CRISPR-Cas9 for genome editing. Then preclinical studies of the CRISPR-Cas9-based therapeutics will be discussed considering the associated challenges and developments in its translation to clinic for cancer therapy.
Collapse
Affiliation(s)
- Asma Ghaemi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elnaz Bagheri
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
27
|
Liang X, Li X, Gao X, Zhang Y, Wei W, Liu X. Fabrication of unimolecular micelle-based nanomedicines from hyperbranched polymers containing both terminal and internal reactive groups. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122716] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
28
|
Myers JT, Wilde JH, Sabat M, Dickie DA, Harman WD. Michael–Michael Ring-Closure Reactions for a Dihapto-Coordinated Naphthalene Complex of Molybdenum. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jeffery T. Myers
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Justin H. Wilde
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Michal Sabat
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Diane A. Dickie
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - W. Dean Harman
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
29
|
Alendronate-functionalized poly(amido amine) cryogels of high-toughness for biomedical applications. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122248] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
30
|
Gao X, Jin Z, Tan X, Zhang C, Zou C, Zhang W, Ding J, Das BC, Severinov K, Hitzeroth II, Debata PR, He D, Ma X, Tian X, Gao Q, Wu J, Tian R, Cui Z, Fan W, Huang Z, Cao C, Bao Y, Tan S, Hu Z. Hyperbranched poly(β-amino ester) based polyplex nanopaticles for delivery of CRISPR/Cas9 system and treatment of HPV infection associated cervical cancer. J Control Release 2020; 321:654-668. [PMID: 32114092 DOI: 10.1016/j.jconrel.2020.02.045] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/22/2020] [Accepted: 02/27/2020] [Indexed: 12/20/2022]
Abstract
Persistent high-risk HPV infection is the main factor for cervical cancer. HPV E7 oncogene plays an important role in HPV carcinogenesis. Down-regulation of E7 oncogene expression could induce growth inhibition in HPV-positive cells and thus treats HPV related cervical cancer. Here we developed a non-virus gene vector based on poly(amide-amine)-poly(β-amino ester) hyperbranched copolymer (hPPC) for the delivery of CRISPR/Cas9 system to specifically cleave HPV E7 oncogene in HPV-positive cervical cancer cells. The diameter of polyplex nanoparticles (NPs) formed by hPPCs/linear poly(β-amino ester) (PBAE) and plasmids were approximately 300 nm. These hPPCs/PBAE-green fluorescence protein plasmids polyplex NPs showed high transfection efficiency and low toxicity in cells and mouse organs. By cleaving HPV16 E7 oncogene, reducing the expression of HPV16 E7 protein and increasing intracellular retinoblastoma 1 (RB1) amount, hPPCs/PBAE-CRISPR/Cas9 therapeutic plasmids polyplex NPs, especially highly branched hPPC1-plasmids polyplex NPs, exhibited strong growth inhibition of cervical cancer cells in vitro and xenograft tumors in nude mice. Together, the hPPCs/PBAE polyplex NPs to deliver HPV16 E7 targeted CRISPR/Cas9 system in this study could potentially be applied to treat HPV-related cervical cancer.
Collapse
Affiliation(s)
- Xueqin Gao
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhuang Jin
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiangyu Tan
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Chong Zhang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chenming Zou
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wei Zhang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jiahui Ding
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Bhudev C Das
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Uttar Pradesh, Noida 201313, India
| | - Konstantin Severinov
- Skolkovo Institute of Science and Technology, Skolkovo, Moscow Region 143025, Russia
| | - Inga Isabel Hitzeroth
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, South Africa
| | - Priya Ranjan Debata
- Department of Zoology, North Orissa University, Takatpur, Baripada, Odisha 757003, India
| | - Dan He
- Department of Neurology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Xin Ma
- Department of Urology, General Hospital of People's Liberation Army, Beijing 100039, China
| | - Xun Tian
- Department of Obstetrics and Gynecology, Academician expert workstation, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, Hubei, China
| | - Qinglei Gao
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Jun Wu
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510006, Guangdong, China
| | - Rui Tian
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Zifeng Cui
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Weiwen Fan
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhaoyue Huang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Chen Cao
- Department of Obstetrics and Gynecology, Academician expert workstation, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, Hubei, China
| | - Yuxian Bao
- Generulor Company Bio-X Lab, Guangzhou 510006, Guangdong, China
| | - Songwei Tan
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Zheng Hu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; Precision Medicine Institute, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
31
|
Deng H, Tan S, Gao X, Zou C, Xu C, Tu K, Song Q, Fan F, Huang W, Zhang Z. Cdk5 knocking out mediated by CRISPR-Cas9 genome editing for PD-L1 attenuation and enhanced antitumor immunity. Acta Pharm Sin B 2020; 10:358-373. [PMID: 32082979 PMCID: PMC7016277 DOI: 10.1016/j.apsb.2019.07.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/29/2019] [Accepted: 07/03/2019] [Indexed: 02/07/2023] Open
Abstract
Blocking the programmed death-ligand 1 (PD-L1) on tumor cells with monoclonal antibody therapy has emerged as powerful weapon in cancer immunotherapy. However, only a minority of patients presented immune responses in clinical trials. To develop an alternative treatment method based on immune checkpoint blockade, we designed a novel and efficient CRISPR-Cas9 genome editing system delivered by cationic copolymer aPBAE to downregulate PD-L1 expression on tumor cells via specifically knocking out Cyclin-dependent kinase 5 (Cdk5) gene in vivo. The expression of PD-L1 on tumor cells was significantly attenuated by knocking out Cdk5, leading to effective tumor growth inhibition in murine melanoma and lung metastasis suppression in triple-negative breast cancer. Importantly, we demonstrated that aPBAE/Cas9-Cdk5 treatment elicited strong T cell-mediated immune responses in tumor microenvironment that the population of CD8+ T cells was significantly increased while regulatory T cells (Tregs) was decreased. It may be the first case to exhibit direct in vivo PD-L1 downregulation via CRISPR-Cas9 genome editing technology for cancer therapy. It will provide promising strategy for preclinical antitumor treatment through the combination of nanotechnology and genome engineering.
Collapse
Affiliation(s)
- Huan Deng
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Songwei Tan
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xueqin Gao
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chenming Zou
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chenfeng Xu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kun Tu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qingle Song
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Fengjuan Fan
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wei Huang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhiping Zhang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Engineering Research Center for Novel Drug Delivery System, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
32
|
Jiang Q, Zhang Y, Du Y, Tang M, Jiang L, Huang W, Yang H, Xue X, Jiang B. Preparation of hyperbranched polymers by oxa-Michael addition polymerization. Polym Chem 2020. [DOI: 10.1039/c9py01686d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hyperbranched polymers with high molecular weights were synthesized by t-BuP2-catalyzed oxa-Michael addition polymerization of trifunctional hydroxyl and diacrylate monomers.
Collapse
Affiliation(s)
- Qimin Jiang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials
- School of Materials Science and Engineering
- Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering
- Changzhou University
- Changzhou 213164
| | - YuanLiang Zhang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials
- School of Materials Science and Engineering
- Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering
- Changzhou University
- Changzhou 213164
| | - Yongzhuang Du
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials
- School of Materials Science and Engineering
- Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering
- Changzhou University
- Changzhou 213164
| | - Maotong Tang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials
- School of Materials Science and Engineering
- Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering
- Changzhou University
- Changzhou 213164
| | - Li Jiang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials
- School of Materials Science and Engineering
- Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering
- Changzhou University
- Changzhou 213164
| | - Wenyan Huang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials
- School of Materials Science and Engineering
- Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering
- Changzhou University
- Changzhou 213164
| | - Hongjun Yang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials
- School of Materials Science and Engineering
- Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering
- Changzhou University
- Changzhou 213164
| | - Xiaoqiang Xue
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials
- School of Materials Science and Engineering
- Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering
- Changzhou University
- Changzhou 213164
| | - Bibiao Jiang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials
- School of Materials Science and Engineering
- Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering
- Changzhou University
- Changzhou 213164
| |
Collapse
|
33
|
Jiao C, Gao L, Yu B, Cong H, Shen Y. Mild polyaddition and polyalkylation based on the carbon-carbon bond formation reaction of active methylene. RSC Adv 2019; 9:40455-40461. [PMID: 35542661 PMCID: PMC9076256 DOI: 10.1039/c9ra08155k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 11/20/2019] [Indexed: 11/25/2022] Open
Abstract
The Michael addition and alkylation reaction of active methylene compounds (AMCs) with two active hydrogens had been investigated extensively in organic chemistry, while the polymerization of AMCs had few studies. Herein, we reported active methylene-based polyaddition and polyalkylation catalyzed via an organic superbase under ambient conditions. A model polymerization was first conducted between ethylene glycol diacrylate (EGDA) and methyl cyanoacetate (MCA). The molecular weight (M w) of the model polymer was up to 50 500 g mol-1 with a high yield (99%). Eight AMCs were selected and a high-throughput parallel synthesizing instrument (HTPSI) was used to synthesize semi-library polymers of AMCs and EGDA via a Michael type polyaddition. The obtained AMC-based polymers had low cell cytotoxicity. Elastomers with cyanogen groups could be prepared using trimethylolpropane triacrylate (TMPTA) as a crosslinker. Furthermore, three dihalogen compounds were explored to polymerize with MCA and malononitrile via alkylation reactions. The pendent cyanogen or ester groups of the polymers could be reduced by lithium aluminum hydride. Novel polymer families were constructed based on the polyaddition and polyalkylation of AMCs.
Collapse
Affiliation(s)
- Caicai Jiao
- College of Materials Science and Engineering, Qingdao University Qingdao 266071 China
- Institute of Biomedical Materials and Engineering, Qingdao University Qingdao 266071 China
| | - Lilong Gao
- College of Materials Science and Engineering, Qingdao University Qingdao 266071 China
| | - Bing Yu
- Institute of Biomedical Materials and Engineering, Qingdao University Qingdao 266071 China
- College of Chemistry and Chemical Engineering, Qingdao University Qingdao 266071 China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University Qingdao 266071 China
| | - Hailin Cong
- College of Materials Science and Engineering, Qingdao University Qingdao 266071 China
- Institute of Biomedical Materials and Engineering, Qingdao University Qingdao 266071 China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University Qingdao 266071 China
| | - Youqing Shen
- College of Materials Science and Engineering, Qingdao University Qingdao 266071 China
- Institute of Biomedical Materials and Engineering, Qingdao University Qingdao 266071 China
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University Hangzhou 310027 China
| |
Collapse
|
34
|
Wang P, Yan Y, Sun Y, Zhang R, Huo C, Li L, Wang K, Dong Y, Xing J. Bioreducible and acid-labile polydiethylenetriamines with sequential degradability for efficient transgelin-2 siRNA delivery. J Mater Chem B 2019; 7:6994-7005. [PMID: 31625545 DOI: 10.1039/c9tb01183h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The transgelin-2 (TAGLN2) protein plays an important role in multidrug resistance in human breast cancer. siRNA mediated gene silencing of TAGLN2 is a promising strategy for paclitaxel resistance reversal in breast cancer. In this study, a series of bioreducible and acid-labile polydiethylenetriamines (PDs) with different proportions of cross-linkers were synthesized. TAGLN2 siRNA was condensed by PDs to form dual-responsive nanocomplexes, and these nanocomplexes were hypothesized to partially degrade in the acidic environment of endosomes, and then completely degrade in the reducing environment of the cytoplasm to release siRNA. It was found that PDs have good water solubility, acid-base buffering capacity, suitable degradability and high biocompatibility. Moreover, PDCKM can deliver TAGLN2 siRNA into MCF-7/PTX cells and inhibit the expression of TAGLN2 even better than PEI 25k. Besides, paclitaxel showed higher cytotoxicity in cells incubated with PDCKM/TAGLN2 siRNA nanocomplexes. These results suggested that PDs have great potential for safe and efficient siRNA delivery to reverse paclitaxel resistance in breast cancer.
Collapse
Affiliation(s)
- Pengchong Wang
- School of Pharmacy, Xi'an Jiaotong University, 76 Yanta West Road, Xi'an 710061, Shaanxi, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Love D, Kim K, Domaille DW, Williams O, Stansbury J, Musgrave C, Bowman C. Catalyst-free, aza-Michael polymerization of hydrazides: polymerizability, kinetics, and mechanistic origin of an α-effect. Polym Chem 2019; 10:5790-5804. [PMID: 31749894 PMCID: PMC6865069 DOI: 10.1039/c9py01199d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Despite the powerful nature of the aza-Michael reaction for generating C-N linkages and bioactive moieties, the bis-Michael addition of 1° amines remains ineffective for the synthesis of functional, step-growth polymers due to the drastic reduction in reactivity of the resulting 2° amine mono-addition adduct. In this study, a wide range of commercial hydrazides are shown to effectively undergo the bis-Michael reaction with divinyl sulfone (DVS) and 1,6-hexanediol diacrylate (HDA) under catalyst-free, thermal conditions to afford moderate to high molecular weight polymers with M n = 3.8-34.5 kg mol-1. The hydrazide-Michael reactions exhibit two distinctive, conversion-dependent kinetic regimes that are 2nd-order overall, in contrast to the 3rd-order nature of amines previously reported. The mono-addition rate constant was found to be 37-fold greater than that of the bis-addition at 80 °C for the reaction between benzhydrazide and DVS. A significant majority (12 of 15) of the hydrazide derivatives used here show excellent bis-Michael reactivity and achieve >97% conversions after 5 days. This behavior is consistent with calculations that show minimal variance of electron density on the N-nucleophile among the derivatives studied. Reactivity differences between hydrazides and hexylamine are also explored. Overall, the difference in reactivity between hydrazides and amines is attributed to the adjacent nitrogen atom in hydrazides that acts as an efficient hydrogen-bond donor that facilitates intramolecular proton-transfer following the formation of the zwitterion intermediate. This effect not only activates the Michael acceptor but also coordinates with additional Michael acceptors to form an intermolecular reactant complex.
Collapse
Affiliation(s)
- Dillon Love
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, USA
| | - Kangmin Kim
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, USA
| | - Dylan W. Domaille
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, USA
| | - Olivia Williams
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, USA
| | - Jeffrey Stansbury
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, USA
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, USA
- School of Dental Medicine, Craniofacial Biology, University of Colorado Denver, Aurora, Colorado 80045, USA
| | - Charles Musgrave
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, USA
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, USA
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, USA
| | - Christopher Bowman
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, USA
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, USA
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, USA
| |
Collapse
|
36
|
Kumar P, Liu B, Behl G. A Comprehensive Outlook of Synthetic Strategies and Applications of Redox‐Responsive Nanogels in Drug Delivery. Macromol Biosci 2019; 19:e1900071. [PMID: 31298803 DOI: 10.1002/mabi.201900071] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 06/03/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Parveen Kumar
- Laboratory of Functional Molecules and Materials School of Physics and Optoelectronic EngineeringShandong University of Technology Xincun West Road 266 Zibo 255000 China
| | - Bo Liu
- Laboratory of Functional Molecules and Materials School of Physics and Optoelectronic EngineeringShandong University of Technology Xincun West Road 266 Zibo 255000 China
| | - Gautam Behl
- Pharmaceutical and Molecular Biotechnology Research CentreDepartment of ScienceWaterford Institute of Technology Cork Road Waterford X91K0EK Republic of Ireland
| |
Collapse
|
37
|
Liu Y, Wang CL, Xia HM, Wang Z, Wang YF. Direct Csp 3-H methylenation of 2-arylacetamides using DMF/Me 2NH-BH 3 as the methylene source. Org Biomol Chem 2019; 17:6153-6157. [PMID: 31169277 DOI: 10.1039/c9ob00875f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A direct Csp3-H methylenation of 2-arylacetamides using DMF/Me2NH-BH3 as the methylene source was developed. The formyl group of DMF delivered the carbon and one hydrogen atoms, and the Me2NH-BH3 donated the remaining one hydrogen atom. This protocol offers a new alternative to make useful 2-arylacrylamides from simple starting materials.
Collapse
Affiliation(s)
- Yuting Liu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China.
| | | | | | | | | |
Collapse
|
38
|
Qu X, Hu Y, Wang H, Song H, Young M, Xu F, Liu Y, Cheng G. Biomimetic Dextran–Peptide Vectors for Efficient and Safe siRNA Delivery. ACS APPLIED BIO MATERIALS 2019; 2:1456-1463. [DOI: 10.1021/acsabm.8b00714] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Xinjian Qu
- School of Life Science and Medicine, Dalian University of Technology, Panjin 124221, China
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Yang Hu
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Huifeng Wang
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Haiqing Song
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Megan Young
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Fujian Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ying Liu
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Gang Cheng
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|
39
|
Lang T, Dong X, Zheng Z, Liu Y, Wang G, Yin Q, Li Y. Tumor microenvironment-responsive docetaxel-loaded micelle combats metastatic breast cancer. Sci Bull (Beijing) 2019; 64:91-100. [PMID: 36659642 DOI: 10.1016/j.scib.2018.12.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/05/2018] [Accepted: 12/14/2018] [Indexed: 01/21/2023]
Abstract
Efficient tumor-targeting drug delivery systems are urgently needed for treating metastatic breast cancer. In this work, a docetaxel (DTX)-loaded micelle (pDM) as the tumor-microenvironment-responsive delivery platform is developed. The micelle is composed of a pH-sensitive amphiphilic copolymer, poly((1,4-butanediol)-diacrylate-β-N,N-diisopropylethylenediamine)-polyethyleneimine (BD-PEI), and a matrix metalloproteinase (MMP)-responsive polymer, poly((1,4-butanediol)-diacrylate-β-N,N-diisopropylethylenediamine)-peptide-polyethylene glycol (PEG) (BD-peptide-PEG). The PEG block of BD-peptide-PEG will be split by MMPs at the tumor microenvironment, which leads to the change of the surface charge and particle size of the micelle to more positive and smaller one. Owing to this transformation and enhanced permeability and retention (EPR) effect, pDM delivers more DTX into tumor tissues and is internalized more efficiently by tumor cells than the non-MMP-sensitive micelles in the 4T1 tumor-bearing mice model. In addition, DTX is released in acidic endo/lysosomes due to the dissociation of the micelle, triggered by the protonation of the hydrophobic block of BD-PEI. As a result, the DTX-loaded micelle inhibits primary tumor growth and pulmonary metastasis effectively. Thus, this pH/MMP-dual-sensitive drug delivery system, which simultaneously attains three keypoints: prolonged circulation time, directional and efficient uptake into tumor cells, and speedy intracellular drug release, is a promising strategy for metastatic breast cancer therapy.
Collapse
Affiliation(s)
- Tianqun Lang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyue Dong
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China
| | - Zhong Zheng
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; College of Life Sciences, Jilin University, Changchun 130012, China
| | - Yiran Liu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China
| | - Guanru Wang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Yin
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yaping Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China; School of Pharmacy, Yantai University, Yantai 264005, China.
| |
Collapse
|
40
|
Liu Y, Li Y, Keskin D, Shi L. Poly(β-Amino Esters): Synthesis, Formulations, and Their Biomedical Applications. Adv Healthc Mater 2019; 8:e1801359. [PMID: 30549448 DOI: 10.1002/adhm.201801359] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/04/2018] [Indexed: 12/12/2022]
Abstract
Poly(β-amino ester) (abbreviated as PBAE or PAE) refers to a polymer synthesized from an acrylate and an amine by Michael addition and has properties inherent to tertiary amines and esters, such as pH responsiveness and biodegradability. The versatility of building blocks provides a library of polymers with miscellaneous physicochemical and mechanical properties. When used alone or together with other materials, PBAEs can be fabricated into different formulations in order to fulfill various requirements in drug delivery (for instance, gene, anticancer drugs, and antimicrobials delivery) and natural complex mimicry (nanochaperones). This progress report discusses the recent developments in design, synthesis, formulations, and applications of PBAEs in biomedical fields and provides a perspective view for the future of the PBAEs.
Collapse
Affiliation(s)
- Yong Liu
- State Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Functional Polymer MaterialsMinistry of EducationInstitute of Polymer ChemistryCollege of ChemistryNankai University Tianjin 300071 China
- Department of Biomedical EngineeringUniversity of Groningen and University Medical Center Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Yuanfeng Li
- State Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Functional Polymer MaterialsMinistry of EducationInstitute of Polymer ChemistryCollege of ChemistryNankai University Tianjin 300071 China
- Department of Biomedical EngineeringUniversity of Groningen and University Medical Center Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Damla Keskin
- Department of Biomedical EngineeringUniversity of Groningen and University Medical Center Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Linqi Shi
- State Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Functional Polymer MaterialsMinistry of EducationInstitute of Polymer ChemistryCollege of ChemistryNankai University Tianjin 300071 China
| |
Collapse
|
41
|
Wang B, Li C, Yang L, Zhang C, Liu LJ, Zhu S, Chen Y, Wang Y. Tetraphenylethene decorated with disulfide-functionalized hyperbranched poly(amido amine)s as metal/organic solvent-free turn-on AIE probes for biothiol determination. J Mater Chem B 2019. [DOI: 10.1039/c9tb00214f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel hyperbranched poly(amido amine)s AIE probes were developed for organic solvent-free biothiol sensing.
Collapse
Affiliation(s)
- Bin Wang
- Tianjin Engineering Technology Center of Chemical Wastewater Source Reduction and Recycling, School of Science, Tianjin Chengjian University
- Tianjin 300384
- P. R. China
| | - Cheng Li
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University
- Tianjin 300354
- P. R. China
| | - Lijun Yang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College
- Tianjin 300192
- P. R. China
| | - Congrou Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College
- Tianjin 300192
- P. R. China
| | - Li-Juan Liu
- Tianjin Engineering Technology Center of Chemical Wastewater Source Reduction and Recycling, School of Science, Tianjin Chengjian University
- Tianjin 300384
- P. R. China
| | - Sen Zhu
- Tianjin Engineering Technology Center of Chemical Wastewater Source Reduction and Recycling, School of Science, Tianjin Chengjian University
- Tianjin 300384
- P. R. China
| | - Yu Chen
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University
- Tianjin 300354
- P. R. China
| | - Yong Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University
- Tianjin 300354
- P. R. China
| |
Collapse
|
42
|
Facile and solvent-free fabrication of PEG-based membranes with interpenetrating networks for CO2 separation. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.10.031] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
43
|
Wen K, Zhou M, Lu H, Bi Y, Ruan L, Chen J, Hu Y. Near-Infrared/pH Dual-Sensitive Nanocarriers for Enhanced Intracellular Delivery of Doxorubicin. ACS Biomater Sci Eng 2018; 4:4244-4254. [DOI: 10.1021/acsbiomaterials.8b01051] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Kaikai Wen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), 19B Yuquan Road, Beijing 100049, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Mengxue Zhou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), 19B Yuquan Road, Beijing 100049, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Huiru Lu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), 19B Yuquan Road, Beijing 100049, China
| | - Ying Bi
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), 19B Yuquan Road, Beijing 100049, China
| | - Lifo Ruan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), 19B Yuquan Road, Beijing 100049, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Jun Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), 19B Yuquan Road, Beijing 100049, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Yi Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), 19B Yuquan Road, Beijing 100049, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
44
|
Forghani A, Garber L, Chen C, Tavangarian F, Tighe TB, Devireddy R, Pojman JA, Hayes D. Fabrication and characterization of thiol-triacrylate polymer via Michael addition reaction for biomedical applications. ACTA ACUST UNITED AC 2018; 14:015001. [PMID: 30355851 DOI: 10.1088/1748-605x/aae684] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Thiol-acrylate polymers have therapeutic potential as biocompatible scaffolds for bone tissue regeneration. Synthesis of a novel cyto-compatible and biodegradable polymer composed of trimethylolpropane ethoxylate triacrylate-trimethylolpropane tris (3-mercaptopropionate) (TMPeTA-TMPTMP) using a simple amine-catalyzed Michael addition reaction is reported in this study. This study explores the impact of molecular weight and crosslink density on the cyto-compatibility of human adipose derived mesenchymal stem cells. Eight groups were prepared with two different average molecular weights of trimethylolpropane ethoxylate triacrylate (TMPeTA 692 and 912) and four different concentrations of diethylamine (DEA) as catalyst. The materials were physically characterized by mechanical testing, wettability, mass loss, protein adsorption and surface topography. Cyto-compatibility of the polymeric substrates was evaluated by LIVE/DEAD staining® and DNA content assay of cultured human adipose derived stem cells (hASCs) on the samples over over days. Surface topography studies revealed that TMPeTA (692) samples have island pattern features whereas TMPeTA (912) polymers showed pitted surfaces. Water contact angle results showed a significant difference between TMPeTA (692) and TMPeTA (912) monomers with the same DEA concentration. Decreased protein adsorption was observed on TMPeTA (912) -16% DEA compared to other groups. Fluorescent microscopy also showed distinct hASCs attachment behavior between TMPeTA (692) and TMPeTA (912), which is due to their different surface topography, protein adsorption and wettability. Our finding suggested that this thiol-acrylate based polymer is a versatile, cyto-compatible material for tissue engineering applications with tunable cell attachment property based on surface characteristics.
Collapse
Affiliation(s)
- Anoosha Forghani
- Department of Biomedical Engineering, Millennium Science Complex, Pennsylvania State University, University Park, PA 16802, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Rod-like cellulose nanocrystal/cis-aconityl-doxorubicin prodrug: A fluorescence-visible drug delivery system with enhanced cellular uptake and intracellular drug controlled release. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 91:179-189. [DOI: 10.1016/j.msec.2018.04.099] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 04/14/2018] [Accepted: 04/28/2018] [Indexed: 01/31/2023]
|
46
|
DiStasio N, Arts M, Lehoux S, Tabrizian M. IL-10 Gene Transfection in Primary Endothelial Cells via Linear and Branched Poly(β-amino ester) Nanoparticles Attenuates Inflammation in Stimulated Macrophages. ACS APPLIED BIO MATERIALS 2018; 1:917-927. [DOI: 10.1021/acsabm.8b00342] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Nicholas DiStasio
- Lady Davis Institute, Department of Medicine, McGill University, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1E2, Canada
| | - Marloes Arts
- Lady Davis Institute, Department of Medicine, McGill University, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1E2, Canada
| | - Stephanie Lehoux
- Lady Davis Institute, Department of Medicine, McGill University, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1E2, Canada
| | | |
Collapse
|
47
|
Farias C, Lyman R, Hemingway C, Chau H, Mahacek A, Bouzos E, Mobed-Miremadi M. Three-Dimensional (3D) Printed Microneedles for Microencapsulated Cell Extrusion. Bioengineering (Basel) 2018; 5:E59. [PMID: 30065227 PMCID: PMC6164407 DOI: 10.3390/bioengineering5030059] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/22/2018] [Accepted: 07/26/2018] [Indexed: 12/17/2022] Open
Abstract
Cell-hydrogel based therapies offer great promise for wound healing. The specific aim of this study was to assess the viability of human hepatocellular carcinoma (HepG2) cells immobilized in atomized alginate capsules (3.5% (w/v) alginate, d = 225 µm ± 24.5 µm) post-extrusion through a three-dimensional (3D) printed methacrylate-based custom hollow microneedle assembly (circular array of 13 conical frusta) fabricated using stereolithography. With a jetting reliability of 80%, the solvent-sterilized device with a root mean square roughness of 158 nm at the extrusion nozzle tip (d = 325 μm) was operated at a flowrate of 12 mL/min. There was no significant difference between the viability of the sheared and control samples for extrusion times of 2 h (p = 0.14, α = 0.05) and 24 h (p = 0.5, α = 0.05) post-atomization. Factoring the increase in extrusion yield from 21.2% to 56.4% attributed to hydrogel bioerosion quantifiable by a loss in resilience from 5470 (J/m³) to 3250 (J/m³), there was no significant difference in percentage relative payload (p = 0.2628, α = 0.05) when extrusion occurred 24 h (12.2 ± 4.9%) when compared to 2 h (9.9 ± 2.8%) post-atomization. Results from this paper highlight the feasibility of encapsulated cell extrusion, specifically protection from shear, through a hollow microneedle assembly reported for the first time in literature.
Collapse
Affiliation(s)
- Chantell Farias
- Department of Bioengineering, Santa Clara University, Santa Clara, CA 95053-0583, USA.
| | - Roman Lyman
- Department of Bioengineering, Santa Clara University, Santa Clara, CA 95053-0583, USA.
| | - Cecilia Hemingway
- Department of Bioengineering, Santa Clara University, Santa Clara, CA 95053-0583, USA.
| | - Huong Chau
- Department of Bioengineering, Santa Clara University, Santa Clara, CA 95053-0583, USA.
| | - Anne Mahacek
- SCU Maker Lab, Santa Clara University, Santa Clara, CA 95053-0583, USA.
| | - Evangelia Bouzos
- Department of Bioengineering, Santa Clara University, Santa Clara, CA 95053-0583, USA.
| | - Maryam Mobed-Miremadi
- Department of Bioengineering, Santa Clara University, Santa Clara, CA 95053-0583, USA.
| |
Collapse
|
48
|
Li X, Liu X, Shi D, Wei W, Chen M, Liu X. Facile Synthesis of Hyperbranched Polymers by Sequential Polycondensation. ACS Macro Lett 2018; 7:778-782. [PMID: 35650767 DOI: 10.1021/acsmacrolett.8b00443] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hyperbranched polymers are an important class of soft nanomaterial, but the synthesis of hyperbranched polymers with well-defined dendritic structure from readily available monomers remains a challenge in polymer chemistry. We herein report a sequential polycondensation method for the one-pot synthesis of hyperbranched polymers with tunable structure and high degree of branching from commercial available monomers. Specifically, in the polycondensation process of equimolar difunctional haloalkane (A2-type monomers) and trifunctional dihydroxybenzoic acid (CB2-type monomers) using K2CO3 as the base, the aliphatic nucleophilic substitution reactivity sequence of the functional groups derived from CB2 monomers is C > second B > first B ≫ original B, thereby producing hyperbranched poly(ester ether)s with high degree of branching (DB > 0.6). Moreover, the surface functionality of the hyperbranched poly(ester ether)s could be facilely tailored by just introducing A-type monofunctional reagents into the one-pot A2 + CB2 polymerization system.
Collapse
Affiliation(s)
- Xiaojie Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People’s Republic of China
| | - Xingliang Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People’s Republic of China
| | - Dongjian Shi
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People’s Republic of China
| | - Wei Wei
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People’s Republic of China
| | - Mingqing Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People’s Republic of China
| | - Xiaoya Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People’s Republic of China
| |
Collapse
|
49
|
Capasso Palmiero U, Kaczmarek JC, Fenton OS, Anderson DG. Poly(β-amino ester)-co-poly(caprolactone) Terpolymers as Nonviral Vectors for mRNA Delivery In Vitro and In Vivo. Adv Healthc Mater 2018; 7:e1800249. [PMID: 29761648 DOI: 10.1002/adhm.201800249] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/12/2018] [Indexed: 12/31/2022]
Abstract
The production of new proteins with messenger RNA (mRNA) has gained a broad interest due to its potential for addressing a wide range of diseases. Here, the design and characterization of novel ionizable poly(β-amino ester)-co-poly(caprolactone) terpolymers, synthesized via the combination of the ring opening polymerization and the Michael step-growth polymerization, are reported. The versatility of this method is demonstrated by varying the number of caprolactone units attached to each poly(β-amino ester) (PBAE) terpolymer. The ability of the novel poly-caprolactone (PCL)-based PBAE materials to deliver mRNA is shown to depend on the physiochemical characteristics of the material, such as lipophilicity, as well as the formulation method used to complex the polymer with the oligonucleotide. This latter variable represents a previously unstudied aspect of PBAE library screens that can play an important role in identifying true top candidates for nucleic acid delivery. The most stable terpolymer is injected intravenously (IV) in mice and shows a transfection efficacy several times higher than the polyethylenimine (PEI) which is focused in the spleen, opening the possibility to use these biodegradable carriers in the intravenous delivery of antigen-encoding mRNA for cancer immunotherapy and vaccination.
Collapse
Affiliation(s)
- Umberto Capasso Palmiero
- David H. Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology Cambridge MA 02139 USA
- Department of Chemistry Materials and Chemical Engineering Politecnico di Milano Via Mancinelli 7 20131 Milano Italy
| | - James C. Kaczmarek
- David H. Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology Cambridge MA 02139 USA
- Department of Chemical Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Owen S. Fenton
- David H. Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology Cambridge MA 02139 USA
- Department of Chemistry Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Daniel G. Anderson
- David H. Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology Cambridge MA 02139 USA
- Department of Chemical Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
- Institute for Medical Engineering and Science Massachusetts Institute of Technology Cambridge MA 02139 USA
- Harvard and MIT Division of Health Science and Technology Massachusetts Institute of Technology Cambridge MA 02139 USA
| |
Collapse
|
50
|
Iseki M, Hiraoka Y, Jing C, Okamura H, Sato E, Matsumoto A. Effect of glass transition temperature on heat-responsive gas bubbles formation from polymers containingtert-butoxycarbonyl moiety. J Appl Polym Sci 2018. [DOI: 10.1002/app.46252] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Masashi Iseki
- Department of Applied Chemistry, Graduate School of Engineering; Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku; Sakai Osaka 599-8531 Japan
| | - Yuta Hiraoka
- Department of Applied Chemistry, Graduate School of Engineering; Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku; Sakai Osaka 599-8531 Japan
| | - Chu Jing
- Department of Applied Chemistry, Graduate School of Engineering; Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku; Sakai Osaka 599-8531 Japan
| | - Haruyuki Okamura
- Department of Applied Chemistry, Graduate School of Engineering; Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku; Sakai Osaka 599-8531 Japan
| | - Eriko Sato
- Department of Applied Chemistry and Bioengineering, Graduate School of Engineering; Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku; Osaka Osaka 558-8585 Japan
| | - Akikazu Matsumoto
- Department of Applied Chemistry, Graduate School of Engineering; Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku; Sakai Osaka 599-8531 Japan
| |
Collapse
|