1
|
Cui J, Liu D, Zhang Y, Ma M, Shang M, Zhao C, Lu X, Zhao C, Zheng J. Structural characteristics and gelling properties of citrus pectins after chemical and enzymatic modifications: Conformation plays a vital role in Ca 2+-induced gelation. Food Chem 2024; 459:140370. [PMID: 38986208 DOI: 10.1016/j.foodchem.2024.140370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/22/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024]
Abstract
Due to the excellent health benefits of rhamnogalacturonan I (RG-I)-enriched pectin, there has been increasing research interest in its gelling properties. To elucidate its structure-gelation relationship, chemical modifications were used to obtain RG-I-enriched pectin (P11). Then, enzymatic modification was performed to obtain debranched pectins GP11 and AP11, respectively. The effects of RG-I side chains on structural characteristics (especially spatial conformation) and gelling properties were investigated. Among the low-methoxylated pectins (LMPs), AP11, with a loose conformation (Dmax 52 nm) showed the poorest gelling, followed by GP11. In addition to primary structure, spatial conformation (Dmax and Rg) also showed strong correlations (r2 > 0.8) with gelation. We speculate that compact conformation may shorten distance between pectin chains and reduces steric hindrance, contributing to formation of strong gel network. This is particularly important in LMPs with abundant side chains. The results provide novel insights into relationship between spatial conformation and gelling properties of RG-I-enriched pectin.
Collapse
Affiliation(s)
- Jiefen Cui
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China; Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao Agricultural University, Qingdao, 266109, China; Shandong Technology Innovation Center of Special Food, Qingdao, 266109, China; Qingdao Special Food Research Institute, Qingdao, 266109, China
| | - Dan Liu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China; Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yuyang Zhang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China; Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Mengyu Ma
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Mengshan Shang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China; Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao Agricultural University, Qingdao, 266109, China; Shandong Technology Innovation Center of Special Food, Qingdao, 266109, China; Qingdao Special Food Research Institute, Qingdao, 266109, China
| | - Cheng Zhao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China; Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xingmiao Lu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Chengying Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jinkai Zheng
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China; Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao Agricultural University, Qingdao, 266109, China; Shandong Technology Innovation Center of Special Food, Qingdao, 266109, China; Qingdao Special Food Research Institute, Qingdao, 266109, China; Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
2
|
Cui J, Zhao C, Zhao S, Tian G, Wang F, Li C, Wang F, Zheng J. Alkali + cellulase-extracted citrus pectins exhibit compact conformation and good fermentation properties. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.106079] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
3
|
Nachtigall C, Surber G, Herbi F, Wefers D, Jaros D, Rohm H. Production and molecular structure of heteropolysaccharides from two lactic acid bacteria. Carbohydr Polym 2020; 236:116019. [PMID: 32172839 DOI: 10.1016/j.carbpol.2020.116019] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 12/20/2022]
Abstract
In the dairy industry, exopolysaccharides (EPS) produced in situ from lactic acid bacteria are of great interest because of their contribution to product texture. Some EPS cause ropiness which might be linked to specific physical and chemical EPS properties. EPS show a broad variety of chemical structures and, because analysis is rather complex, it is still a major challenge to establish structure-function relationships. The aim of this study was to produce EPS with different degree of ropiness, perform in-depth structural elucidations and relate this information to their behaviour in aqueous solutions. After cultivation of Streptococcus thermophilus DGCC7919 and Lactococcus lactis LL-2A and subsequent EPS isolation, both EPS showed similar macromolecular properties, but pronounced differences in monosaccharide composition and glycosidic linkages. Our data suggests that mainly the side chains in the EPS from LL-2A might be responsible for a higher ropiness than that observed for EPS from DGCC7919.
Collapse
Affiliation(s)
- Carsten Nachtigall
- Chair of Food Engineering, Institute of Natural Materials Technology, Technische Universität Dresden, 01062, Dresden, Germany.
| | - Georg Surber
- Chair of Food Engineering, Institute of Natural Materials Technology, Technische Universität Dresden, 01062, Dresden, Germany
| | - Frauke Herbi
- Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany
| | - Daniel Wefers
- Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany
| | - Doris Jaros
- Chair of Food Engineering, Institute of Natural Materials Technology, Technische Universität Dresden, 01062, Dresden, Germany
| | - Harald Rohm
- Chair of Food Engineering, Institute of Natural Materials Technology, Technische Universität Dresden, 01062, Dresden, Germany
| |
Collapse
|
4
|
Cui J, Ren W, Zhao C, Gao W, Tian G, Bao Y, Lian Y, Zheng J. The structure–property relationships of acid- and alkali-extracted grapefruit peel pectins. Carbohydr Polym 2020; 229:115524. [DOI: 10.1016/j.carbpol.2019.115524] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/22/2019] [Accepted: 10/22/2019] [Indexed: 11/30/2022]
|
5
|
|
6
|
Alba K, Bingham RJ, Gunning PA, Wilde PJ, Kontogiorgos V. Pectin Conformation in Solution. J Phys Chem B 2018; 122:7286-7294. [DOI: 10.1021/acs.jpcb.8b04790] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- K. Alba
- Department of Biological Sciences, University of Huddersfield, Huddersfield HD1 3DH, U.K
| | - R. J. Bingham
- Department of Biological Sciences, University of Huddersfield, Huddersfield HD1 3DH, U.K
| | - P. A. Gunning
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UA, U.K
| | - P. J. Wilde
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UA, U.K
| | - V. Kontogiorgos
- Department of Biological Sciences, University of Huddersfield, Huddersfield HD1 3DH, U.K
| |
Collapse
|
7
|
Khan S, Ipsen R, Almdal K, Svensson B, Harris P. Revealing the Dimeric Crystal and Solution Structure of β-Lactoglobulin at pH 4 and Its pH and Salt Dependent Monomer–Dimer Equilibrium. Biomacromolecules 2018; 19:2905-2912. [DOI: 10.1021/acs.biomac.8b00471] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sanaullah Khan
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 224, DK-2800 Kgs. Lyngby, Denmark
- Department of Micro- and Nanotechnology, Technical University of Denmark, Ørsteds Plads, Building 423, DK-2800 Kgs. Lyngby, Denmark
| | - Richard Ipsen
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg, Denmark
| | - Kristoffer Almdal
- Department of Micro- and Nanotechnology, Technical University of Denmark, Ørsteds Plads, Building 423, DK-2800 Kgs. Lyngby, Denmark
| | - Birte Svensson
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 224, DK-2800 Kgs. Lyngby, Denmark
| | - Pernille Harris
- Department of Chemistry, Technical University of Denmark, Kemitorvet, Building 207, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
8
|
Falke S, Dierks K, Blanchet C, Graewert M, Cipriani F, Meijers R, Svergun D, Betzel C. Multi-channel in situ dynamic light scattering instrumentation enhancing biological small-angle X-ray scattering experiments at the PETRA III beamline P12. JOURNAL OF SYNCHROTRON RADIATION 2018; 25:361-372. [PMID: 29488914 DOI: 10.1107/s1600577517017568] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/07/2017] [Indexed: 06/08/2023]
Abstract
Small-angle X-ray scattering (SAXS) analysis of biomolecules is increasingly common with a constantly high demand for comprehensive and efficient sample quality control prior to SAXS experiments. As monodisperse sample suspensions are desirable for SAXS experiments, latest dynamic light scattering (DLS) techniques are most suited to obtain non-invasive and rapid information about the particle size distribution of molecules in solution. A multi-receiver four-channel DLS system was designed and adapted at the BioSAXS endstation of the EMBL beamline P12 at PETRA III (DESY, Hamburg, Germany). The system allows the collection of DLS data within round-shaped sample capillaries used at beamline P12. Data obtained provide information about the hydrodynamic radius of biological particles in solution and dispersity of the solution. DLS data can be collected directly prior to and during an X-ray exposure. To match the short X-ray exposure times of around 1 s for 20 exposures at P12, the DLS data collection periods that have been used up to now of 20 s or commonly more were substantially reduced, using a novel multi-channel approach collecting DLS data sets in the SAXS sample capillary at four different neighbouring sample volume positions in parallel. The setup allows online scoring of sample solutions applied for SAXS experiments, supports SAXS data evaluation and for example indicates local inhomogeneities in a sample solution in a time-efficient manner. Biological macromolecules with different molecular weights were applied to test the system and obtain information about the performance. All measured hydrodynamic radii are in good agreement with DLS results obtained by employing a standard cuvette instrument. Moreover, applying the new multi-channel DLS setup, a reliable radius determination of sample solutions in flow, at flow rates normally used for size-exclusion chromatography-SAXS experiments, and at higher flow rates, was verified as well. This study also shows and confirms that the newly designed sample compartment with attached DLS instrumentation does not disturb SAXS measurements.
Collapse
Affiliation(s)
- Sven Falke
- Laboratory for Structural Biology of Infection and Inflammation, University Hamburg, c/o DESY, Building 22a, Notkestrasse 85, Hamburg 22603, Germany
| | - Karsten Dierks
- Xtal Concepts GmbH, Marlowring 19, Hamburg 22525, Germany
| | - Clement Blanchet
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation, c/o Notkestrasse 85, Hamburg 22607, Germany
| | - Melissa Graewert
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation, c/o Notkestrasse 85, Hamburg 22607, Germany
| | - Florent Cipriani
- European Molecular Biology Laboratory (EMBL), 71 Avenue des Martyrs, Grenoble 38042, France
| | - Rob Meijers
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation, c/o Notkestrasse 85, Hamburg 22607, Germany
| | - Dmitri Svergun
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation, c/o Notkestrasse 85, Hamburg 22607, Germany
| | - Christian Betzel
- Laboratory for Structural Biology of Infection and Inflammation, University Hamburg, c/o DESY, Building 22a, Notkestrasse 85, Hamburg 22603, Germany
| |
Collapse
|
9
|
Khan S, Birch J, Van Calsteren MR, Ipsen R, Peters GHJ, Svensson B, Harris P, Almdal K. Interaction between structurally different heteroexopolysaccharides and β-lactoglobulin studied by solution scattering and analytical ultracentrifugation. Int J Biol Macromol 2018; 111:746-754. [PMID: 29329814 DOI: 10.1016/j.ijbiomac.2018.01.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 12/24/2017] [Accepted: 01/08/2018] [Indexed: 12/28/2022]
Abstract
Despite a very large number of bacterial exopolysaccharides have been reported, detailed knowledge on their molecular structures and associative interactions with proteins is lacking. Small-angle X-ray scattering, dynamic light scattering and analytical ultracentrifugation (AUC) were used to characterize the interactions of six lactic acid bacterial heteroexopolysaccharides (HePS-1-HePS-6) with β-lactoglobulin (BLG). Compared to free HePSs, a large increase in the X-ray radius of gyration RG, maximum length L and hydrodynamic diameter dH of HePS-1-HePS-4 mixed with BLG revealed strong aggregation, the extent of which depended on the compact conformation and degree of branching of these HePSs. No significant effects were observed with HePS-5 and HePS-6. Turbidity and AUC analyses showed that both soluble and insoluble BLG-HePS complexes were formed. The findings provide new insights into the role of molecular structures in associative interactions between HePSs and BLG which has relevance for various industrial applications.
Collapse
Affiliation(s)
- Sanaullah Khan
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 224, DK-2800 Kgs. Lyngby, Denmark; Department of Micro- and Nanotechnology, Technical University of Denmark, Ørsteds Plads, Building 423, DK-2800 Kgs. Lyngby, Denmark.
| | - Johnny Birch
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 224, DK-2800 Kgs. Lyngby, Denmark
| | - Marie-Rose Van Calsteren
- Saint-Hyacinthe Research and Development Centre, Agriculture and Agri-Food Canada, 3600 Casavant Boulevard West, Saint-Hyacinthe, Quebec J2S 8E3, Canada
| | - Richard Ipsen
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg, Denmark
| | - Günther H J Peters
- Department of Chemistry, Technical University of Denmark, Kemitorvet, Building 207, DK-2800 Kgs. Lyngby, Denmark
| | - Birte Svensson
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 224, DK-2800 Kgs. Lyngby, Denmark
| | - Pernille Harris
- Department of Chemistry, Technical University of Denmark, Kemitorvet, Building 207, DK-2800 Kgs. Lyngby, Denmark
| | - Kristoffer Almdal
- Department of Micro- and Nanotechnology, Technical University of Denmark, Ørsteds Plads, Building 423, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|