1
|
Hu Y, Tang L, Wang Z, Yan H, Yi X, Wang H, Ma L, Yang C, Ran J, Yu A. Inducing in situ M2 macrophage polarization to promote the repair of bone defects via scaffold-mediated sustained delivery of luteolin. J Control Release 2024; 365:889-904. [PMID: 37952829 DOI: 10.1016/j.jconrel.2023.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/26/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023]
Abstract
Immunoregulation mediated bone tissue engineering (BTE) has demonstrated huge potential in promoting repair of critical-size bone defects (CSBDs). The trade-off between stable immunoregulation function and extended immunoregulation period has posed a great challenge to this strategy. Here, we reported a 3D porous biodegradable Poly(HEMA-co-3APBA)/LUT scaffold, in which reversible boronic acid ester bond was formed between the 3APBA moiety and the catechol moiety of luteolin (LUT). The boronic acid ester bond not only protected the bioactivity of LUT but also extended the release period of LUT. The rationale behind the phenomenon of sustained LUT release was explained using a classical transition state theory. In vitro/in vivo assays proved the immunoregulation function of the scaffold in inducing M2 polarization of both M0 and M1 Mφ. The crosstalk between the scaffold treated Raw 264.7 and BMSCs were also investigated through the in vitro co-culture assay. The results demonstrated that the scaffold could induce immunoregulation mediated osteogenic differentiation of BMSCs. In addition, CSBDs model of SD rats was also applied, and the corresponding data proved that the scaffold could accelerate new bone formation, therefore promoting repair of CSBDs. The as-prepared scaffold might be a promising candidate for repair of CSBDs in the future.
Collapse
Affiliation(s)
- Yan Hu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital, Wuhan University, Wuhan 430000, China
| | - Lixi Tang
- Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang 443002, China; College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Zheng Wang
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital, Wuhan University, Wuhan 430000, China
| | - Honghan Yan
- Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang 443002, China; College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Xinzeyu Yi
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital, Wuhan University, Wuhan 430000, China
| | - Huimin Wang
- Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang 443002, China; College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Liya Ma
- Core Facility of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Changying Yang
- Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang 443002, China; College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Jiabing Ran
- Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang 443002, China; College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China.
| | - Aixi Yu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital, Wuhan University, Wuhan 430000, China.
| |
Collapse
|
2
|
Madamsetty VS, Mohammadinejad R, Uzieliene I, Nabavi N, Dehshahri A, García-Couce J, Tavakol S, Moghassemi S, Dadashzadeh A, Makvandi P, Pardakhty A, Aghaei Afshar A, Seyfoddin A. Dexamethasone: Insights into Pharmacological Aspects, Therapeutic Mechanisms, and Delivery Systems. ACS Biomater Sci Eng 2022; 8:1763-1790. [PMID: 35439408 PMCID: PMC9045676 DOI: 10.1021/acsbiomaterials.2c00026] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Dexamethasone (DEX) has been widely used to treat a variety of diseases, including autoimmune diseases, allergies, ocular disorders, cancer, and, more recently, COVID-19. However, DEX usage is often restricted in the clinic due to its poor water solubility. When administered through a systemic route, it can elicit severe side effects, such as hypertension, peptic ulcers, hyperglycemia, and hydro-electrolytic disorders. There is currently much interest in developing efficient DEX-loaded nanoformulations that ameliorate adverse disease effects inhibiting advancements in scientific research. Various nanoparticles have been developed to selectively deliver drugs without destroying healthy cells or organs in recent years. In the present review, we have summarized some of the most attractive applications of DEX-loaded delivery systems, including liposomes, polymers, hydrogels, nanofibers, silica, calcium phosphate, and hydroxyapatite. This review provides our readers with a broad spectrum of nanomedicine approaches to deliver DEX safely.
Collapse
Affiliation(s)
- Vijay Sagar Madamsetty
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, Florida 32224, United States
| | - Reza Mohammadinejad
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman 7618866749, Iran
| | - Ilona Uzieliene
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Santariskiu 5, LT-08406 Vilnius, Lithuania
| | - Noushin Nabavi
- Department of Urologic Sciences, Vancouver Prostate Centre, Vancouver, British Columbia, Canada V6H 3Z6
| | - Ali Dehshahri
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| | - Jomarien García-Couce
- Department of Radiology, Division of Translational Nanobiomaterials and Imaging, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
- Department of Polymeric Biomaterials, Biomaterials Center (BIOMAT), University of Havana, Havana 10600, Cuba
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1417755469, Iran
| | - Saeid Moghassemi
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels 1200, Belgium
| | - Arezoo Dadashzadeh
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels 1200, Belgium
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Micro-BioRobotics, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | - Abbas Pardakhty
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7618866748, Iran
| | - Abbas Aghaei Afshar
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman 7618866749, Iran
| | - Ali Seyfoddin
- Drug Delivery Research Group, Auckland University of Technology (AUT), School of Science, Auckland 1010, New Zealand
| |
Collapse
|
3
|
Jeong JE, Park SY, Shin JY, Seok JM, Byun JH, Oh SH, Kim WD, Lee JH, Park WH, Park SA. 3D Printing of Bone-Mimetic Scaffold Composed of Gelatin/β-Tri-Calcium Phosphate for Bone Tissue Engineering. Macromol Biosci 2020; 20:e2000256. [PMID: 33164317 DOI: 10.1002/mabi.202000256] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/27/2020] [Indexed: 02/01/2023]
Abstract
3D printed scaffolds composed of gelatin and β-tri-calcium phosphate (β-TCP) as a biomimetic bone material are fabricated, thereby providing an environment appropriate for bone regeneration. The Ca2+ in β-TCP and COO- in gelatin form a stable electrostatic interaction, and the composite scaffold shows suitable rheological properties for bioprinting. The gelatin/β-TCP scaffold is crosslinked with glutaraldehyde vapor and unreacted aldehyde groups which can cause toxicity to cells is removed by a glycine washing. The stable binding of the hydrogel is revealed as a result of FTIR and degradation rate. It is confirmed that the composite scaffold has compressive strength similar to that of cancellous bone and 60 wt% β-TCP groups containing 40 wt% gelatin have good cellular activity with preosteoblasts. Also, in the animal experiments, the gelatin/β-TCP scaffold confirms to induce bone formation without any inflammatory responses. This study suggests that these fabricated scaffolds can serve as a potential bone substitute for bone regeneration.
Collapse
Affiliation(s)
- Jae Eun Jeong
- Department of Nature-Inspired Nanoconvergence Systems, Korea Institute of Machinery and Materials, Daejeon, 34103, Republic of Korea.,Department of Advanced Organic Materials and Textile System Engineering, College of Engineering, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Shin Young Park
- Department of Dental Science and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 03080, Republic of Korea
| | - Ji Youn Shin
- Department of Advanced Organic Materials and Textile System Engineering, College of Engineering, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Ji Min Seok
- Department of Nature-Inspired Nanoconvergence Systems, Korea Institute of Machinery and Materials, Daejeon, 34103, Republic of Korea
| | - June Ho Byun
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine, Gyeongsang National University Hospital, Jinju, 52727, Republic of Korea
| | - Se Heang Oh
- Department of Nanobiomedical Science, Dankook University, Cheonan, 31116, Republic of Korea
| | - Wan Doo Kim
- Department of Nature-Inspired Nanoconvergence Systems, Korea Institute of Machinery and Materials, Daejeon, 34103, Republic of Korea
| | - Jun Hee Lee
- Department of Nature-Inspired Nanoconvergence Systems, Korea Institute of Machinery and Materials, Daejeon, 34103, Republic of Korea
| | - Won Ho Park
- Department of Advanced Organic Materials and Textile System Engineering, College of Engineering, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Su A Park
- Department of Nature-Inspired Nanoconvergence Systems, Korea Institute of Machinery and Materials, Daejeon, 34103, Republic of Korea
| |
Collapse
|
4
|
Ghorbani F, Sahranavard M, Zamanian A. Immobilization of gelatin on the oxygen plasma-modified surface of polycaprolactone scaffolds with tunable pore structure for skin tissue engineering. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02263-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
5
|
Tao L, Zhonglong L, Ming X, Zezheng Y, Zhiyuan L, Xiaojun Z, Jinwu W. In vitro and in vivo studies of a gelatin/carboxymethyl chitosan/LAPONITE® composite scaffold for bone tissue engineering. RSC Adv 2017. [DOI: 10.1039/c7ra06913h] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the present study, we fabricated a biocomposite scaffold composed of carboxymethyl chitosan (CMC), gelatin and LAPONITE® (Lap) nanoparticles via freeze-drying and investigated its potential use in bone tissue engineering.
Collapse
Affiliation(s)
- Li Tao
- Shanghai Key Laboratory of Orthopaedic Implant
- Department of Orthopaedic Surgery
- Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine
- Shanghai 200011
- China
| | - Liu Zhonglong
- Shanghai Key Laboratory of Orthopaedic Implant
- Department of Orthopaedic Surgery
- Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine
- Shanghai 200011
- China
| | - Xiao Ming
- Shanghai Key Laboratory of Orthopaedic Implant
- Department of Orthopaedic Surgery
- Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine
- Shanghai 200011
- China
| | - Yang Zezheng
- Shanghai Key Laboratory of Orthopaedic Implant
- Department of Orthopaedic Surgery
- Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine
- Shanghai 200011
- China
| | - Liu Zhiyuan
- Shanghai Key Laboratory of Orthopaedic Implant
- Department of Orthopaedic Surgery
- Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine
- Shanghai 200011
- China
| | - Zhou Xiaojun
- Shanghai Key Laboratory of Orthopaedic Implant
- Department of Orthopaedic Surgery
- Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine
- Shanghai 200011
- China
| | - Wang Jinwu
- Shanghai Key Laboratory of Orthopaedic Implant
- Department of Orthopaedic Surgery
- Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine
- Shanghai 200011
- China
| |
Collapse
|