1
|
Hao T, Zhang B, Li W, Yang X, Wu S, Yuan Y, Cui H, Chen Q, Li Z. Nordihydroguaiaretic Acid-Cross-Linked Phenylboronic Acid-Functionalized Polyplex Micelles for Anti-angiogenic Gene Therapy of Orthotopic and Metastatic Tumors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:34620-34631. [PMID: 38934519 DOI: 10.1021/acsami.4c05311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Polyplexes are required to be equipped with multiple functionalities to accomplish adequate structure stability and gene transfection efficacy for gene therapy. Herein, a 4-carboxy-3-fluorophenylboronic acid (FPBA)-functionalized block copolymer of PEG-b-PAsp(DET/FBA) and PAsp(DET/FBA) (abbreviated as PB and HB) was synthesized and applied for engineering functional polyplex micelles (PMs) through ionic complexation with pDNA followed by strategic cross-linking with nordihydroguaiaretic acid (NDGA) in respect to the potential linkage of polyphenol and FPBA moieties. In relation to polyplex micelles void of cross-linking, the engineered multifunctional polyplex micelles (PBHBN-PMs) were determined to possess improved structural tolerability against the exchange reaction with charged species. Besides, the FPBA/NDGA cross-linking appeared to be selectively cleaved in the acidic endosomal compartments but not the neutral milieu. Furthermore, the PBHB-PMs with the optimal FPBA/NDGA cross-linking degree were identified to possess appreciable cellular uptake and endosomal escape activities, eliciting a significantly high level of gene expression relative to P-PMs and PB-PMs. Eventually, in vivo antitumor therapy by our proposed multifunctional PMs appeared to be capable of facilitating expression of the antiangiogenic genomic payloads (sFlt-1 pDNA) via systemic administration. The enriched antiangiogenic sFlt-1 in the tumors could silence the activities of angiogenic cytokines for the inhibited neo-vasculature and the suppressed growth of orthotopic 4T1 tumors. Of note, the persistent expression of the antiangiogenic sFlt-1 is also presumed to migrate into the blood circulation, thereby accounting for an overall antiangiogenic environment in preventing the potential pulmonary metastasis. Hence, our elaborated multifaceted PMs inspired fascinating potential as an intriguing gene delivery system for the treatment of clinical solid tumors and metastasis.
Collapse
Affiliation(s)
- Tangna Hao
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Bingning Zhang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Wenjing Li
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Xianxian Yang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Sha Wu
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Yujie Yuan
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Hongxia Cui
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Qixian Chen
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
| | - Zhen Li
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China
| |
Collapse
|
2
|
Anderson CF, Singh A, Stephens T, Hoang CD, Schneider JP. Kinetically Controlled Polyelectrolyte Complex Assembly of microRNA-Peptide Nanoparticles toward Treating Mesothelioma. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314367. [PMID: 38532642 PMCID: PMC11176031 DOI: 10.1002/adma.202314367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/08/2024] [Indexed: 03/28/2024]
Abstract
Broad size distributions and poor long-term colloidal stability of microRNA-carrying nanoparticles, especially those formed by polyelectrolyte complexation, represent major hurdles in realizing their clinical translation. Herein, peptide design is used alongside optimized flash nanocomplexation (FNC) to produce uniform peptide-based miRNA particles of exceptional stability that display anticancer activity against mesothelioma in vitro and in vivo. Modulating the content and display of lysine-based charge from small intrinsically disordered peptides used to complex miRNA proves essential in achieving stable colloids. FNC facilitates kinetic isolation of the mechanistic steps involved in particle formation to allow the preparation of particles of discrete size in a highly reproducible, scalable, and continuous manner, facilitating pre-clinical studies. To the best of the authors knowledge, this work represents the first example of employing FNC to prepare polyelectrolyte complexes of miRNA and peptide. Encapsulation of these particles into an injectable hydrogel matrix allows for their localized in vivo delivery by syringe. A one-time injection of a gel containing particles composed of miRNA-215-5p and the peptide PKM1 limits tumor progression in a xenograft model of mesothelioma.
Collapse
Affiliation(s)
- Caleb F. Anderson
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD 21701, USA
| | - Anand Singh
- Thoracic Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tyler Stephens
- Vaccine Research Center Electron Microscopy Unit, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 20701, USA
| | - Chuong D. Hoang
- Thoracic Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joel P. Schneider
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD 21701, USA
| |
Collapse
|
3
|
Yang W, Mixich L, Boonstra E, Cabral H. Polymer-Based mRNA Delivery Strategies for Advanced Therapies. Adv Healthc Mater 2023; 12:e2202688. [PMID: 36785927 PMCID: PMC11469255 DOI: 10.1002/adhm.202202688] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/31/2023] [Indexed: 02/15/2023]
Abstract
Messenger RNA (mRNA)-based therapies offer great promise for the treatment of a variety of diseases. In 2020, two FDA approvals of mRNA-based vaccines have elevated mRNA vaccines to global recognition. However, the therapeutic capabilities of mRNA extend far beyond vaccines against infectious diseases. They hold potential for cancer vaccines, protein replacement therapies, gene editing therapies, and immunotherapies. For realizing such advanced therapies, it is crucial to develop effective carrier systems. Recent advances in materials science have led to the development of promising nonviral mRNA delivery systems. In comparison to other carriers like lipid nanoparticles, polymer-based delivery systems often receive less attention, despite their unique ability to carefully tune their chemical features to promote mRNA protection, their favorable pharmacokinetics, and their potential for targeting delivery. In this review, the central features of polymer-based systems for mRNA delivery highlighting the molecular design criteria, stability, and biodistribution are discussed. Finally, the role of targeting ligands for the future of RNA therapies is analyzed.
Collapse
Affiliation(s)
- Wenqian Yang
- Department of BioengineeringGraduate School of EngineeringThe University of Tokyo7‐3‐1 Hongo, Bunkyo‐kuTokyo113‐8656Japan
| | - Lucas Mixich
- Department of BioengineeringGraduate School of EngineeringThe University of Tokyo7‐3‐1 Hongo, Bunkyo‐kuTokyo113‐8656Japan
| | - Eger Boonstra
- Department of BioengineeringGraduate School of EngineeringThe University of Tokyo7‐3‐1 Hongo, Bunkyo‐kuTokyo113‐8656Japan
| | - Horacio Cabral
- Department of BioengineeringGraduate School of EngineeringThe University of Tokyo7‐3‐1 Hongo, Bunkyo‐kuTokyo113‐8656Japan
| |
Collapse
|
4
|
Soto A, Nieto-Díaz M, Martínez-Campos E, Noalles-Dols A, Barreda-Manso MA, Reviriego F, Reinecke H, Reigada D, Muñoz-Galdeano T, Novillo I, Gallardo A, Rodríguez-Hernández J, Eritja R, Aviñó A, Elvira C, M Maza R. Evaluation of Poly( N-Ethyl Pyrrolidine Methacrylamide) (EPA) and Derivatives as Polymeric Vehicles for miRNA Delivery to Neural Cells. Pharmaceutics 2023; 15:pharmaceutics15051451. [PMID: 37242702 DOI: 10.3390/pharmaceutics15051451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/26/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
MicroRNAs (miRNAs) are endogenous, short RNA oligonucleotides that regulate the expression of hundreds of proteins to control cells' function in physiological and pathological conditions. miRNA therapeutics are highly specific, reducing the toxicity associated with off-target effects, and require low doses to achieve therapeutic effects. Despite their potential, applying miRNA-based therapies is limited by difficulties in delivery due to their poor stability, fast clearance, poor efficiency, and off-target effects. To overcome these challenges, polymeric vehicles have attracted a lot of attention due to their ease of production with low costs, large payload, safety profiles, and minimal induction of the immune response. Poly(N-ethyl pyrrolidine methacrylamide) (EPA) copolymers have shown optimal DNA transfection efficiencies in fibroblasts. The present study aims to evaluate the potential of EPA polymers as miRNA carriers for neural cell lines and primary neuron cultures when they are copolymerized with different compounds. To achieve this aim, we synthesized and characterized different copolymers and evaluated their miRNA condensation ability, size, charge, cytotoxicity, cell binding and internalization ability, and endosomal escape capacity. Finally, we evaluated their miRNA transfection capability and efficacy in Neuro-2a cells and rat primary hippocampal neurons. The results indicate that EPA and its copolymers, incorporating β-cyclodextrins with or without polyethylene glycol acrylate derivatives, can be promising vehicles for miRNA administration to neural cells when all experiments on Neuro-2a cells and primary hippocampal neurons are considered together.
Collapse
Affiliation(s)
- Altea Soto
- Molecular Neuroprotection Group, Hospital Nacional de Parapléjicos (SESCAM), 45071 Toledo, Spain
| | - Manuel Nieto-Díaz
- Molecular Neuroprotection Group, Hospital Nacional de Parapléjicos (SESCAM), 45071 Toledo, Spain
| | - Enrique Martínez-Campos
- Polymer Functionalization Group, Instituto de Ciencia y Tecnología de Polímeros-Consejo Superior de Investigaciones Científicas (ICTP-CSIC), Departamento de Química Macromolecular Aplicada, Juan de la Cierva 3, 28006 Madrid, Spain
- Group of Organic Synthesis and Bioevaluation, Associated Unit to the ICTP-IQM-CSIC, Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII, n◦ 1, 28040 Madrid, Spain
| | - Ana Noalles-Dols
- Molecular Neuroprotection Group, Hospital Nacional de Parapléjicos (SESCAM), 45071 Toledo, Spain
| | - María Asunción Barreda-Manso
- Functional Exploration and Neuromodulation of the Central Nervous System Group, Hospital Nacional de Parapléjicos (SESCAM), 45071 Toledo, Spain
| | - Felipe Reviriego
- Polymer Functionalization Group, Instituto de Ciencia y Tecnología de Polímeros-Consejo Superior de Investigaciones Científicas (ICTP-CSIC), Departamento de Química Macromolecular Aplicada, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Helmut Reinecke
- Polymer Functionalization Group, Instituto de Ciencia y Tecnología de Polímeros-Consejo Superior de Investigaciones Científicas (ICTP-CSIC), Departamento de Química Macromolecular Aplicada, Juan de la Cierva 3, 28006 Madrid, Spain
| | - David Reigada
- Molecular Neuroprotection Group, Hospital Nacional de Parapléjicos (SESCAM), 45071 Toledo, Spain
| | - Teresa Muñoz-Galdeano
- Molecular Neuroprotection Group, Hospital Nacional de Parapléjicos (SESCAM), 45071 Toledo, Spain
| | - Irene Novillo
- Molecular Neuroprotection Group, Hospital Nacional de Parapléjicos (SESCAM), 45071 Toledo, Spain
| | - Alberto Gallardo
- Polymer Functionalization Group, Instituto de Ciencia y Tecnología de Polímeros-Consejo Superior de Investigaciones Científicas (ICTP-CSIC), Departamento de Química Macromolecular Aplicada, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Juan Rodríguez-Hernández
- Polymer Functionalization Group, Instituto de Ciencia y Tecnología de Polímeros-Consejo Superior de Investigaciones Científicas (ICTP-CSIC), Departamento de Química Macromolecular Aplicada, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Ramón Eritja
- Department of Surfactants and Nanobiotechnology, Institute for Advanced Chemistry of Catalonia (IQAC), Spanish National Research Council (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 08034 Barcelona, Spain
| | - Anna Aviñó
- Department of Surfactants and Nanobiotechnology, Institute for Advanced Chemistry of Catalonia (IQAC), Spanish National Research Council (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 08034 Barcelona, Spain
| | - Carlos Elvira
- Polymer Functionalization Group, Instituto de Ciencia y Tecnología de Polímeros-Consejo Superior de Investigaciones Científicas (ICTP-CSIC), Departamento de Química Macromolecular Aplicada, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Rodrigo M Maza
- Molecular Neuroprotection Group, Hospital Nacional de Parapléjicos (SESCAM), 45071 Toledo, Spain
| |
Collapse
|
5
|
Foo W, Cseresnyés Z, Rössel C, Teng Y, Ramoji A, Chi M, Hauswald W, Huschke S, Hoeppener S, Popp J, Schacher FH, Sierka M, Figge MT, Press AT, Bauer M. Tuning the corona-core ratio of polyplex micelles for selective oligonucleotide delivery to hepatocytes or hepatic immune cells. Biomaterials 2023; 294:122016. [PMID: 36702000 DOI: 10.1016/j.biomaterials.2023.122016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/06/2023] [Accepted: 01/14/2023] [Indexed: 01/22/2023]
Abstract
Targeted delivery of oligonucleotides or small molecular drugs to hepatocytes, the liver's parenchymal cells, is challenging without targeting moiety due to the highly efficient mononuclear phagocyte system (MPS) of the liver. The MPS comprises Kupffer cells and specialized sinusoidal endothelial cells, efficiently clearing nanocarriers regardless of their size and surface properties. Physiologically, this non-parenchymal shield protects hepatocytes; however, these local barriers must be overcome for drug delivery. Nanocarrier structural properties strongly influence tissue penetration, in vivo pharmacokinetics, and biodistribution profile. Here we demonstrate the in vivo biodistribution of polyplex micelles formed by polyion complexation of short interfering (si)RNA with modified poly(ethylene glycol)-block-poly(allyl glycidyl ether) (PEG-b-PAGE) diblock copolymer that carries amino moieties in the side chain. The ratio between PEG corona and siRNA complexed PAGE core of polyplex micelles was chemically varied by altering the degree of polymerization of PAGE. Applying Raman-spectroscopy and dynamic in silico modeling on the polyplex micelles, we determined the corona-core ratio (CCR) and visualized the possible micellar structure with varying CCR. The results for this model system reveal that polyplex micelles with higher CCR, i.e., better PEG coverage, exclusively accumulate and thus allow passive cell-type-specific targeting towards hepatocytes, overcoming the macrophage-rich reticuloendothelial barrier of the liver.
Collapse
Affiliation(s)
- WanLing Foo
- Jena University Hospital, Department of Anesthesiology and Intensive Care Medicine, Am Klinikum 1, 07747, Jena, Germany
| | - Zoltán Cseresnyés
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Research Group Applied Systems Biology, Beutenbergstraße 13, 07745, Jena, Germany
| | - Carsten Rössel
- Friedrich-Schiller-University, Jena Center for Soft Matter, Philosophenweg 7, 07743, Jena, Germany; Friedrich-Schiller-University, Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Humboldtstraße 10, 07743, Jena, Germany
| | - Yingfeng Teng
- Friedrich-Schiller-University, Computational Materials Science Group, Otto Schott Institute of Materials Research, Faculty of Physics and Astronomy, Löbdergraben 32, 07743, Jena, Germany
| | - Anuradha Ramoji
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany; Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich-Schiller-University, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743, Jena, Germany; Jena University Hospital, Center for Sepsis Control and Care, Friedrich-Schiller-University, Am Klinikum 1, 07747, Jena, Germany
| | - Mingzhe Chi
- Friedrich-Schiller-University, Computational Materials Science Group, Otto Schott Institute of Materials Research, Faculty of Physics and Astronomy, Löbdergraben 32, 07743, Jena, Germany
| | - Walter Hauswald
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Sophie Huschke
- Jena University Hospital, Department of Anesthesiology and Intensive Care Medicine, Am Klinikum 1, 07747, Jena, Germany
| | - Stephanie Hoeppener
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Research Group Applied Systems Biology, Beutenbergstraße 13, 07745, Jena, Germany; Friedrich-Schiller-University, Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Humboldtstraße 10, 07743, Jena, Germany
| | - Jürgen Popp
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany; Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich-Schiller-University, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743, Jena, Germany; Jena University Hospital, Center for Sepsis Control and Care, Friedrich-Schiller-University, Am Klinikum 1, 07747, Jena, Germany
| | - Felix H Schacher
- Friedrich-Schiller-University, Jena Center for Soft Matter, Philosophenweg 7, 07743, Jena, Germany; Friedrich-Schiller-University, Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Humboldtstraße 10, 07743, Jena, Germany
| | - Marek Sierka
- Friedrich-Schiller-University, Jena Center for Soft Matter, Philosophenweg 7, 07743, Jena, Germany; Friedrich-Schiller-University, Computational Materials Science Group, Otto Schott Institute of Materials Research, Faculty of Physics and Astronomy, Löbdergraben 32, 07743, Jena, Germany
| | - Marc Thilo Figge
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Research Group Applied Systems Biology, Beutenbergstraße 13, 07745, Jena, Germany; Institute of Microbiology, Faculty of Biological Sciences, Friedrich-Schiller-University Jena, 07743, Jena, Germany; Friedrich-Schiller-University, Jena Center for Soft Matter, Philosophenweg 7, 07743, Jena, Germany
| | - Adrian T Press
- Jena University Hospital, Department of Anesthesiology and Intensive Care Medicine, Am Klinikum 1, 07747, Jena, Germany; Friedrich-Schiller-University, Jena Center for Soft Matter, Philosophenweg 7, 07743, Jena, Germany; Jena University Hospital, Center for Sepsis Control and Care, Friedrich-Schiller-University, Am Klinikum 1, 07747, Jena, Germany; Friedrich-Schiller-University, Faculty of Medicine, Kastanienstraße. 1, 07747, Jena, Germany.
| | - Michael Bauer
- Jena University Hospital, Department of Anesthesiology and Intensive Care Medicine, Am Klinikum 1, 07747, Jena, Germany; Friedrich-Schiller-University, Jena Center for Soft Matter, Philosophenweg 7, 07743, Jena, Germany; Jena University Hospital, Center for Sepsis Control and Care, Friedrich-Schiller-University, Am Klinikum 1, 07747, Jena, Germany.
| |
Collapse
|
6
|
Su DD, Gervais V, Ulrich S, Barboiu M. Complexation Preferences of Dynamic Constitutional Frameworks as Adaptive Gene Vectors. Chemistry 2023; 29:e202203062. [PMID: 36345945 PMCID: PMC10108089 DOI: 10.1002/chem.202203062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/10/2022]
Abstract
The growing applications of therapeutic nucleic acids requires the concomitant development of vectors that are optimized to complex one type of nucleic acid, forming nanoparticles suitable for further trafficking and delivery. While fine-tuning a vector by molecular engineering to obtain a particular nanoscale organization at the nanoparticle level can be a challenging endeavor, we turned the situation around and instead screened the complexation preferences of dynamic constitutional frameworks toward different types of DNAs. Dynamic constitutional frameworks (DCF) are recently-identified vectors by our group that can be prepared in a versatile manner through dynamic covalent chemistry. Herein, we designed and synthesized 40 new DCFs that vary in hydrophilic/hydrophobic balance, number of cationic headgroups. The results of DNA complexation obtained through gel electrophoresis and fluorescent displacement assays reveal binding preferences of different DCFs toward different DNAs. The formation of compact spherical architectures with an optimal diameter of 100-200 nm suggests that condensation into nanoparticles is more effective for longer PEG chains and PEI groups that induce a better binding performance in the presence of DNA targets.
Collapse
Affiliation(s)
- Dan-Dan Su
- Institut Européen des Membranes, Adaptive Supramolecular Nanosystems Group, University of Montpellier, ENSCM-CNRS, Place E. Bataillon CC047, Montpellier, 34095, France.,Institut des Biomolécules Max Mousseron (IBMM), Université de Montpellier, CNRS, ENSCM, 34095, Montpellier, France
| | - Virginie Gervais
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Sébastien Ulrich
- Institut des Biomolécules Max Mousseron (IBMM), Université de Montpellier, CNRS, ENSCM, 34095, Montpellier, France
| | - Mihail Barboiu
- Institut Européen des Membranes, Adaptive Supramolecular Nanosystems Group, University of Montpellier, ENSCM-CNRS, Place E. Bataillon CC047, Montpellier, 34095, France
| |
Collapse
|
7
|
Grimme CJ, Hanson MG, Corcoran LG, Reineke TM. Polycation Architecture Affects Complexation and Delivery of Short Antisense Oligonucleotides: Micelleplexes Outperform Polyplexes. Biomacromolecules 2022; 23:3257-3271. [PMID: 35862267 DOI: 10.1021/acs.biomac.2c00338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, we examine the complexation and biological delivery of a short single-stranded antisense oligonucleotide (ASO) payload with four polymer derivatives that form two architectural variants (polyplexes and micelleplexes): a homopolymer poly(2-dimethylaminoethyl methacrylate) (D), a diblock polymer poly(ethylene glycol)methylether methacrylate-block-poly(2-dimethylaminoethyl methacrylate) (ObD), and two micelle-forming variants, poly(2-dimethylaminoethyl methacrylate)-block-poly(n-butyl methacrylate) (DB) and poly(ethylene glycol)methylether methacrylate-block-poly(2-dimethylaminoethyl methacrylate)-block-poly(n-butyl methacrylate) (ObDB). Both polyplexes and micelleplexes complexed ASOs, and the incorporation of an Ob brush enhances colloidal stability. Micellplexes are templated by the size and shape of the unloaded micelle and that micelle-ASO complexation is not sensitive to formulation/mixing order, allowing ease, versatility, and reproducibility in packaging short oligonucleotides. The DB micelleplexes promoted the largest gene silencing, internalization, and tolerable toxicity while the ObDB micelleplexes displayed enhanced colloidal stability and highly efficient payload trafficking despite having lower cellular uptake. Overall, this work demonstrates that cationic micelles are superior delivery vehicles for ASOs denoting the importance of vehicle architecture in biological performance.
Collapse
Affiliation(s)
- Christian J Grimme
- Department of Chemical Engineering & Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| | - Mckenna G Hanson
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Louis G Corcoran
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Theresa M Reineke
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
8
|
|
9
|
Synthetic anti-angiogenic genomic therapeutics for treatment of neovascular age-related macular degeneration. Asian J Pharm Sci 2021; 16:623-632. [PMID: 34849167 PMCID: PMC8609386 DOI: 10.1016/j.ajps.2021.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 11/22/2022] Open
Abstract
In light of the intriguing potential of anti-angiogenic approach in suppressing choroidal neovascularization, we attempted to elaborate synthetic gene delivery systems encapsulating anti-angiogenic plasmid DNA as alternatives of clinical antibody-based therapeutics. Herein, block copolymer of cyclic Arg-Gly-Asp-poly(ethylene glycol)-poly(lysine-thiol) [RGD-PEG-PLys(thiol)] with multifunctional components was tailored in manufacture of core-shell DNA delivery nanoparticulates. Note that the polycationic PLys segments were electrostatically complexed with anionic plasmid DNA into nanoscaled core, and the tethered biocompatible PEG segments presented as the spatial shell (minimizing non-specific reactions in biological milieu). Furthermore, the aforementioned self-assembly was introduced with redox-responsive disulfide crosslinking due to the thiol coupling. Hence, reversible stabilities, namely stable in extracellular milieu but susceptible to disassemble for liberation of the DNA payloads in intracellular reducing microenvironment, were verified to facilitate transcellular gene transportation. In addition, RGD was installed onto the surface of the proposed self-assemblies with aim of targeted accumulation and internalization into angiogenic endothelial cells given that RGD receptors were specifically overexpressed on their cytomembrane surface. The proposed anti-angiogenic DNA therapeutics were validated to exert efficient expression of anti-angiogenic proteins in endothelial cells and elicit potent inhibition of ocular neovasculature post intravitreous administration. Hence, the present study approved the potential of gene therapy in treatment of choroidal neovascularization. In light of sustainable gene expression properties of DNA therapeutics, our proposed synthetic gene delivery system inspired prosperous potentials in long-term treatment of choroidal neovascularization, which should be emphasized to develop further towards clinical translations.
Collapse
|
10
|
Cokca C, Hack FJ, Costabel D, Herwig K, Hülsmann J, Then P, Heintzmann R, Fischer D, Peneva K. PEGylation of Guanidinium and Indole Bearing Poly(methacrylamide)s - Biocompatible Terpolymers for pDNA Delivery. Macromol Biosci 2021; 21:e2100146. [PMID: 34310046 DOI: 10.1002/mabi.202100146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/28/2021] [Indexed: 01/07/2023]
Abstract
This study describes the first example for shielding of a high performing terpolymer that consists of N-(2-hydroxypropyl)methacrylamide (HPMA), N-(3-guanidinopropyl)methacrylamide (GPMA), and N-(2-indolethyl)methacrylamide monomers (IEMA) by block copolymerization of a polyethylene glycol derivative - poly(nona(ethylene glycol)methyl ether methacrylate) (P(MEO9 MA)) via reversible addition-fragmentation chain transfer (RAFT) polymerization. The molecular weight of P(MEO9 MA) is varied from 3 to 40 kg mol-1 while the comonomer content of HPMA, GPMA, and IEMA is kept comparable. The influence of P(MEO9 MA) block with various molecular weights is investigated over cytotoxicity, plasmid DNA (pDNA) binding, and transfection efficiency of the resulting polyplexes. Overall, the increase in molecular weight of P(MEO9 MA) block demonstrates excellent biocompatibility with higher cell viability in L-929 cells and an efficient binding to pDNA at N/P ratio of 2. The significant transfection efficiency in CHO-K1 cells at N/P ratio 20 is obtained for block copolymers with molecular weight of P(MEO9 MA) up to 10 kg mol-1 . Moreover, a fluorescently labeled analogue of P(MEO9 MA), bearing perylene monoimide methacrylamide (PMIM), is introduced as a comonomer in RAFT polymerization. Polyplexes consisting of labeled block copolymer with 20 kg mol-1 of P(MEO9 MA) and pDNA are incubated in Hela cells and investigated through structured illumination microscopy (SIM).
Collapse
Affiliation(s)
- Ceren Cokca
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Lessingstrasse 8, Jena, 07743, Germany
| | - Franz J Hack
- Pharmaceutical Technology and Biopharmacy, Institute of Pharmacy, Friedrich Schiller University Jena, Lessingstrasse 8, Jena, 07743, Germany
| | - Daniel Costabel
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Lessingstrasse 8, Jena, 07743, Germany
| | - Kira Herwig
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Lessingstrasse 8, Jena, 07743, Germany
| | - Juliana Hülsmann
- Pharmaceutical Technology and Biopharmacy, Institute of Pharmacy, Friedrich Schiller University Jena, Lessingstrasse 8, Jena, 07743, Germany
| | - Patrick Then
- Leibniz Institute of Photonic Technology, Albert Einstein Str. 9, Jena, 07745, Germany
| | - Rainer Heintzmann
- Leibniz Institute of Photonic Technology, Albert Einstein Str. 9, Jena, 07745, Germany.,Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, Jena, 07743, Germany
| | - Dagmar Fischer
- Department of Chemistry and Pharmacy, Pharmaceutical Technology, Friedrich-Alexander-University Erlangen-Nürnberg, Cauerstrasse 4, Erlangen, 91058, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, Jena, 07743, Germany
| | - Kalina Peneva
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Lessingstrasse 8, Jena, 07743, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, Jena, 07743, Germany
| |
Collapse
|
11
|
Marras AE, Ting JM, Stevens KC, Tirrell MV. Advances in the Structural Design of Polyelectrolyte Complex Micelles. J Phys Chem B 2021; 125:7076-7089. [PMID: 34160221 PMCID: PMC9282648 DOI: 10.1021/acs.jpcb.1c01258] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Polyelectrolyte complex micelles (PCMs) are a unique class of self-assembled nanoparticles that form with a core of associated polycations and polyanions, microphase-separated from neutral, hydrophilic coronas in aqueous solution. The hydrated nature and structural and chemical versatility make PCMs an attractive system for delivery and for fundamental polymer physics research. By leveraging block copolymer design with controlled self-assembly, fundamental structure-property relationships can be established to tune the size, morphology, and stability of PCMs precisely in pursuit of tailored nanocarriers, ultimately offering storage, protection, transport, and delivery of active ingredients. This perspective highlights recent advances in predictive PCM design, focusing on (i) structure-property relationships to target specific nanoscale dimensions and shapes and (ii) characterization of PCM dynamics primarily using time-resolved scattering techniques. We present several vignettes from these two emerging areas of PCM research and discuss key opportunities for PCM design to advance precision medicine.
Collapse
Affiliation(s)
- Alexander E Marras
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| | - Jeffrey M Ting
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| | - Kaden C Stevens
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| | - Matthew V Tirrell
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
12
|
Lopukhov AV, Yang Z, Haney MJ, Bronich TK, Sokolsky-Papkov M, Batrakova EV, Klyachko NL, Kabanov AV. Mannosylated Cationic Copolymers for Gene Delivery to Macrophages. Macromol Biosci 2021; 21:e2000371. [PMID: 33615675 PMCID: PMC8126558 DOI: 10.1002/mabi.202000371] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/27/2021] [Indexed: 12/17/2022]
Abstract
Macrophages are desirable targets for gene therapy of cancer and other diseases. Cationic diblock copolymers of polyethylene glycol (PEG) and poly-L-lysine (PLL) or poly{N-[N-(2-aminoethyl)-2-aminoethyl]aspartamide} (pAsp(DET)) are synthesized and used to form polyplexes with a plasmid DNA (pDNA) that are decorated with mannose moieties, serving as the targeting ligands for the C type lectin receptors displayed at the surface of macrophages. The PEG-b-PLL copolymers are known for its cytotoxicity, so PEG-b-PLL-based polyplexes are cross-linked using reducible reagent dithiobis(succinimidyl propionate) (DSP). The cross-linked polyplexes display low toxicity to both mouse embryonic fibroblasts NIH/3T3 cell line and mouse bone marrow-derived macrophages (BMMΦ). In macrophages mannose-decorated polyplexes demonstrate an ≈8 times higher transfection efficiency. The cross-linking of the polyplexes decrease the toxicity, but the transfection enhancement is moderate. The PEG-b-pAsp(DET) copolymers display low toxicity with respect to the IC-21 murine macrophage cell line and are used for the production of non-cross-linked pDNA-contained polyplexes. The obtained mannose modified polyplexes exhibit ca. 500-times greater transfection activity in IC-21 macrophages compared to the mannose-free polyplexes. This result greatly exceeds the targeting gene transfer effects previously described using mannose receptor targeted non-viral gene delivery systems. These results suggest that Man-PEG-b-pAsp(DET)/pDNA polyplex is a potential vector for immune cells-based gene therapy.
Collapse
Affiliation(s)
- Anton V Lopukhov
- Laboratory for Chemical Design of Bionanomaterials, Faculty of Chemistry, M. V. Lomonosov Moscow State University, 1 Leninskie Gory, Moscow, 117234, Russia
| | - Zigang Yang
- Department of Pharmaceutical Sciences and Center for Drug Delivery and Nanomedicine, College of Pharmacy, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Matthew J Haney
- Division of Pharmacoengineering and Molecular Pharmaceutics, Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina, 125 Mason Farm Road, Chapel Hill, NC, 27599, USA
| | - Tatiana K Bronich
- Department of Pharmaceutical Sciences and Center for Drug Delivery and Nanomedicine, College of Pharmacy, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Marina Sokolsky-Papkov
- Division of Pharmacoengineering and Molecular Pharmaceutics, Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina, 125 Mason Farm Road, Chapel Hill, NC, 27599, USA
| | - Elena V Batrakova
- Division of Pharmacoengineering and Molecular Pharmaceutics, Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina, 125 Mason Farm Road, Chapel Hill, NC, 27599, USA
| | - Natalia L Klyachko
- Laboratory for Chemical Design of Bionanomaterials, Faculty of Chemistry, M. V. Lomonosov Moscow State University, 1 Leninskie Gory, Moscow, 117234, Russia
- Division of Pharmacoengineering and Molecular Pharmaceutics, Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina, 125 Mason Farm Road, Chapel Hill, NC, 27599, USA
| | - Alexander V Kabanov
- Laboratory for Chemical Design of Bionanomaterials, Faculty of Chemistry, M. V. Lomonosov Moscow State University, 1 Leninskie Gory, Moscow, 117234, Russia
- Division of Pharmacoengineering and Molecular Pharmaceutics, Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina, 125 Mason Farm Road, Chapel Hill, NC, 27599, USA
| |
Collapse
|
13
|
Späth F, Donau C, Bergmann AM, Kränzlein M, Synatschke CV, Rieger B, Boekhoven J. Molecular Design of Chemically Fueled Peptide-Polyelectrolyte Coacervate-Based Assemblies. J Am Chem Soc 2021; 143:4782-4789. [PMID: 33750125 DOI: 10.1021/jacs.1c01148] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Complex coacervated-based assemblies form when two oppositely charged polyelectrolytes combine to phase separate into a supramolecular architecture. These architectures range from complex coacervate droplets, spherical and worm-like micelles, to vesicles. These assemblies are widely applied, for example, in the food industry, and as underwater or medical adhesives, but they can also serve as a great model for biological assemblies. Indeed, biology relies on complex coacervation to form so-called membraneless organelles, dynamic and transient droplets formed by the coacervation of nucleic acids and proteins. To regulate their function, membraneless organelles are dynamically maintained by chemical reaction cycles, including phosphorylation and dephosphorylation, but exact mechanisms remain elusive. Recently, some model systems also regulated by chemical reaction cycles have been introduced, but how to design such systems and how molecular design affects their properties is unclear. In this work, we test a series of cationic peptides for their chemically fueled coacervation, and we test how their design can affect the dynamics of assembly and disassembly of the emerging structures. We combine them with both homo- and block copolymers and study the morphologies of the assemblies, including morphological transitions that are driven by the chemical reaction cycle. We deduce heuristic design rules that can be applied to other chemically regulated systems. These rules will help develop membraneless organelle model systems and lead to exciting new applications of complex coacervate-based examples like temporary adhesives.
Collapse
Affiliation(s)
- Fabian Späth
- Department of Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Carsten Donau
- Department of Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Alexander M Bergmann
- Department of Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Moritz Kränzlein
- WACKER-Chair of Macromolecular Chemistry, Catalysis Research Center, Technical University of Munich, 85748 Garching, Germany
| | | | - Bernhard Rieger
- WACKER-Chair of Macromolecular Chemistry, Catalysis Research Center, Technical University of Munich, 85748 Garching, Germany
| | - Job Boekhoven
- Department of Chemistry, Technical University of Munich, 85748 Garching, Germany.,Institute for Advanced Study, Technical University of Munich, 85748 Garching, Germany
| |
Collapse
|
14
|
Berger S, Krhač Levačić A, Hörterer E, Wilk U, Benli-Hoppe T, Wang Y, Öztürk Ö, Luo J, Wagner E. Optimizing pDNA Lipo-polyplexes: A Balancing Act between Stability and Cargo Release. Biomacromolecules 2021; 22:1282-1296. [PMID: 33616407 DOI: 10.1021/acs.biomac.0c01779] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
When optimizing nanocarriers, structural motifs that are beneficial for the respective type of cargo need to be identified. Here, succinoyl tetraethylene pentamine (Stp)-based lipo-oligoaminoamides (OAAs) were optimized for the delivery of plasmid DNA (pDNA). Structural variations comprised saturated fatty acids with chain lengths between C2 and C18 and terminal cysteines as units promoting nanoparticle stabilization, histidines for endosomal buffering, and disulfide building blocks for redox-sensitive release. Biophysical and tumor cell culture screening established clear-cut relationships between lipo-OAAs and characteristics of the formed pDNA complexes. Based on the optimized alternating Stp-histidine backbones, lipo-OAAs containing fatty acids with chain lengths around C6 to C10 displayed maximum gene transfer with around 500-fold higher gene expression than that of C18 lipo-OAA analogues. Promising lipo-OAAs, however, showed only moderate in vivo efficiency. In vitro testing in 90% full serum, revealing considerable inhibition of lytic and gene-transfer activity, was found as a new screening model predictive for intravenous applications in vivo.
Collapse
Affiliation(s)
- Simone Berger
- Pharmaceutical Biotechnology, Center for Nanoscience, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, Munich 81377, Germany
| | - Ana Krhač Levačić
- Pharmaceutical Biotechnology, Center for Nanoscience, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, Munich 81377, Germany
| | - Elisa Hörterer
- Pharmaceutical Biotechnology, Center for Nanoscience, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, Munich 81377, Germany
| | - Ulrich Wilk
- Pharmaceutical Biotechnology, Center for Nanoscience, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, Munich 81377, Germany
| | - Teoman Benli-Hoppe
- Pharmaceutical Biotechnology, Center for Nanoscience, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, Munich 81377, Germany
| | - Yanfang Wang
- Pharmaceutical Biotechnology, Center for Nanoscience, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, Munich 81377, Germany
| | - Özgür Öztürk
- Pharmaceutical Biotechnology, Center for Nanoscience, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, Munich 81377, Germany
| | - Jie Luo
- Pharmaceutical Biotechnology, Center for Nanoscience, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, Munich 81377, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for Nanoscience, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, Munich 81377, Germany
| |
Collapse
|
15
|
van den Berg AIS, Yun CO, Schiffelers RM, Hennink WE. Polymeric delivery systems for nucleic acid therapeutics: Approaching the clinic. J Control Release 2021; 331:121-141. [PMID: 33453339 DOI: 10.1016/j.jconrel.2021.01.014] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/26/2020] [Accepted: 01/08/2021] [Indexed: 12/20/2022]
Abstract
Gene therapy using nucleic acids has many clinical applications for the treatment of diseases with a genetic origin as well as for the development of innovative vaccine formulations. Since nucleic acids in their free form are rapidly degraded by nucleases present in extracellular matrices, have poor pharmacokinetics and hardly pass cellular membranes, carrier systems are required. Suitable carriers that protect the nucleic acid payload against enzymatic attack, prolong circulation time after systemic administration and assist in cellular binding and internalization are needed to develop nucleic acid based drug products. Viral vectors have been investigated and are also clinically used as delivery vehicles. However, some major drawbacks are associated with their use. Therefore there has been substantial attention on the use of non-viral carrier systems based on cationic lipids and polymers. This review focuses on the properties of polymer-based nucleic acid formulations, also referred as polyplexes. Different polymeric systems are summarized, and the cellular barriers polyplexes encounter and ways to tackle these are discussed. Finally attention is given to the clinical status of non-viral nucleic acid formulations.
Collapse
Affiliation(s)
- Annette I S van den Berg
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Heidelberglaan 100, 3584, CX, Utrecht, the Netherlands
| | - Chae-Ok Yun
- Institute of Nano Science and Technology, Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Raymond M Schiffelers
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Heidelberglaan 100, 3584, CX, Utrecht, the Netherlands
| | - Wim E Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584, CG, Utrecht, the Netherlands.
| |
Collapse
|
16
|
Freitag F, Wagner E. Optimizing synthetic nucleic acid and protein nanocarriers: The chemical evolution approach. Adv Drug Deliv Rev 2021; 168:30-54. [PMID: 32246984 DOI: 10.1016/j.addr.2020.03.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/10/2020] [Accepted: 03/30/2020] [Indexed: 12/20/2022]
Abstract
Optimizing synthetic nanocarriers is like searching for a needle in a haystack. How to find the most suitable carrier for intracellular delivery of a specified macromolecular nanoagent for a given disease target location? Here, we review different synthetic 'chemical evolution' strategies that have been pursued. Libraries of nanocarriers have been generated either by unbiased combinatorial chemistry or by variation and novel combination of known functional delivery elements. As in natural evolution, definition of nanocarriers as sequences, as barcode or design principle, may fuel chemical evolution. Screening in appropriate test system may not only provide delivery candidates, but also a refined understanding of cellular delivery including novel, unpredictable mechanisms. Combined with rational design and computational algorithms, candidates can be further optimized in subsequent evolution cycles into nanocarriers with improved safety and efficacy. Optimization of nanocarriers differs for various cargos, as illustrated for plasmid DNA, siRNA, mRNA, proteins, or genome-editing nucleases.
Collapse
|
17
|
Neva T, Carbajo-Gordillo AI, Benito JM, Lana H, Marcelo G, Ortiz Mellet C, Tros de Ilarduya C, Mendicuti F, García Fernández JM. Tuning the Topological Landscape of DNA-Cyclodextrin Nanocomplexes by Molecular Design. Chemistry 2020; 26:15259-15269. [PMID: 32710799 DOI: 10.1002/chem.202002951] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Indexed: 12/25/2022]
Abstract
Original molecular vectors that ensure broad flexibility to tune the shape and surface properties of plasmid DNA (pDNA) condensates are reported herein. The prototypic design involves a cyclodextrin (CD) platform bearing a polycationic cluster at the primary face and a doubly linked aromatic module bridging two consecutive monosaccharide units at the secondary face that behaves as a topology-encoding element. Subtle differences at the molecular level then translate into disparate morphologies at the nanoscale, including rods, worms, toroids, globules, ellipsoids, and spheroids. In vitro evaluation of the transfection capabilities revealed marked selectivity differences as a function of nanocomplex morphology. Remarkably high transfection efficiencies were associated with ellipsoidal or spherical shapes with a lamellar internal arrangement of pDNA chains and CD bilayers. Computational studies support that the stability of such supramolecular edifices is directly related to the tendency of the molecular vector to form noncovalent dimers upon DNA templating. Because the stability of the dimers depends on the protonation state of the polycationic clusters, the coaggregates display pH responsiveness, which facilitates endosomal escape and timely DNA release, a key step in successful transfection. The results provide a versatile strategy for the construction of fully synthetic and perfectly monodisperse nonviral gene delivery systems uniquely suited for optimization schemes.
Collapse
Affiliation(s)
- Tania Neva
- Institute for Chemical Research, IIQ, CSIC-Univ. Sevilla, C/ Américo Vespucio 49, 41092, Sevilla, Spain
| | - Ana I Carbajo-Gordillo
- Institute for Chemical Research, IIQ, CSIC-Univ. Sevilla, C/ Américo Vespucio 49, 41092, Sevilla, Spain
| | - Juan M Benito
- Institute for Chemical Research, IIQ, CSIC-Univ. Sevilla, C/ Américo Vespucio 49, 41092, Sevilla, Spain
| | - Hugo Lana
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, 31080, Pamplona, Spain
| | - Gema Marcelo
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Instituto de Investigación Química, "Andrés M. del Rio" (IQAR), University of Alcalá, Campus Universitario Ctra. Madrid-Barcelona, Km 33.600, 28871, Alcalá de Henares, Spain
| | - Carmen Ortiz Mellet
- Department of Organic Chemistry, Faculty of Chemistry, University of Sevilla, C/ Prof García González 1, 41012, Sevilla, Spain
| | - Conchita Tros de Ilarduya
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, 31080, Pamplona, Spain
| | - Francisco Mendicuti
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Instituto de Investigación Química, "Andrés M. del Rio" (IQAR), University of Alcalá, Campus Universitario Ctra. Madrid-Barcelona, Km 33.600, 28871, Alcalá de Henares, Spain
| | - José M García Fernández
- Institute for Chemical Research, IIQ, CSIC-Univ. Sevilla, C/ Américo Vespucio 49, 41092, Sevilla, Spain
| |
Collapse
|
18
|
Osada K. Structural Polymorphism of Single pDNA Condensates Elicited by Cationic Block Polyelectrolytes. Polymers (Basel) 2020; 12:polym12071603. [PMID: 32707655 PMCID: PMC7408586 DOI: 10.3390/polym12071603] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 12/17/2022] Open
Abstract
DNA folding is a core phenomenon in genome packaging within a nucleus. Such a phenomenon is induced by polyelectrolyte complexation between anionic DNA and cationic proteins of histones. In this regard, complexes formed between DNA and cationic polyelectrolytes have been investigated as models to gain insight into genome packaging. Upon complexation, DNA undergoes folding to reduce its occupied volume, which often results in multi-complex associated aggregates. However, when cationic copolymers comprising a polycation block and a neutral hydrophilic polymer block are used instead, DNA undergoes folding as a single molecule within a spontaneously formed polyplex micelle (PM), thereby allowing the observation of the higher-order structures that DNA forms. The DNA complex forms polymorphic structures, including globular, rod-shaped, and ring-shaped (toroidal) structures. This review focuses on the polymorphism of DNA, particularly, to elucidate when, how, and why DNA organizes into these structures with cationic copolymers. The interactions between DNA and the copolymers, and the specific nature of DNA in rigidity; i.e., rigid but foldable, play significant roles in the observed polymorphism. Moreover, PMs serve as potential gene vectors for systemic application. The significance of the controlled DNA folding for such an application is addressed briefly in the last part.
Collapse
Affiliation(s)
- Kensuke Osada
- Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology (QST), Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan
| |
Collapse
|
19
|
Kumar S, Sharma B. Leveraging Electrostatic Interactions for Drug Delivery to the Joint. Bioelectricity 2020; 2:82-100. [PMID: 32856016 DOI: 10.1089/bioe.2020.0014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Arthritis is a debilitating joint disease with a high economic burden and prevalence. There are many challenges delivering therapeutics to the joint, including low bioavailability when administered systemically and low joint retention after intra-articular injection. Therefore, drug delivery systems such as nanoparticles, liposomes, dendrimers, and carrier proteins have been utilized to overcome some of these limitations. To enhance joint tissue localization and retention, there are opportunities to leverage electrostatic interactions between drug carriers and various tissues and cells. These opportunities, as they pertain to specific joint tissues, are explored in this review. Further, the impact that electrostatic interactions has on various drug delivery parameters, such as the formation of a protein corona, the uptake and cytotoxicity, and the biodistribution of the drug delivery systems, is discussed. Lastly, this review summarizes key findings from studies that have investigated the use of electrostatic interactions to increase targeting of specific joint tissues and limitations in preclinical investigations are identified. As more novel targets are discovered in treating arthritis, there will be a continued need to localize therapeutics to specific tissues for greater therapeutic outcomes and hence attention must be paid in designing the drug delivery systems.
Collapse
Affiliation(s)
- Shreedevi Kumar
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - Blanka Sharma
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
20
|
Lou B, Connor K, Sweeney K, Miller IS, O'Farrell A, Ruiz-Hernandez E, Murray DM, Duffy GP, Wolfe A, Mastrobattista E, Byrne AT, Hennink WE. RGD-decorated cholesterol stabilized polyplexes for targeted siRNA delivery to glioblastoma cells. Drug Deliv Transl Res 2020; 9:679-693. [PMID: 30972664 DOI: 10.1007/s13346-019-00637-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The development of an effective and safe treatment for glioblastoma (GBM) represents a significant challenge in oncology today. Downregulation of key mediators of cell signal transduction by RNA interference is considered a promising treatment strategy but requires efficient, intracellular delivery of siRNA into GBM tumor cells. Here, we describe novel polymeric siRNA nanocarriers functionalized with cRGD peptide that mediates targeted and efficient reporter gene silencing in U87R invasive human GBM cells. The polymer was synthesized via RAFT copolymerization of N-(2-hydroxypropyl)-methacrylamide (HPMA) and N-acryloxysuccinimide (NAS), followed by post-polymerization modification with cholesterol for stabilization, cationic amines for siRNA complexation, and azides for copper-free click chemistry. The novel resultant cationic polymer harboring a terminal cholesterol group, self-assembled with siRNA to yield nanosized polyplexes (~ 40 nm) with good colloidal stability at physiological ionic strength. Post-modification of the preformed polyplexes with PEG-cRGD end-functionalized with bicyclo[6.1.0]nonyne (BCN) group resulted in enhanced cell uptake and increased luciferase gene silencing in U87R cells, compared to polyplexes lacking cRGD-targeting groups.
Collapse
Affiliation(s)
- Bo Lou
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Kate Connor
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, York Street, Dublin 2, Ireland
| | - Kieron Sweeney
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, York Street, Dublin 2, Ireland.,Department of Neurosurgery, Beaumont Hospital, Dublin, Ireland
| | - Ian S Miller
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, York Street, Dublin 2, Ireland
| | - Alice O'Farrell
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, York Street, Dublin 2, Ireland
| | | | - David M Murray
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, York Street, Dublin 2, Ireland
| | - Garry P Duffy
- Anatomy, School of Medicine, College of Medicine Nursing and Health Sciences, National University of Ireland, Galway, Ireland
| | - Alan Wolfe
- UCD School of Veterinary Medicine, Belfield, Dublin, Ireland
| | - Enrico Mastrobattista
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Annette T Byrne
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, York Street, Dublin 2, Ireland
| | - Wim E Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, The Netherlands.
| |
Collapse
|
21
|
Hu Y, He Z, Hao Y, Liu HW, Gong L, Howard G, Ahn HH, Brummet M, Ke X, Anderson C, Seo JH, Zhu J, Chen K, Pang Wan Rion M, Cui H, Ullman CG, Carrington CA, Pomper MG, Mittal R, Minn I, Mao HQ. Kinetic Control in Assembly of Plasmid DNA/Polycation Complex Nanoparticles. ACS NANO 2019; 13:10161-10178. [PMID: 31503450 PMCID: PMC7293580 DOI: 10.1021/acsnano.9b03334] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Polyelectrolyte complex (PEC) nanoparticles assembled from plasmid DNA (pDNA) and polycations such as linear polyethylenimine (lPEI) represent a major nonviral delivery vehicle for gene therapy tested thus far. Efforts to control the size, shape, and surface properties of pDNA/polycation nanoparticles have been primarily focused on fine-tuning the molecular structures of the polycationic carriers and on assembly conditions such as medium polarity, pH, and temperature. However, reproducible production of these nanoparticles hinges on the ability to control the assembly kinetics, given the nonequilibrium nature of the assembly process and nanoparticle composition. Here we adopt a kinetically controlled mixing process, termed flash nanocomplexation (FNC), that accelerates the mixing of pDNA solution with polycation lPEI solution to match the PEC assembly kinetics through turbulent mixing in a microchamber. This achieves explicit control of the kinetic conditions for pDNA/lPEI nanoparticle assembly, as demonstrated by the tunability of nanoparticle size, composition, and pDNA payload. Through a combined experimental and simulation approach, we prepared pDNA/lPEI nanoparticles having an average of 1.3 to 21.8 copies of pDNA per nanoparticle and average size of 35 to 130 nm in a more uniform and scalable manner than bulk mixing methods. Using these nanoparticles with defined compositions and sizes, we showed the correlation of pDNA payload and nanoparticle formulation composition with the transfection efficiencies and toxicity in vivo. These nanoparticles exhibited long-term stability at -20 °C for at least 9 months in a lyophilized formulation, validating scalable manufacture of an off-the-shelf nanoparticle product with well-defined characteristics as a gene medicine.
Collapse
Affiliation(s)
- Yizong Hu
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Zhiyu He
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Yue Hao
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Heng-wen Liu
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Like Gong
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Gregory Howard
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Hye-Hyun Ahn
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Mary Brummet
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Xiyu Ke
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Caleb Anderson
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jung-Hee Seo
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jinchang Zhu
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Kuntao Chen
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Marion Pang Wan Rion
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Honggang Cui
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | | - Martin G. Pomper
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Rajat Mittal
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Il Minn
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Hai-Quan Mao
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Correspondence should be addressed to Dr. Hai-Quan Mao: 3400 N. Charles Street, Croft Hall 100, Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA.
| |
Collapse
|
22
|
Peng L, Wagner E. Polymeric Carriers for Nucleic Acid Delivery: Current Designs and Future Directions. Biomacromolecules 2019; 20:3613-3626. [DOI: 10.1021/acs.biomac.9b00999] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
Fliervoet LAL, van Nostrum CF, Hennink WE, Vermonden T. Balancing hydrophobic and electrostatic interactions in thermosensitive polyplexes for nucleic acid delivery. ACTA ACUST UNITED AC 2019. [DOI: 10.1088/2399-7532/ab12ee] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
24
|
|
25
|
Jiang Y, Lodge TP, Reineke TM. Packaging pDNA by Polymeric ABC Micelles Simultaneously Achieves Colloidal Stability and Structural Control. J Am Chem Soc 2018; 140:11101-11111. [DOI: 10.1021/jacs.8b06309] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yaming Jiang
- Department of Chemical Engineering & Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| | - Timothy P. Lodge
- Department of Chemical Engineering & Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Theresa M. Reineke
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
26
|
Bros M, Nuhn L, Simon J, Moll L, Mailänder V, Landfester K, Grabbe S. The Protein Corona as a Confounding Variable of Nanoparticle-Mediated Targeted Vaccine Delivery. Front Immunol 2018; 9:1760. [PMID: 30116246 PMCID: PMC6082927 DOI: 10.3389/fimmu.2018.01760] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 07/16/2018] [Indexed: 01/01/2023] Open
Abstract
Nanocarriers (NC) are very promising tools for cancer immunotherapy. Whereas conventional vaccines are based on the administration of an antigen and an adjuvant in an independent fashion, nanovaccines can facilitate cell-specific co-delivery of antigen and adjuvant. Furthermore, nanovaccines can be decorated on their surface with molecules that facilitate target-specific antigen delivery to certain antigen-presenting cell types or tumor cells. However, the target cell-specific uptake of nanovaccines is highly dependent on the modifications of the nanocarrier itself. One of these is the formation of a protein corona around NC after in vivo administration, which may potently affect cell-specific targeting and uptake of the NC. Understanding the formation and composition of the protein corona is, therefore, of major importance for the use of nanocarriers in vaccine approaches. This Mini Review will give a short overview of potential non-specific interactions of NC with body fluids or cell surfaces that need to be considered for the design of NC vaccines for immunotherapy of cancer.
Collapse
Affiliation(s)
- Matthias Bros
- Department of Dermatology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Lutz Nuhn
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Johanna Simon
- Department of Dermatology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Lorna Moll
- Department of Dermatology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Volker Mailänder
- Department of Dermatology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
- Max Planck Institute for Polymer Research, Mainz, Germany
| | | | - Stephan Grabbe
- Department of Dermatology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
27
|
Post-PEGylated and crosslinked polymeric ssRNA nanocomplexes as adjuvants targeting lymph nodes with increased cytolytic T cell inducing properties. J Control Release 2018; 284:73-83. [DOI: 10.1016/j.jconrel.2018.06.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/04/2018] [Accepted: 06/05/2018] [Indexed: 01/04/2023]
|
28
|
Cabral H, Miyata K, Osada K, Kataoka K. Block Copolymer Micelles in Nanomedicine Applications. Chem Rev 2018; 118:6844-6892. [PMID: 29957926 DOI: 10.1021/acs.chemrev.8b00199] [Citation(s) in RCA: 804] [Impact Index Per Article: 114.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Polymeric micelles are demonstrating high potential as nanomedicines capable of controlling the distribution and function of loaded bioactive agents in the body, effectively overcoming biological barriers, and various formulations are engaged in intensive preclinical and clinical testing. This Review focuses on polymeric micelles assembled through multimolecular interactions between block copolymers and the loaded drugs, proteins, or nucleic acids as translationable nanomedicines. The aspects involved in the design of successful micellar carriers are described in detail on the basis of the type of polymer/payload interaction, as well as the interplay of micelles with the biological interface, emphasizing on the chemistry and engineering of the block copolymers. By shaping these features, polymeric micelles have been propitious for delivering a wide range of therapeutics through effective sensing of targets in the body and adjustment of their properties in response to particular stimuli, modulating the activity of the loaded drugs at the targeted sites, even at the subcellular level. Finally, the future perspectives and imminent challenges for polymeric micelles as nanomedicines are discussed, anticipating to spur further innovations.
Collapse
Affiliation(s)
| | | | | | - Kazunori Kataoka
- Innovation Center of NanoMedicine , Kawasaki Institute of Industrial Promotion , 3-25-14, Tonomachi , Kawasaki-ku , Kawasaki 210-0821 , Japan.,Policy Alternatives Research Institute , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-0033 , Japan
| |
Collapse
|
29
|
Jung S, Lodge TP, Reineke TM. Structures and Protonation States of Hydrophilic–Cationic Diblock Copolymers and Their Binding with Plasmid DNA. J Phys Chem B 2018; 122:2449-2461. [DOI: 10.1021/acs.jpcb.7b07902] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Seyoung Jung
- Department of Chemical Engineering and Materials Science, University of Minnesota—Twin Cities, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| | - Timothy P. Lodge
- Department of Chemical Engineering and Materials Science, University of Minnesota—Twin Cities, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
- Department of Chemistry, University of Minnesota—Twin Cities, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Theresa M. Reineke
- Department of Chemistry, University of Minnesota—Twin Cities, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
30
|
Fliervoet LAL, Engbersen JFJ, Schiffelers RM, Hennink WE, Vermonden T. Polymers and hydrogels for local nucleic acid delivery. J Mater Chem B 2018; 6:5651-5670. [DOI: 10.1039/c8tb01795f] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review focusses on the rational design of materials (from polymers to hydrogel materials) to achieve successful local delivery of therapeutic nucleic acids.
Collapse
Affiliation(s)
- Lies A. L. Fliervoet
- Department of Pharmaceutics
- Utrecht Institute for Pharmaceutical Sciences
- Utrecht University
- 3508 TB Utrecht
- The Netherlands
| | - Johan F. J. Engbersen
- Department of Controlled Drug Delivery
- MIRA Institute for Biomedical Technology and Technical Medicine
- Faculty of Science and Technology
- University of Twente
- Enschede
| | - Raymond M. Schiffelers
- Department of Clinical Chemistry and Haematology
- University Medical Center Utrecht
- 3584 CX Utrecht
- The Netherlands
| | - Wim E. Hennink
- Department of Pharmaceutics
- Utrecht Institute for Pharmaceutical Sciences
- Utrecht University
- 3508 TB Utrecht
- The Netherlands
| | - Tina Vermonden
- Department of Pharmaceutics
- Utrecht Institute for Pharmaceutical Sciences
- Utrecht University
- 3508 TB Utrecht
- The Netherlands
| |
Collapse
|
31
|
Zhou Z, Liu X, Zhu D, Wang Y, Zhang Z, Zhou X, Qiu N, Chen X, Shen Y. Nonviral cancer gene therapy: Delivery cascade and vector nanoproperty integration. Adv Drug Deliv Rev 2017; 115:115-154. [PMID: 28778715 DOI: 10.1016/j.addr.2017.07.021] [Citation(s) in RCA: 282] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/25/2017] [Accepted: 07/27/2017] [Indexed: 02/07/2023]
Abstract
Gene therapy represents a promising cancer treatment featuring high efficacy and limited side effects, but it is stymied by a lack of safe and efficient gene-delivery vectors. Cationic polymers and lipid-based nonviral gene vectors have many advantages and have been extensively explored for cancer gene delivery, but their low gene-expression efficiencies relative to viral vectors limit their clinical translations. Great efforts have thus been devoted to developing new carrier materials and fabricating functional vectors aimed at improving gene expression, but the overall efficiencies are still more or less at the same level. This review analyzes the cancer gene-delivery cascade and the barriers, the needed nanoproperties and the current strategies for overcoming these barriers, and outlines PEGylation, surface-charge, size, and stability dilemmas in vector nanoproperties to efficiently accomplish the cancer gene-delivery cascade. Stability, surface, and size transitions (3S Transitions) are proposed to resolve those dilemmas and strategies to realize these transitions are comprehensively summarized. The review concludes with a discussion of the future research directions to design high-performance nonviral gene vectors.
Collapse
Affiliation(s)
- Zhuxian Zhou
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027 Hangzhou, China
| | - Xiangrui Liu
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027 Hangzhou, China
| | - Dingcheng Zhu
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027 Hangzhou, China
| | - Yue Wang
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027 Hangzhou, China
| | - Zhen Zhang
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027 Hangzhou, China
| | - Xuefei Zhou
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027 Hangzhou, China
| | - Nasha Qiu
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027 Hangzhou, China
| | - Xuesi Chen
- Changchun Institute of Applied Chemistry, Key Lab of Polymer Ecomaterials, Changchun, China
| | - Youqing Shen
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027 Hangzhou, China.
| |
Collapse
|
32
|
Nanomaterial-Enabled Cancer Therapy. Mol Ther 2017; 25:1501-1513. [PMID: 28532763 DOI: 10.1016/j.ymthe.2017.04.026] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 04/19/2017] [Accepted: 04/27/2017] [Indexed: 01/02/2023] Open
Abstract
While cancer remains the major cause of death worldwide, nanomaterial (NM)-based diagnosis and treatment modalities are showing remarkable potential to better tackle clinical oncology by effectively targeting therapeutic agents to tumors. NMs can selectively accumulate in solid tumors, and they can improve the bioavailability and reduce the toxicity of encapsulated cytotoxic agents. Additional noteworthy functions of NMs in cancer treatment include the delivery of contrast agents to image tumor sites, delivery of genetic materials for gene therapy, and co-delivery of multiple agents to achieve combination therapy or simultaneous diagnostic and therapeutic outcomes. Although several NM therapeutics have been successfully translated to clinical applications, the gap between the bench and the bedside remains ominously wide. Tumor heterogeneity and the disparity between pre-clinical and clinical studies have been identified as two of the major translational challenges of NM-based cancer therapies. Herein, we review a handful of recent research studies on the use of NMs in cancer therapy and imaging, with a limited discussion on the consequences of tumor heterogeneity and pre-clinical studies on translational research of NM-based delivery systems and propositions in the literature to overcome these challenges.
Collapse
|