1
|
Mollahosseini A, Bahig J, Shoker A, Abdelrasoul A. Aminolysis-Based Zwitterionic Immobilization on Polyethersulfone Membranes for Enhanced Hemocompatibility: Experimental, Computational, and Ex Vivo Investigations. Biomimetics (Basel) 2024; 9:320. [PMID: 38921200 PMCID: PMC11201488 DOI: 10.3390/biomimetics9060320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/30/2024] [Accepted: 05/09/2024] [Indexed: 06/27/2024] Open
Abstract
Dialysis membranes are not hemocompatible with human blood, as the patients are suffering from the blood-membrane interactions' side effects. Zwitterionic structures have shown improved hemocompatibility; however, their complicated synthesis hinders their commercialization. The goal of the study is to achieve fast functionalization for carboxybetaine and sulfobetaine zwitterionic immobilization on PES membranes while comparing the stability and the targeted hemocompatibility. The chemical modification approach is based on an aminolysis reaction. Characterization, computational simulations, and clinical analysis were conducted to study the modified membranes. Atomic force microscopy (AFM) patterns showed a lower mean roughness for carboxybetaine-modified (6.3 nm) and sulfobetaine-modified (7.7 nm) membranes compared to the neat membrane (52.61 nm). The pore size of the membranes was reduced from values above 50 nm for the neat PES to values between 2 and 50 nm for zwitterionized membranes, using Brunauer-Emmett-Teller (BET) analysis. More hydrophilic surfaces led to a growth equilibrium water content (EWC) of nearly 6% for carboxybetaine and 10% for sulfobetaine-modified membranes. Differential scanning calorimetry (DSC) measurements were 12% and 16% stable water for carboxybetaine- and sulfobetaine-modified membranes, respectively. Sulfobetaine membranes showed better compatibility with blood with respect to C5a, IL-1a, and IL-6 biomarkers. Aminolysis-based zwitterionization was found to be suitable for the improvement of hemodialysis membranes. The approach introduced in this paper could be used to modify the current dialysis membranes with minimal change in the production facilities.
Collapse
Affiliation(s)
- Arash Mollahosseini
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada
| | - Jumanah Bahig
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada
- Kinesiology, University of Saskatchewan, 87 Campus Dr, Saskatoon, SK S7N 5B, Canada
| | - Ahmed Shoker
- Saskatchewan Transplant Program, St. Paul’s Hospital, 1702 20th Street West, Saskatoon, SK S7M 0Z9, Canada
- Nephrology Division, College of Medicine, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, SK S7N 5E5, Canada
| | - Amira Abdelrasoul
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada
| |
Collapse
|
2
|
Koguchi R, Jankova K, Tanaka Y, Yamamoto A, Murakami D, Yang Q, Ameduri B, Tanaka M. Altering the bio-inert properties of surfaces by fluorinated copolymers of mPEGMA. BIOMATERIALS ADVANCES 2023; 153:213573. [PMID: 37562157 DOI: 10.1016/j.bioadv.2023.213573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023]
Abstract
Hydrophilic materials display "bio-inert properties", meaning that they are less recognized as foreign substances by proteins and cells. Such materials are often water soluble; therefore, one general approach to enable the use of these materials in various applications deals with copolymerizing hydrophilic monomers with hydrophobic ones to facilitate such resulting copolymers water insoluble. However, reducing the hydrophilic monomer amount may reduce the bio-inert properties of the material. The decrease in bio-inert properties can be avoided when small amounts of fluorine are used in copolymers with hydrophilic monomers, as presented in this article. Even in small quantities (7.9 wt%), the fluorinated monomer, 1,1,1,3,3,3-hexafluoropropan-2-yl 2-fluoroacrylate (FAHFiP), contributed to the improved hydrophobicity of the polymers of the long side-chain poly(ethylene glycol) methyl ether methacrylate (mPEGMA) bearing nine ethylene glycol units turning them water insoluble. As evidenced by the AFM deformation image, a phase separation between the FAHFiP and mPEGMA domains was observed. The copolymer with the highest amount of the fluorinated monomer (66.2 wt%) displayed also high (82 %) FAHFiP amount at the polymer-water interface. In contrast, the hydrated sample with the lowest FAHFiP/highest mPEGMA amount was enriched of three times more hydrophilic domains at the polymer-water interface compared to that of the sample with the highest FAHFiP content. Thus, by adding a small FAHFiP amount to mPEGMA copolymers, water insoluble in the bulk too, could be turned highly hydrophilic at the water interface. The high content of intermediate water contributed to their excellent bio-inert properties. Platelet adhesion and fibrinogen adsorption on their surfaces were even more decreased as compared to those on poly(2-methoxyethyl acrylate), which is typically used in medical devices.
Collapse
Affiliation(s)
- Ryohei Koguchi
- AGC Inc. Organic Materials Division, Materials Integration Laboratories, 1-1 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Katja Jankova
- Soft Materials Chemistry, Institute for Materials Chemistry and Engineering, Kyushu University, Build. CE41, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan; Department of Energy Conversion and Storage, Technical University of Denmark, Elektrovej, Build. 375, 2800 Kongens Lyngby, Denmark
| | - Yukiko Tanaka
- Soft Materials Chemistry, Institute for Materials Chemistry and Engineering, Kyushu University, Build. CE41, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
| | - Aki Yamamoto
- Soft Materials Chemistry, Institute for Materials Chemistry and Engineering, Kyushu University, Build. CE41, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
| | - Daiki Murakami
- Soft Materials Chemistry, Institute for Materials Chemistry and Engineering, Kyushu University, Build. CE41, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
| | - Qizhi Yang
- University of Montpellier, ICGM, CNRS, ENSCM, 34000 Montpellier, France
| | - Bruno Ameduri
- University of Montpellier, ICGM, CNRS, ENSCM, 34000 Montpellier, France.
| | - Masaru Tanaka
- Soft Materials Chemistry, Institute for Materials Chemistry and Engineering, Kyushu University, Build. CE41, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
3
|
Shikata K, Kikutsuji T, Yasoshima N, Kim K, Matubayasi N. Revealing the hidden dynamics of confined water in acrylate polymers: Insights from hydrogen-bond lifetime analysis. J Chem Phys 2023; 158:2887576. [PMID: 37125720 DOI: 10.1063/5.0148753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/13/2023] [Indexed: 05/02/2023] Open
Abstract
Polymers contain functional groups that participate in hydrogen bond (H-bond) with water molecules, establishing a robust H-bond network that influences bulk properties. This study utilized molecular dynamics (MD) simulations to examine the H-bonding dynamics of water molecules confined within three poly(meth)acrylates: poly(2-methoxyethyl acrylate) (PMEA), poly(2-hydroxyethyl methacrylate) (PHEMA), and poly(1-methoxymethyl acrylate) (PMC1A). Results showed that H-bonding dynamics significantly slowed as the water content decreased. Additionally, the diffusion of water molecules and its correlation with H-bond breakage were analyzed. Our findings suggest that when the H-bonds between water molecules and the methoxy oxygen of PMEA are disrupted, those water molecules persist in close proximity and do not diffuse on a picosecond time scale. In contrast, the water molecules H-bonded with the hydroxy oxygen of PHEMA and the methoxy oxygen of PMC1A diffuse concomitantly with the breakage of H-bonds. These results provide an in-depth understanding of the impact of polymer functional groups on H-bonding dynamics.
Collapse
Affiliation(s)
- Kokoro Shikata
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Takuma Kikutsuji
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Nobuhiro Yasoshima
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
- Department of Information and Computer Engineering, National Institute of Technology, Toyota College, 2-1 Eiseicho, Toyota, Aichi 471-8525, Japan
| | - Kang Kim
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Nobuyuki Matubayasi
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
4
|
Simple Detection and Culture of Circulating Tumor Cells from Colorectal Cancer Patients Using Poly(2-Methoxyethyl Acrylate)-Coated Plates. Int J Mol Sci 2023; 24:ijms24043949. [PMID: 36835361 PMCID: PMC9959032 DOI: 10.3390/ijms24043949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/15/2023] [Accepted: 01/23/2023] [Indexed: 02/18/2023] Open
Abstract
Here we aimed to establish a simple detection method for detecting circulating tumor cells (CTCs) in the blood sample of colorectal cancer (CRC) patients using poly(2-methoxyethyl acrylate) (PMEA)-coated plates. Adhesion test and spike test using CRC cell lines assured efficacy of PMEA coating. A total of 41 patients with pathological stage II-IV CRC were enrolled between January 2018 and September 2022. Blood samples were concentrated by centrifugation by the OncoQuick tube, and then incubated overnight on PMEA-coated chamber slides. The next day, cell culture and immunocytochemistry with anti-EpCAM antibody were performed. Adhesion tests revealed good attachment of CRCs to PMEA-coated plates. Spike tests indicated that ~75% of CRCs from a 10-mL blood sample were recovered on the slides. By cytological examination, CTCs were identified in 18/41 CRC cases (43.9%). In cell cultures, spheroid-like structures or tumor-cell clusters were found in 18/33 tested cases (54.5%). Overall, CTCs and/or growing circulating tumor cells were found in 23/41 CRC cases (56.0%). History of chemotherapy or radiation was significantly negatively correlated with CTC detection (p = 0.02). In summary, we successfully captured CTCs from CRC patients using the unique biomaterial PMEA. Cultured tumor cells will provide important and timely information regarding the molecular basis of CTCs.
Collapse
|
5
|
Serizawa T, Yamaguchi S, Amitani M, Ishii S, Tsuyuki H, Tanaka Y, Sawada T, Kawamura I, Watanabe G, Tanaka M. Alkyl chain length-dependent protein nonadsorption and adsorption properties of crystalline alkyl β-celluloside assemblies. Colloids Surf B Biointerfaces 2022; 220:112898. [DOI: 10.1016/j.colsurfb.2022.112898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/28/2022] [Accepted: 10/01/2022] [Indexed: 11/27/2022]
|
6
|
Kobayashi S, Sugasaki A, Yamamoto Y, Shigenoi Y, Udaka A, Yamamoto A, Tanaka M. Enrichment of Cancer Cells Based on Antibody-Free Selective Cell Adhesion. ACS Biomater Sci Eng 2022; 8:4547-4556. [PMID: 36153975 DOI: 10.1021/acsbiomaterials.2c00662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Blood-compatible and cell-adhering polymer materials are extremely useful for regenerative medicine and disease diagnosis. (Meth)acryl polymers with high hydrophilicity have been widely used in industries, and attempts to apply these polymers in the medical field are frequently reported. We focused on crosslinked polymer films prepared using bifunctional monomers, which are widely used as coating materials, and attempted to alter the cell adhesion behavior while maintaining blood compatibility by changing the chemical structure of the crosslinker. Four bifunctional monomers were studied, three of which were found to be blood-compatible polymers and to suppress platelet adhesion. The adhesion behavior of cancer cells to polymer films varied; moreover, the cancer model cells MCF-7 [EpCAM(+)] and MDA-MB-231 [EpCAM (-)], with different expression levels of epithelial cell adhesion molecule (EpCAM), showed distinct adhesion behavior for each material. We suggest that a combination of these materials has the potential to selectively capture and enrich highly metastatic cancer cells.
Collapse
Affiliation(s)
- Shingo Kobayashi
- Institute for Materials Chemistry and Engineering, Kyushu University, CE41 744 Motooka, Nishi-ku, Fukuoka819-0395, Japan
| | - Atsushi Sugasaki
- Synthetic Organic Chemistry Laboratories, FUJIFILM Corporation, 4000 Kawashiri, Yoshida-cho, Haibara-gun, Shizuoka421-0396, Japan
| | - Yosuke Yamamoto
- Synthetic Organic Chemistry Laboratories, FUJIFILM Corporation, 577 Ushijima, Kaisei-machi, Ashigarakami-gun, Kanagawa258-0022, Japan
| | - Yuta Shigenoi
- Electronic Materials Research Laboratories, FUJIFILM Corporation, 4000 Kawashiri, Yoshida-cho, Haibara-gun, Shizuoka421-0396, Japan
| | - Airi Udaka
- Institute for Materials Chemistry and Engineering, Kyushu University, CE41 744 Motooka, Nishi-ku, Fukuoka819-0395, Japan
| | - Aki Yamamoto
- Institute for Materials Chemistry and Engineering, Kyushu University, CE41 744 Motooka, Nishi-ku, Fukuoka819-0395, Japan
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, CE41 744 Motooka, Nishi-ku, Fukuoka819-0395, Japan
| |
Collapse
|
7
|
Cell Adhesion Strength Indicates the Antithrombogenicity of Poly(2-Methoxyethyl Acrylate) (PMEA): Potential Candidate for Artificial Small-Diameter Blood Vessel. SURFACES 2022. [DOI: 10.3390/surfaces5030027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Poly (2-methoxyethyl acrylate) (PMEA) is a US FDA-approved biocompatible polymer, although there is insufficient work on human umbilical vein endothelial cells (HUVECs) and platelet interaction analysis on PMEA-analogous polymers. In this study, we extensively investigated HUVEC–polymer and platelet–polymer interaction behavior by measuring the adhesion strength using single-cell force spectroscopy. Furthermore, the hydration layer of the polymer interface was observed using frequency-modulation atomic force microscopy. We found that endothelial cells can attach and spread on the PMEA surface with strong adhesion strength compared to other analogous polymers. We found that the hydration layers on the PMEA-analogous polymers were closely related to their weak platelet adhesion behavior. Based on our results, it can be concluded that PMEA is a promising candidate for the construction of artificial small-diameter blood vessels owing to the presence of IW and a hydration layer on the interface.
Collapse
|
8
|
Nishida K, Anada T, Tanaka M. Roles of interfacial water states on advanced biomedical material design. Adv Drug Deliv Rev 2022; 186:114310. [PMID: 35487283 DOI: 10.1016/j.addr.2022.114310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/12/2022] [Accepted: 04/21/2022] [Indexed: 12/15/2022]
Abstract
When biomedical materials come into contact with body fluids, the first reaction that occurs on the material surface is hydration; proteins are then adsorbed and denatured on the hydrated material surface. The amount and degree of denaturation of adsorbed proteins affect subsequent cell behavior, including cell adhesion, migration, proliferation, and differentiation. Biomolecules are important for understanding the interactions and biological reactions of biomedical materials to elucidate the role of hydration in biomedical materials and their interaction partners. Analysis of the water states of hydrated materials is complicated and remains controversial; however, knowledge about interfacial water is useful for the design and development of advanced biomaterials. Herein, we summarize recent findings on the hydration of synthetic polymers, supramolecular materials, inorganic materials, proteins, and lipid membranes. Furthermore, we present recent advances in our understanding of the classification of interfacial water and advanced polymer biomaterials, based on the intermediate water concept.
Collapse
Affiliation(s)
- Kei Nishida
- Institute for Materials Chemistry and Engineering Kyushu university, 744 Motooka, Nishi-ku Fukuoka 819-0395, Japan; Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Japan(1)
| | - Takahisa Anada
- Institute for Materials Chemistry and Engineering Kyushu university, 744 Motooka, Nishi-ku Fukuoka 819-0395, Japan
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering Kyushu university, 744 Motooka, Nishi-ku Fukuoka 819-0395, Japan.
| |
Collapse
|
9
|
Shiomoto S, Inoue K, Higuchi H, Nishimura SN, Takaba H, Tanaka M, Kobayashi M. Characterization of Hydration Water Bound to Choline Phosphate-Containing Polymers. Biomacromolecules 2022; 23:2999-3008. [PMID: 35736642 DOI: 10.1021/acs.biomac.2c00484] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Zwitterionic methacrylate polymers with either choline phosphate (CP) (poly(MCP)) or phosphorylcholine (PC) (poly(MPC)) side groups were analyzed to characterize the bound hydration water molecules as nonfreezing water (NFW), intermediate water (IW), or free water (FW). This characterization was carried out by differential scanning calorimetry (DSC) of polymer/water systems, and the enthalpy changes of cold crystallization and melting were determined. The electron pair orientation of CP is opposite to that of PC, and the former binds the alkyl terminal groups at the phosphate esters. The numbers of NFW and IW molecules per monomer unit of poly(MCP) with an isopropyl terminal group were estimated to be 10.7 and 11.3 mol/mol, respectively, which were slightly greater than those of the poly(MCP) bearing an ethyl terminal group. More NFW and IW molecules hydrated the phosphobetaine polyzwitterions, poly(MCP) and poly(MPC), compared with carboxybetaine and sulfobetaine polymers. Moreover, the hydration states of polyelectrolytes were compared with the zwitterionic polymers. Finally, we discuss the relationship between the amount of hydration water and bio-inert properties.
Collapse
Affiliation(s)
- Shohei Shiomoto
- Graduate School of Engineering, Kogakuin University, Tokyo 192-0015, Japan
| | - Kaito Inoue
- Graduate School of Engineering, Kogakuin University, Tokyo 192-0015, Japan
| | - Hayato Higuchi
- Graduate School of Engineering, Kogakuin University, Tokyo 192-0015, Japan
| | - Shin-Nosuke Nishimura
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Hiromitsu Takaba
- School of Advanced Engineering, Kogakuin University, Tokyo 192-0015, Japan
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Motoyasu Kobayashi
- School of Advanced Engineering, Kogakuin University, Tokyo 192-0015, Japan
| |
Collapse
|
10
|
Poly(2-Methoxyethyl Acrylate) (PMEA)-Coated Anti-Platelet Adhesive Surfaces to Mimic Native Blood Vessels through HUVECs Attachment, Migration, and Monolayer Formation. COATINGS 2022. [DOI: 10.3390/coatings12060869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Confluent monolayers of human umbilical vein endothelial cells (HUVECs) on a poly(2-methoxyethyl acrylate) (PMEA) antithrombogenic surface play a major role in mimicking the inner surface of native blood vessels. In this study, we extensively investigated the behavior of cell–polymer and cell–cell interactions by measuring adhesion strength using single-cell force spectroscopy. In addition, the attachment and migration of HUVECs on PMEA-analogous substrates were detected, and the migration rate was estimated. Moreover, the bilateral migration of HUVECs between two adjacent surfaces was observed. Furthermore, the outer surface of HUVEC was examined using frequency-modulation atomic force microscopy (FM-AFM). Hydration was found to be an indication of a healthy glycocalyx layer. The results were compared with the hydration states of individual PMEA-analogous polymers to understand the adhesion mechanism between the cells and substrates in the interface region. HUVECs could attach and spread on the PMEA surface with stronger adhesion strength than self-adhesion strength, and migration occurred over the surface of analogue polymers. We confirmed that platelets could not adhere to HUVEC monolayers cultured on the PMEA surface. FM-AFM images revealed a hydration layer on the HUVEC surfaces, indicating the presence of components of the glycocalyx layer in the presence of intermediate water. Our findings show that PMEA can mimic original blood vessels through an antithrombogenic HUVEC monolayer and is thus suitable for the construction of artificial small-diameter blood vessels.
Collapse
|
11
|
Ikemoto Y, Harada Y, Tanaka M, Nishimura SN, Murakami D, Kurahashi N, Moriwaki T, Yamazoe K, Washizu H, Ishii Y, Torii H. Infrared Spectra and Hydrogen-Bond Configurations of Water Molecules at the Interface of Water-Insoluble Polymers under Humidified Conditions. J Phys Chem B 2022; 126:4143-4151. [PMID: 35639685 PMCID: PMC9189834 DOI: 10.1021/acs.jpcb.2c01702] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Elucidating the state of interfacial water, especially the hydrogen-bond configurations, is considered to be key for a better understanding of the functions of polymers that are exhibited in the presence of water. Here, an analysis in this direction is conducted for two water-insoluble biocompatible polymers, poly(2-methoxyethyl acrylate) and cyclic(poly(2-methoxyethyl acrylate)), and a non-biocompatible polymer, poly(n-butyl acrylate), by measuring their IR spectra under humidified conditions and by carrying out theoretical calculations on model complex systems. It is found that the OH stretching bands of water are decomposed into four components, and while the higher-frequency components (with peaks at ∼3610 and ∼3540 cm-1) behave in parallel with the C═O and C-O-C stretching and CH deformation bands of the polymers, the lower-frequency components (with peaks at ∼3430 and ∼3260 cm-1) become pronounced to a greater extent with increasing humidity. From the theoretical calculations, it is shown that the OH stretching frequency that is distributed from ∼3650 to ∼3200 cm-1 is correlated to the hydrogen-bond configurations and is mainly controlled by the electric field that is sensed by the vibrating H atom. By combining these observed and calculated results, the configurations of water at the interface of the polymers are discussed.
Collapse
Affiliation(s)
- Yuka Ikemoto
- Spectroscopy Division, Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Yoshihisa Harada
- Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan.,Synchrotron Radiation Research Organization, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Masaru Tanaka
- Institute for Material Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Shin-Nosuke Nishimura
- Institute for Material Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Daiki Murakami
- Institute for Material Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Naoya Kurahashi
- Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan.,Synchrotron Radiation Research Organization, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Taro Moriwaki
- Spectroscopy Division, Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Kosuke Yamazoe
- Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan.,Synchrotron Radiation Research Organization, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hitoshi Washizu
- Graduate School of Information Science, University of Hyogo, 7-1-28 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Yoshiki Ishii
- Graduate School of Information Science, University of Hyogo, 7-1-28 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Hajime Torii
- Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, and Department of Optoelectronics and Nanostructure Science, Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561, Japan
| |
Collapse
|
12
|
Mollahosseini A, Abdelrasoul A. Novel Insights in Hemodialysis: Most Recent Theories on the Membrane Hemocompatibility Improvement. BIOMEDICAL ENGINEERING ADVANCES 2022. [DOI: 10.1016/j.bea.2022.100034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
13
|
Nishida K, Nishimura SN, Tanaka M. Selective Accumulation to Tumor Cells with Coacervate Droplets Formed from a Water-Insoluble Acrylate Polymer. Biomacromolecules 2022; 23:1569-1580. [PMID: 35089709 DOI: 10.1021/acs.biomac.1c01343] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Selective targeting of specific cells without the use of biological ligands has not been achieved. In the present study, we revealed that the coacervate droplets formed from poly(2-methoxyethyl acrylate) (PMEA) and its derivatives selectively accumulated to tumor cells. PMEA derivatives, which are insoluble acrylate polymers, induced coacervation in water to form polymer-dense droplets via hydrophobic interaction. Interestingly, the accumulation of coacervate droplets to tumor cells was involved in the bound water content of PMEA derivatives. Coacervate droplets with a high bound water content accumulated and internalized up to 36.6-fold higher in HeLa cervical tumor cells than in normal human fibroblasts (NHDF). Moreover, the interactions between coacervate droplets and plasma membrane components such as CD44 played a key role in this accumulation process. Therefore, coacervate droplets formed from PMEA derivatives have great clinical potential in tumor cell detection, development of alternative tumor-targeting ligands, and optimization of drug delivery carriers.
Collapse
Affiliation(s)
- Kei Nishida
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Shin-Nosuke Nishimura
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
14
|
Nishida K, Sekida S, Anada T, Tanaka M. Modulation of Biological Responses of Tumor Cells Adhered to Poly(2-methoxyethyl acrylate) with Increasing Cell Viability under Serum-Free Conditions. ACS Biomater Sci Eng 2022; 8:672-681. [PMID: 35037460 DOI: 10.1021/acsbiomaterials.1c01469] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Circulating tumor cells in body fluids are important biomarkers in cancer diagnosis. The culture of tumor cells isolated from body fluids can provide intrinsic information about tumors and can be used to screen for the best anticancer drugs. However, the culture of primary tumor cells has been hindered by their low viability and difficulties in recapitulating the phenotype of primary tumors in in vitro culture. The culture of tumor cells under serum-free conditions is one of the methodologies to maintain the phenotype and genotype of primary tumors. Poly(2-methoxyethyl acrylate) (PMEA)-coated substrates have been investigated to prolong the proliferation of tumor cells under serum-free conditions. In this study, we investigated the detailed behavior and the mechanism of the increase in tumor cell viability after adherence to PMEA substrates. The blebbing formation of tumor cells on PMEA was attributed not to apoptosis but to the low adhesion strength of cells on PMEA. Moreover, blebbing tumor cells showed amoeboid movement and formed clusters with other cells via N-cadherin, leading to an increase in tumor cell viability. Furthermore, the behaviors of tumor cells adhered to PMEA under serum-free conditions were involved in the activation of the PI3K and Rho-associated protein kinase pathways. Thus, we propose that PMEA would be suitable for the development of devices to cultivate primary tumor cells under serum-free conditions for the label-free diagnosis of cancer.
Collapse
Affiliation(s)
- Kei Nishida
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Shogo Sekida
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takahisa Anada
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
15
|
Fluorine-containing bio-inert polymers: Roles of intermediate water. Acta Biomater 2022; 138:34-56. [PMID: 34700043 DOI: 10.1016/j.actbio.2021.10.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/06/2021] [Accepted: 10/18/2021] [Indexed: 12/13/2022]
Abstract
Fluorine-containing polymers are used not only in industrial processes but also in medical applications, because they exhibit excellent heat, weather, and chemical resistance. As these polymers are not easily degraded in our body, it is difficult to use them in applications that require antithrombotic properties, such as artificial blood vessels. The material used for medical applications should not only be stable in vivo, but it should also be inert to biomolecules such as proteins or cells. In this review, this property is defined as "bio-inert," and previous studies in this field are summarized. Bio-inert materials are less recognized as foreign substances by proteins or cells in the living body, and they must be covered at interfaces designed with the concept of intermediate water (IW). On the basis of this concept, we present here the current understanding of bio-inertness and unusual blood compatibility found in fluoropolymers used in biomedical applications. IW is the water that interacts with materials with moderate strength and has been quantified by a variety of analytical methods and simulations. For example, by using differential scanning calorimetry (DSC) measurements, IW was defined as water frozen at around -40°C. To consider the role of the IW, quantification methods of the hydration state of polymers are also summarized. These investigations have been conducted independently because of the conflict between hydrophobic fluorine and bio-inert properties that require hydrophilicity. In recent years, not many materials have been developed that incorporate the good points of both aspects, and their properties have seldom been linked to the hydration state. This has been critically performed now. Furthermore, fluorine-containing polymers in medical use are reviewed. Finally, this review also describes the molecular design of the recently reported fluorine-containing bio-inert polymers for controlling their hydration state. STATEMENT OF SIGNIFICANCE: A material covered with a hydration layer known as intermediate water that interacts moderately with other objects is difficult to be recognized as a foreign substance and exhibits bio-inert properties. Fluoropolymers show high durability, but conflict with bio-inert characteristics requiring hydrophilicity as these research studies have been conducted independently. On the other hand, materials that combine the advantages of both hydrophobic and hydrophilic features have been developed recently. Here, we summarize the molecular architecture and analysis methods that control intermediate water and provide a guideline for designing novel fluorine-containing bio-inert materials.
Collapse
|
16
|
Le TMN, Van Sang L, Washizu H. Structural order of water molecules around polyrotaxane including PEG, α-cyclodextrin, and α-lipoic acid linker on gold surface by molecular dynamics simulations. Phys Chem Chem Phys 2022; 24:2176-2184. [PMID: 35006224 DOI: 10.1039/d1cp04487g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In materials science, water plays an important part, especially at the molecular level. It shows various properties when sorbed onto surfaces of polymers. The structure of the molecular water ensemble in the vicinity of the polymers is under discussion. In this study, we used molecular dynamics methods to analyze the structure of water in the vicinity of the polymer polyrotaxane (PR), composed of α-cyclodextrins (α-CDs), a poly(ethylene glycol) (PEG) axial chain, and α-lipoic acid linkers, at various temperatures. The distribution of water around the functional groups, hydrogen bond network, and tetrahedral order were analyzed to classify the various types of water around the polymer. We found that the tetrahedral order of water had a strained relationship from the XES experiment. Four water regions were separated from each other in the vicinity of 1 to 5 Å around PR. The intermediate and non-freezing water were formed due to the interaction between water molecules and the functional groups, such as hydroxyl, ether, and ester.
Collapse
Affiliation(s)
- Tue Minh Nhu Le
- Graduate School of Simulation Studies, University of Hyogo, Kobe, Japan.
| | - Le Van Sang
- Graduate School of Information Science, University of Hyogo, Kobe, Japan.
| | - Hitoshi Washizu
- Graduate School of Information Science, University of Hyogo, Kobe, Japan.
| |
Collapse
|
17
|
Watanabe Y, Takaoka S, Haga Y, Kishi K, Hakozaki S, Narumi A, Kato T, Tanaka M, Fukushima K. Organic carboxylate salt-enabled alternative synthetic routes for bio-functional cyclic carbonates and aliphatic polycarbonates. Polym Chem 2022. [DOI: 10.1039/d2py00705c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A cyclic carbonate with an ammonium carboxylate residue was found to serve as a nucleophile for esterification with alkyl bromides via the SN2 mechanism.
Collapse
Affiliation(s)
- Yuya Watanabe
- Department of Polymer Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Shunya Takaoka
- Department of Polymer Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Yuta Haga
- Department of Polymer Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Kohei Kishi
- Department of Polymer Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Shunta Hakozaki
- Department of Polymer Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Atsushi Narumi
- Department of Polymer Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Takashi Kato
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kazuki Fukushima
- Department of Polymer Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
18
|
Murakami D, Nishimura SN, Tanaka Y, Tanaka M. Observing the repulsion layers on blood-compatible polymer-grafted interfaces by frequency modulation atomic force microscopy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 133:112596. [DOI: 10.1016/j.msec.2021.112596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/12/2021] [Accepted: 12/03/2021] [Indexed: 10/19/2022]
|
19
|
Lee W, Jeong SH, Lim YW, Lee H, Kang J, Lee H, Lee I, Han HS, Kobayashi S, Tanaka M, Bae BS. Conformable microneedle pH sensors via the integration of two different siloxane polymers for mapping peripheral artery disease. SCIENCE ADVANCES 2021; 7:eabi6290. [PMID: 34826244 PMCID: PMC8626065 DOI: 10.1126/sciadv.abi6290] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 10/07/2021] [Indexed: 05/25/2023]
Abstract
Flexible microneedles are important tools that allow access to the inside of biological tissue from the outside without surgery. However, it had been hard to realize microneedle sensor arrays on flexible substrates because of the difficulty of attaining a needle with a high Young’s modulus for a selected area on a thin or soft substrate. In this work, we developed a microneedle sensor on a hybrid substrate based on high Young’s modulus epoxy siloxane for the microneedles and low Young’s modulus polydimethylsiloxane for the conformable substrate. Polyaniline was deposited on the microneedle for pH sensing. The mechanical durability of the device was assessed by insertion into pig skin 1000 times. Last, the flexible microneedle pH sensors showed their utility for monitoring pH distribution in rats in a peripheral artery diseases model.
Collapse
Affiliation(s)
- Wonryung Lee
- Wearable Platform Materials Technology Center, Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea
| | - Seung-hwan Jeong
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Department of Urology, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Young-Woo Lim
- Wearable Platform Materials Technology Center, Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hyunhwan Lee
- Wearable Platform Materials Technology Center, Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Joohyuk Kang
- Wearable Platform Materials Technology Center, Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea
| | - Hyunjae Lee
- Samsung Electronics Semiconductor R&D Center, Hawseong 18448, Republic of Korea
| | - Injun Lee
- Wearable Platform Materials Technology Center, Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hyung-Seop Han
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea
| | - Shingo Kobayashi
- Institute for Materials Chemistry and Engineering, Kyushu University, CE41 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, CE41 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Byeong-Soo Bae
- Wearable Platform Materials Technology Center, Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
20
|
Yasoshima N, Ishiyama T, Gemmei-Ide M, Matubayasi N. Molecular Structure and Vibrational Spectra of Water Molecules Sorbed in Poly(2-methoxyethylacrylate) Revealed by Molecular Dynamics Simulation. J Phys Chem B 2021; 125:12095-12103. [PMID: 34677976 DOI: 10.1021/acs.jpcb.1c07342] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Molecular dynamics (MD) simulations of water sorption in poly(2-methoxyethylacrylate) (PMEA) are carried out to elucidate the hydrogen bonding (H-bonding) structures of the water molecules and the side chains of PMEA. A PMEA model incorporating lone-pair virtual sites on the carbonyl and methoxy oxygens of the side chain of PMEA, which are the key interaction sites in a biocompatible polymer, is newly developed. The PMEA model well reproduces the experimentally observed features in the infrared spectra of the hydrated polymer, as well as the radial distribution function of the water molecules in contact with the polymer, as calculated by ab initio MD simulations. The MD simulation results reveal that water molecules tend to form H-bonds with the carbonyl oxygen and the methoxy oxygen of the side chain of PMEA simultaneously, which enhance the "head-to-tail" stacking structure of the side chains at a low concentration range of water. Further penetration of water into the PMEA structure gradually increases the water-water H-bonding state and promotes the formation of water clusters even below the equilibrium water content.
Collapse
Affiliation(s)
- Nobuhiro Yasoshima
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Osaka 560-8531, Japan
| | - Tatsuya Ishiyama
- Department of Applied Chemistry, Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Makoto Gemmei-Ide
- Department of Applied Chemistry, Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Nobuyuki Matubayasi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Osaka 560-8531, Japan
| |
Collapse
|
21
|
Liu S, Kobayashi S, Nishimura S, Ueda T, Tanaka M. Effect of pendant groups on the blood compatibility and hydration states of poly(2‐oxazoline)s. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Shichen Liu
- Department of Applied Chemistry Graduate School of Kyushu University Fukuoka Japan
| | - Shingo Kobayashi
- Institute for Materials Chemistry and Engineering Kyushu University Fukuoka Japan
| | | | - Tomoya Ueda
- Department of Applied Chemistry Graduate School of Kyushu University Fukuoka Japan
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering Kyushu University Fukuoka Japan
| |
Collapse
|
22
|
Nishida K, Anada T, Kobayashi S, Ueda T, Tanaka M. Effect of bound water content on cell adhesion strength to water-insoluble polymers. Acta Biomater 2021; 134:313-324. [PMID: 34332104 DOI: 10.1016/j.actbio.2021.07.058] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/22/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023]
Abstract
Adhesion of cells on biomaterials plays an essential role in modulating cellular functions. Although hydration of biomaterials occurs under biological conditions, it is challenging to systematically evaluate the correlation of hydrated water content in biomaterials with the cell adhesion strength. In this report, we investigated the effect of bound water content on the adhesion strength of cells on poly(2-methoxyethyl acrylate) (PMEA) analogue substrates. Water-insoluble PMEA analogues were synthesized to fabricate substrates with a systemically controlled bound water content. To assess the surface properties of their substrates, contact angle measurement, atomic force microscopy (AFM), and fluorescence measurement were conducted. To reflect the effect of bound water of PMEA analogues, the relationship between the bound water content and cell adhesion behavior was evaluated under serum-free condition. From the single cell force spectrometry (SCFS) and microscopic analysis, it revealed that the increment of bound water content on the substrates decreased cell adhesion strength and cell spreading on the substrates. The bound water content exhibited a good correlation with adhesion strength, spreading area, circularity, and aspect ratio of cells. Our findings indicate that the bound water content could contribute to the development of a novel biomaterial and evaluation of cell behaviors on biomaterials. STATEMENT OF SIGNIFICANCE: For coordinating cell functions, such as growth, mobility, and differentiation, modulating the adhesion strength between cells and their environments is important. Although the hydration to biomaterials has been reported to be closely related to a antifouling property, the effect of hydration water on the cell adhesion behavior is not well understood. We present the first demonstration of essential relationship between cell adhesion strength and hydrated water on a biomaterials surface using the water-insoluble polymers with different hydrated water content. The results reveal that the hydrated water content of polymer substrates strong correlation with adhesion strength of cells. Collectively, the hydrated water content of the biomaterials will be a predominant factor affecting the cell adhesion strength and behavior.
Collapse
|
23
|
Mondal S, Kang J, Park K, Lim JM, Ha JH, Kwak K, Cho M. Adsorbed Water Structure on Acrylate-Based Biocompatible Polymer Surface. J Phys Chem Lett 2021; 12:9275-9282. [PMID: 34534434 DOI: 10.1021/acs.jpclett.1c02491] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The role of water in the excellent biocompatibility of the acrylate-based polymers widely used for antibiofouling coating material has been realized previously. Here, we report femtosecond mid-infrared pump-probe spectroscopy of the OD stretch band of HOD molecule adsorbed on highly biocompatible poly(2-methoxyethyl) acrylate [PMEA] and poorly biocompatible poly(2-phenoxyethyl) acrylate [PPEA], both of which reveal that there are two water species with significantly different vibrational lifetime. PMEA interacts more strongly with water than PPEA through the H-bonding interaction between carbonyl (C═O) and water. The vibrational lifetime of the OD stretch in PPEA is notably longer by factors of 3 and 7 than those in PMEA and bulk water, respectively. The IR-pump visible-probe photothermal imaging further unravels substantial spatial overlap between polymer CO group and water for hydrated PMEA and a significant difference in surface morphology than those in PPEA, which exhibits the underlying relationships among polymer-water interaction, surface morphology, and biocompatibility.
Collapse
Affiliation(s)
- Saptarsi Mondal
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Department of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jooyoun Kang
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Department of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Kwanghee Park
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Department of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jong Min Lim
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Department of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jeong-Hyon Ha
- Korea Basic Science Institute, Natural Science Campus, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Kyungwon Kwak
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Department of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Minhaeng Cho
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Department of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
24
|
Zhong Y, Saleh A, Inal S. Decoding Electrophysiological Signals with Organic Electrochemical Transistors. Macromol Biosci 2021; 21:e2100187. [PMID: 34463019 DOI: 10.1002/mabi.202100187] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/19/2021] [Indexed: 11/08/2022]
Abstract
The organic electrochemical transistor (OECT) has unique characteristics that distinguish it from other transistors and make it a promising electronic transducer of biological events. High transconductance, flexibility, and biocompatibility render OECTs ideal for detecting electrophysiological signals. Device properties such as transconductance, response time, and noise level should, however, be optimized to adapt to the needs of various application environments including in vitro cell culture, human skin, and inside of a living system. This review includes an overview of the origin of electrophysiological signals, the working principles of OECTs, and methods for performance optimization. While covering recent research examples of the use of OECTs in electrophysiology, a perspective is provided for next-generation bioelectric sensors and amplifiers for electrophysiology applications.
Collapse
Affiliation(s)
- Yizhou Zhong
- Organic Bioelectronics Laboratory, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Abdulelah Saleh
- Organic Bioelectronics Laboratory, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Sahika Inal
- Organic Bioelectronics Laboratory, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
25
|
Osaki M, Yonei S, Ueda C, Ikura R, Park J, Yamaguchi H, Harada A, Tanaka M, Takashima Y. Mechanical Properties with Respect to Water Content of Host–Guest Hydrogels. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00970] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Motofumi Osaki
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
- Project Research Center for Fundamental Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Shin Yonei
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Chiharu Ueda
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Ryohei Ikura
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Junsu Park
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Hiroyasu Yamaguchi
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
- Project Research Center for Fundamental Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Akira Harada
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
- Project Research Center for Fundamental Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, CE41 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshinori Takashima
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, 1-1 Yamada-oka, Suita, Osaka 565-0871, Japan
- Project Research Center for Fundamental Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
26
|
Kurokawa N, Endo F, Bito K, Maeda T, Hotta A. Antithrombogenic poly(2-methoxyethyl acrylate) elastomer via triblock copolymerization with poly(methyl methacrylate). POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
27
|
Kuo AT, Urata S, Koguchi R, Sonoda T, Kobayashi S, Tanaka M. Effects of Side-Chain Spacing and Length on Hydration States of Poly(2-methoxyethyl acrylate) Analogues: A Molecular Dynamics Study. ACS Biomater Sci Eng 2021; 7:2383-2391. [PMID: 33979126 DOI: 10.1021/acsbiomaterials.1c00388] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hydration states of polymers are known to directly influence the adsorption of biomolecules. Particularly, intermediate water (IW) has been found able to prevent protein adsorption. Experimental studies have examined the IW content and nonthrombogenicity of poly(2-methoxyethyl acrylate) analogues with different side-chain spacings and lengths, which are HPx (x is the number of backbone carbons in a monomer) and PMCyA (y is the number of carbons in-between ester and ether oxygens of the side-chain) series, respectively. HPx was reported to possess more IW content but lower nonthrombogenicity compared to PMCyA with analogous composition. To understand the reason for the conflict, molecular dynamics simulations were conducted to elucidate the difference in the properties between the HPx and PMCyA. Simulation results showed that the presence of more methylene groups in the side chain more effectively prohibits water penetration in the polymer than those in the polymer backbone, causing a lower IW content in the PMCyA. At a high water content, the methoxy oxygen in the shorter side chain of the HPx cannot effectively bind water compared to that in the PMCyA side chain. HPx side chains may have more room to contact with molecules other than water (e.g., proteins), causing experimentally less nonthrombogenicity of HPx than that of PMCyA. In summary, theoretical simulations successfully explained the difference in the effects of side-chain spacing and length in atomistic scale.
Collapse
Affiliation(s)
- An-Tsung Kuo
- Innovative Technology Laboratories, AGC Inc., Yokohama 230-0045, Japan
| | - Shingo Urata
- Innovative Technology Laboratories, AGC Inc., Yokohama 230-0045, Japan
| | - Ryohei Koguchi
- Materials Integration Laboratories, AGC Inc., Yokohama 230-0045, Japan
| | - Toshiki Sonoda
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Shingo Kobayashi
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
28
|
Liu S, Kobayashi S, Sonoda T, Tanaka M. Poly(tertiary amide acrylate) Copolymers Inspired by Poly(2-oxazoline)s: Their Blood Compatibility and Hydration States. Biomacromolecules 2021; 22:2718-2728. [PMID: 34081446 DOI: 10.1021/acs.biomac.1c00411] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Modifying the side chain of poly(meth)acrylate with moieties originating from biocompatible polymers can be an effective method for developing novel blood-compatible polymers. Inspired by biocompatible poly(2-methyl-2-oxazoline) (PMeOx) and poly(2-ethyl-2-oxazoline) (PEtOx), four water-soluble poly(tertiary amide acylate) analogues bearing a pendant tertiary amide were synthesized. The results of hemolysis and cell viability tests showed that all the poly(tertiary amide acylate) analogues were compatible with red blood cells, HeLa cells, and normal human dermal fibroblasts as PMeOx or PEtOx. Among the four poly(tertiary amide acylate) analogues, poly[2-(N-methylpropionamido)ethyl acrylate] (PPEA) and poly[2-(N-ethylacetamido)ethyl acrylate] (PEAE) showed thermosensitivity in aqueous solution; especially, PPEA (10 mg mL-1) exhibited a lower critical solution temperature of 37 °C. Water-insoluble copolymers were prepared to investigate the possibility of applying these synthesized polymers as blood-compatible coatings. The poly[n-butyl methacrylate70-co-2-(N-methylacetamido)ethyl methacrylate30] (coPAEM) coatings significantly suppressed plasma protein adsorption, denaturation degree of adsorbed fibrinogen, and platelet adhesion. Intermediate water (IW), whose content can generally indicate the blood compatibility of polymers, was found in all hydrated homopolymers and copolymers by differential scanning calorimetry. The present work demonstrated that the tertiary amide moiety in the side chain of poly(meth)acrylate was an effective contributor to blood compatibility and IW.
Collapse
Affiliation(s)
- Shichen Liu
- Department of Chemistry and Biochemistry, Graduate School of Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Shingo Kobayashi
- Institute for Materials Chemistry and Engineering, Kyushu University, CE41 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Toshiki Sonoda
- Department of Chemistry and Biochemistry, Graduate School of Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, CE41 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
29
|
Attachment and Growth of Fibroblast Cells on Poly (2-Methoxyethyl Acrylate) Analog Polymers as Coating Materials. COATINGS 2021. [DOI: 10.3390/coatings11040461] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The regulation of adhesion and the subsequent behavior of fibroblast cells on the surface of biomaterials is important for successful tissue regeneration and wound healing by implanted biomaterials. We have synthesized poly(ω-methoxyalkyl acrylate)s (PMCxAs; x indicates the number of methylene carbons between the ester and ethyl oxygen), with a carbon chain length of x = 2–6, to investigate the regulation of fibroblast cell behavior including adhesion, proliferation, migration, differentiation and collagen production. We found that PMC2A suppressed the cell spreading, protein adsorption, formation of focal adhesion, and differentiation of normal human dermal fibroblasts, while PMC4A surfaces enhanced them compared to other PMCxAs. Our findings suggest that fibroblast activities attached to the PMCxA substrates can be modified by changing the number of methylene carbons in the side chains of the polymers. These results indicate that PMCxAs could be useful coating materials for use in skin regeneration and wound dressing applications.
Collapse
|
30
|
Sonoda T, Kobayashi S, Tanaka M. Periodically Functionalized Linear Polyethylene with Tertiary Amino Groups via Regioselective Ring-Opening Metathesis Polymerization. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Toshiki Sonoda
- Department of Chemistry and Biochemistry, Graduate School of Kyushu University, 744 Moto-oka,
Nishi-ku, Fukuoka 819-0395, Japan
| | - Shingo Kobayashi
- Institute for Materials Chemistry and Engineering, Kyushu University, CE41 744 Motooka,
Nishi-ku, Fukuoka 819-0395, Japan
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, CE41 744 Motooka,
Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
31
|
Montagna V, Takahashi J, Tsai MY, Ota T, Zivic N, Kawaguchi S, Kato T, Tanaka M, Sardon H, Fukushima K. Methoxy-Functionalized Glycerol-Based Aliphatic Polycarbonate: Organocatalytic Synthesis, Blood Compatibility, and Hydrolytic Property. ACS Biomater Sci Eng 2021; 7:472-481. [DOI: 10.1021/acsbiomaterials.0c01460] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Valentina Montagna
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 72, 20018 Donostia-San Sebastian, Spain
- Department of Polymer Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Junko Takahashi
- Department of Polymer Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Meng-Yu Tsai
- Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Takayuki Ota
- Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Nicolas Zivic
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 72, 20018 Donostia-San Sebastian, Spain
| | - Seigou Kawaguchi
- Department of Polymer Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Takashi Kato
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasugakoen, Kasuga, Fukuoka 816-8580, Japan
| | - Haritz Sardon
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 72, 20018 Donostia-San Sebastian, Spain
| | - Kazuki Fukushima
- Department of Polymer Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
32
|
Kuo AT, Urata S, Koguchi R, Sonoda T, Kobayashi S, Tanaka M. Molecular Dynamics Study on the Water Mobility and Side-Chain Flexibility of Hydrated Poly(ω-methoxyalkyl acrylate)s. ACS Biomater Sci Eng 2020; 6:6690-6700. [PMID: 33320637 DOI: 10.1021/acsbiomaterials.0c01220] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Intermediate water (IW) is known to play an important role in the antifouling property of biocompatible polymers. However, how IW prevents protein adsorption is still unclear. To understand the role of IW in the antifouling mechanism, molecular dynamics simulation was used to investigate the dynamic properties of water and side-chains for hydrated poly(ω-methoxyalkyl acrylate)s (PMCxA, where x indicates the number of methylene carbons) with x = 1-6 and poly(n-butyl acrylate) (PBA) in this study. Since the polymers uptake more water than their equilibrium water content (EWC) at the polymer/water interface, we analyzed the hydrated polymers at a water content higher than that of EWC. It was found that the water molecules interacting with one polymer oxygen atom (BW1), of which most are IW molecules, in PMC2A exhibit the lowest mobility, while those in PBA and PMC1A show a higher mobility. The result was consistent with the expectation that the biocompatible polymer with a long-resident hydration layer possesses good antifouling property. Through the detailed analysis of side-chain binding with three different types of BW1 molecules, we found that the amount of side-chains simultaneously interacting with two BW1 molecules, which exhibit the highest flexibility among the three kinds of side-chains, is the lowest for PMC1A. The high mobility of BW1 is thus suggested as the main factor for the poor protein adsorption resistance of PMC1A even though it possesses enough IW content and relatively flexible side-chains. Contrarily, a maximum amount of side-chains simultaneously interacting with two BW1 molecules was found in the hydrated PMC3A. The moderate side-chain length of PMC3A allows side-chains to simultaneously interact with two BW1 molecules and minimizes the hydrophobic part attractively interacting with a protein at the polymer/water interface. The unique structure of PMC3A may be the reason causing the best protein adsorption resistance among the PMCxAs.
Collapse
Affiliation(s)
- An-Tsung Kuo
- Innovative Technology Laboratories, AGC Inc., Yokohama 230-0045, Japan
| | - Shingo Urata
- Innovative Technology Laboratories, AGC Inc., Yokohama 230-0045, Japan
| | - Ryohei Koguchi
- Materials Integration Laboratories, AGC Inc., Yokohama 230-0045, Japan
| | - Toshiki Sonoda
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Shingo Kobayashi
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
33
|
Tanaka M, Morita S, Hayashi T. Role of interfacial water in determining the interactions of proteins and cells with hydrated materials. Colloids Surf B Biointerfaces 2020; 198:111449. [PMID: 33310639 DOI: 10.1016/j.colsurfb.2020.111449] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/09/2020] [Accepted: 11/01/2020] [Indexed: 01/27/2023]
Abstract
Water molecules play a crucial role in biointerfacial interactions, including protein adsorption and desorption. To understand the role of water in the interaction of proteins and cells at biological interfaces, it is important to compare particular states of hydration water with various physicochemical properties of hydrated biomaterials. In this review, we discuss the fundamental concepts for determining the interactions of proteins and cells with hydrated materials along with selected examples corresponding to our recent studies, including poly(2-methoxyethyl acrylate) (PMEA), PMEA derivatives, and other biomaterials. The states of water were analyzed by differential scanning calorimetry, in situ attenuated total reflection infrared spectroscopy, and surface force measurements. We found that intermediate water which is loosely bound to a biomaterial, is a useful indicator of the bioinertness of material surfaces. This finding on intermediate water provides novel insights and helps develop novel experimental models for understanding protein adsorption in a wide range of materials, such as those used in biomedical applications.
Collapse
Affiliation(s)
- Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, CE41 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| | - Shigeaki Morita
- Department of Engineering Science, Osaka Electro-Communication University, 18-8 Hatsucho, Neyagawa, 572-8530, Japan
| | - Tomohiro Hayashi
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8502, Japan; JST-PRESTO, 4-1-8 Hon-cho, Kawaguchi, Saitama, 332-0012, Japan
| |
Collapse
|
34
|
Ma Y, Zhang Z, Nitin N, Sun G. Integration of photo-induced biocidal and hydrophilic antifouling functions on nanofibrous membranes with demonstrated reduction of biofilm formation. J Colloid Interface Sci 2020; 578:779-787. [DOI: 10.1016/j.jcis.2020.06.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/20/2020] [Accepted: 06/07/2020] [Indexed: 01/05/2023]
|
35
|
Sonoda T, Kobayashi S, Herai K, Tanaka M. Side-Chain Spacing Control of Derivatives of Poly(2-methoxyethyl acrylate): Impact on Hydration States and Antithrombogenicity. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01144] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Toshiki Sonoda
- Department of Applied Molecular Chemistry, Graduate School of Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Shingo Kobayashi
- Institute for Materials Chemistry and Engineering, Kyushu University, CE41 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Keisuke Herai
- Department of Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, CE41 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
36
|
Toyokawa Y, Kobayashi S, Tsuchiya H, Shibuya T, Aoki M, Sumiya J, Ooyama S, Ishizawa T, Makino N, Ueno Y, Tanaka M. A fully covered self-expandable metallic stent coated with poly (2-methoxyethyl acrylate) and its derivative: In vitro evaluation of early-stage biliary sludge formation inhibition. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 120:111386. [PMID: 33545807 DOI: 10.1016/j.msec.2020.111386] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 08/07/2020] [Accepted: 08/12/2020] [Indexed: 01/02/2023]
Abstract
The adhesion and deformation behavior of proteins at the inner surface of fully covered, self-expandable metallic stents coated with biocompatible polymers, poly(2-methoxyethyl acrylate) (PMEA) and poly(3-methoxypropyl acrylate) (PMC3A), were analyzed. Model bile solution, proteins, and bacteria were used to unravel the inhibitory ability of the polymer coatings. Adsorbance of proteins and adherence of bacteria were both strongly inhibited by the polymer coatings. Circulation tests were performed under clinical conditions using human bile from patients. Adsorption/deformation of proteins and early-stage sludge formation were inhibited on stent surfaces coated with PMEA derivatives. The present study revealed that early-stage biliary sludge formation on PMEA- and PMC3A-coated stents was suppressed due to the strong resistance of the polymers to protein adsorption/deformation, brought about by intermediate water in hydrated polymer coatings, which is not present in conventional coating materials, such as silicone and polyurethane.
Collapse
Affiliation(s)
- Yoshihide Toyokawa
- Former Piolax Medical Devices, Inc., 2265-3 Kamiyabe-Cho, Totsuka-Ku, Yokohama-Shi, Kanagawa 245-0053, Japan
| | - Shingo Kobayashi
- Soft Materials Chemistry, Institute for Materials Chemistry and Engineering, Kyushu University, Build. CE41, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
| | - Haruka Tsuchiya
- Former Frontier Center for Organic Materials, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Tomokazu Shibuya
- Former Frontier Center for Organic Materials, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Makiko Aoki
- Former Piolax Medical Devices, Inc., 2265-3 Kamiyabe-Cho, Totsuka-Ku, Yokohama-Shi, Kanagawa 245-0053, Japan
| | - Jun Sumiya
- Piolax Medical Devices, Inc., 2265-3 Kamiyabe-Cho, Totsuka-Ku, Yokohama-Shi, Kanagawa 245-0053, Japan
| | - Shun Ooyama
- Piolax Medical Devices, Inc., 2265-3 Kamiyabe-Cho, Totsuka-Ku, Yokohama-Shi, Kanagawa 245-0053, Japan
| | - Tetsuya Ishizawa
- Yamagata University School of Medicine, Course of Internal Medicine and Therapeutics, Department of Gastroenterology and Division of Endoscopy, Yamagata University Hospital, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan
| | - Naohiko Makino
- Yamagata University School of Medicine, Course of Internal Medicine and Therapeutics, Department of Gastroenterology and Division of Endoscopy, Yamagata University Hospital, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan
| | - Yoshiyuki Ueno
- Yamagata University School of Medicine, Course of Internal Medicine and Therapeutics, Department of Gastroenterology and Division of Endoscopy, Yamagata University Hospital, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan
| | - Masaru Tanaka
- Soft Materials Chemistry, Institute for Materials Chemistry and Engineering, Kyushu University, Build. CE41, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan; Former Frontier Center for Organic Materials, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan.
| |
Collapse
|
37
|
Nguyen TL, Kawata Y, Ishihara K, Yusa SI. Synthesis of Amphiphilic Statistical Copolymers Bearing Methoxyethyl and Phosphorylcholine Groups and Their Self-Association Behavior in Water. Polymers (Basel) 2020; 12:E1808. [PMID: 32806599 PMCID: PMC7464738 DOI: 10.3390/polym12081808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/07/2020] [Accepted: 08/09/2020] [Indexed: 12/19/2022] Open
Abstract
Biocompatible amphiphilic statistical copolymers P(MEA/MPCm) composed of 2-methoxyethyl acrylate (MEA) and 2-methacryloyloxyethyl phosphorylcholine (MPC) were prepared with three different mol% of the hydrophilic unit MPC (m = 6, 12 and 46 mol%). The monomer reactivity ratios of MEA (rMEA) and MPC (rMPC) were 0.53 and 2.21, respectively. The rMEA × rMPC value of 1.17 demonstrated that statistical copolymerization was successful. P(MEA/MPC12) and P(MEA/MPC46) copolymers did not undergo aggregation in water, whereas the P(MEA/MPC6) copolymer formed micelles in water with a hydrodynamic radius (Rh) of 96.9 nm and a critical aggregation concentration, which was determined using pyrene fluorescence, at 0.0082 g/L. The restricted motion of the protons in the hydrophobic MEA units in the micelles' cores provided additional evidence of self-association in P(MEA/MPC6).
Collapse
Affiliation(s)
- Thi Lien Nguyen
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan; (T.L.N.); (Y.K.)
| | - Yuuki Kawata
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan; (T.L.N.); (Y.K.)
| | - Kazuhiko Ishihara
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan;
| | - Shin-ichi Yusa
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan; (T.L.N.); (Y.K.)
| |
Collapse
|
38
|
Horbett TA. Selected aspects of the state of the art in biomaterials for cardiovascular applications. Colloids Surf B Biointerfaces 2020; 191:110986. [DOI: 10.1016/j.colsurfb.2020.110986] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/17/2020] [Accepted: 03/21/2020] [Indexed: 02/07/2023]
|
39
|
Kuo AT, Sonoda T, Urata S, Koguchi R, Kobayashi S, Tanaka M. Elucidating the Feature of Intermediate Water in Hydrated Poly(ω-methoxyalkyl acrylate)s by Molecular Dynamics Simulation and Differential Scanning Calorimetry Measurement. ACS Biomater Sci Eng 2020; 6:3915-3924. [DOI: 10.1021/acsbiomaterials.0c00746] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- An-Tsung Kuo
- Innovative Technology Laboratories, AGC Inc., Yokohama 221-8755, Japan
| | - Toshiki Sonoda
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Shingo Urata
- Innovative Technology Laboratories, AGC Inc., Yokohama 221-8755, Japan
| | - Ryohei Koguchi
- Materials Integration Laboratories, AGC Inc., Yokohama 230-0045, Japan
| | - Shingo Kobayashi
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
40
|
Koguchi R, Jankova K, Hayasaka Y, Kobayashi D, Amino Y, Miyajima T, Kobayashi S, Murakami D, Yamamoto K, Tanaka M. Understanding the Effect of Hydration on the Bio-inert Properties of 2-Hydroxyethyl Methacrylate Copolymers with Small Amounts of Amino- or/and Fluorine-Containing Monomers. ACS Biomater Sci Eng 2020; 6:2855-2866. [PMID: 33463271 DOI: 10.1021/acsbiomaterials.0c00230] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Materials exhibiting "bio-inert properties" are essential for developing medical devices because they are less recognized as foreign substances by proteins and cells in the living body. We have reported that the presence of intermediate water (IW) with the water molecules loosely bound to a polymer is a useful index of the bio-inertness of materials. Here, we analyzed the hydration state and the responses to biomolecules of poly(2-hydroxyethyl methacrylate) (PHEMA) copolymers including small amounts of 2-(dimethylamino)ethyl methacrylate (DMAEMA) (N-series) or/and 2,2,2-trifluoroethyl methacrylate (TFEMA) (F-series). The hydration structure was analyzed by differential scanning calorimetry (DSC), the molecular mobility of the produced copolymers by temperature derivative of DSC (DDSC), and the water mobility by solid 1H pulse nuclear magnetic resonance (NMR). Although the homopolymers did not show bio-inert properties, the binary and ternary PHEMA copolymers with low comonomer contents showed higher bio-inert properties than those of PHEMA homopolymers. The hydration state of PHEMA was changed by introducing a small amount of comonomers. The mobility of both water molecules and hydrated polymers was changed in the N-series nonfreezing water (NFW) with the water molecules tightly bound to a polymer and was shifted to high-mobility IW and free water (FW) with the water molecules scarcely bound to a polymer. On the other hand, in the F-series, FW turned to IW and NFW. Additionally, a synergetic effect was postulated when both comonomers coexist in the copolymers of HEMA, which was expressed by widening the temperature range of cold crystallization, contributing to further improvement of the bio-inert properties.
Collapse
Affiliation(s)
- Ryohei Koguchi
- Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,AGC Inc. Organic Materials Division, Materials Integration Laboratories, AGC Inc., 1150 Hazawa-cho, Kanagawa-ku, Yokohama, Kanagawa 221-8755, Japan
| | - Katja Jankova
- Soft Materials Chemistry, Institute for Materials Chemistry and Engineering, Kyushu University, Build. CE41, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Department of Energy Conversion and Storage, Technical University of Denmark, Fysikvej, Build. 375, 2800 Kongens Lyngby, Denmark
| | - Yuki Hayasaka
- AGC Inc. Common Base Technology Division, Innovative Technology Laboratories, AGC Inc., 1150 Hazawa-cho, Kanagawa-ku, Yokohama, Kanagawa 221-8755, Japan
| | - Daisuke Kobayashi
- AGC Inc. Common Base Technology Division, Innovative Technology Laboratories, AGC Inc., 1150 Hazawa-cho, Kanagawa-ku, Yokohama, Kanagawa 221-8755, Japan
| | - Yosuke Amino
- AGC Inc. Common Base Technology Division, Innovative Technology Laboratories, AGC Inc., 1150 Hazawa-cho, Kanagawa-ku, Yokohama, Kanagawa 221-8755, Japan
| | - Tatsuya Miyajima
- AGC Inc. Common Base Technology Division, Innovative Technology Laboratories, AGC Inc., 1150 Hazawa-cho, Kanagawa-ku, Yokohama, Kanagawa 221-8755, Japan
| | - Shingo Kobayashi
- Soft Materials Chemistry, Institute for Materials Chemistry and Engineering, Kyushu University, Build. CE41, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Daiki Murakami
- Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Soft Materials Chemistry, Institute for Materials Chemistry and Engineering, Kyushu University, Build. CE41, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kyoko Yamamoto
- AGC Inc. Organic Materials Division, Materials Integration Laboratories, AGC Inc., 1150 Hazawa-cho, Kanagawa-ku, Yokohama, Kanagawa 221-8755, Japan
| | - Masaru Tanaka
- Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Soft Materials Chemistry, Institute for Materials Chemistry and Engineering, Kyushu University, Build. CE41, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
41
|
Tanaka M, Kobayashi S, Murakami D, Aratsu F, Kashiwazaki A, Hoshiba T, Fukushima K. Design of Polymeric Biomaterials: The “Intermediate Water Concept”. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20190274] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Masaru Tanaka
- Soft Materials Chemistry, Institute for Materials Chemistry and Engineering, Kyushu University, Build. CE41, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Shingo Kobayashi
- Soft Materials Chemistry, Institute for Materials Chemistry and Engineering, Kyushu University, Build. CE41, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Daiki Murakami
- Soft Materials Chemistry, Institute for Materials Chemistry and Engineering, Kyushu University, Build. CE41, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Fumihiro Aratsu
- Soft Materials Chemistry, Institute for Materials Chemistry and Engineering, Kyushu University, Build. CE41, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Aki Kashiwazaki
- Soft Materials Chemistry, Institute for Materials Chemistry and Engineering, Kyushu University, Build. CE41, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takashi Hoshiba
- Frontier Center for Organic Materials, Yamagata University, 4-3-16 Yonezawa, Yamagata 992-8510, Japan
| | - Kazuki Fukushima
- Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Yonezawa, Yamagata 992-8510, Japan
| |
Collapse
|
42
|
Yadav HOS, Kuo AT, Urata S, Shinoda W. Effects of Packing Density and Chain Length on the Surface Hydrophobicity of Thin Films Composed of Perfluoroalkyl Acrylate Chains: A Molecular Dynamics Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:14316-14323. [PMID: 31596100 DOI: 10.1021/acs.langmuir.9b02656] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A good understanding of the surface hydrophobicity of fluorinated materials is useful for their application as coating materials. The present study investigates the surface hydrophobicity of perfluoroalkyl acrylate (PFA) thin films using molecular dynamics simulations. Surface hydrophobicity is characterized by examining the contact angle of a water droplet on PFA surfaces and the cavity formation free energy in the vicinity of the surface. It is found that the calculated microscopic contact angles are in good agreement with the experimental results and partially capture the difference in the hydrophobicity of the surface arising from the variation of packing density and side chain length of PFA. The variations of cavity formation free energy in the vicinity of the surface elucidate that the surface hydrophobicity is mainly governed by the packing density rather than the chain length of PFA. The hydrophobicity generally increases with decreasing the packing density to some extent and then turns to decrease as further reducing the packing density. At higher packing density, the surface hydrophobicity slightly decreases with increasing the chain length, while at the lower packing density, the surface hydrophobicity is increased when chain length of PFA is longer than six carbons. Furthermore, we found that the influence of packing density on the surface hydrophobicity is directly related to the variation of the surface roughness and chain flexibility, that is, the surface hydrophobicity increases with increase in the surface roughness, while the chain flexibility plays a secondary role in the enhancement by affecting the stability of water staying near the interface. The study provides a significant insight into the local hydrophobicity and microscopic structure of the PFA surfaces, which would be useful for the application of surface modification.
Collapse
Affiliation(s)
- Hari O S Yadav
- Department of Materials Chemistry , Nagoya University , Furo-cho, Chikusa-ku, Nagoya 464-8603 , Japan
| | - An-Tsung Kuo
- Innovative Technology Laboratories , AGC Inc. , Yokohama , Kanagawa 230-0045 , Japan
| | - Shingo Urata
- Innovative Technology Laboratories , AGC Inc. , Yokohama , Kanagawa 230-0045 , Japan
| | - Wataru Shinoda
- Department of Materials Chemistry , Nagoya University , Furo-cho, Chikusa-ku, Nagoya 464-8603 , Japan
| |
Collapse
|
43
|
Murakami D, Segami Y, Ueda T, Tanaka M. Control of interfacial structures and anti-platelet adhesion property of blood-compatible random copolymers. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 31:207-218. [DOI: 10.1080/09205063.2019.1680930] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Daiki Murakami
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka, Japan
- Graduate School of Engineering, Kyushu University, Fukuoka, Japan
| | - Yuto Segami
- Graduate School of Engineering, Kyushu University, Fukuoka, Japan
| | - Tomoya Ueda
- Graduate School of Engineering, Kyushu University, Fukuoka, Japan
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka, Japan
- Graduate School of Engineering, Kyushu University, Fukuoka, Japan
| |
Collapse
|
44
|
Jankova K, Javakhishvili I, Kobayashi S, Koguchi R, Murakami D, Sonoda T, Tanaka M. Hydration States and Blood Compatibility of Hydrogen-Bonded Supramolecular Poly(2-methoxyethyl acrylate). ACS APPLIED BIO MATERIALS 2019; 2:4154-4161. [DOI: 10.1021/acsabm.9b00363] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Katja Jankova
- Soft Materials Chemistry, Institute for Materials Chemistry and Engineering, Kyushu University, Build. CE41, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
- Department of Energy Conversion and Storage, Technical University of Denmark, Elektrovej,
Build. 375, 2800 Kongens Lyngby, Denmark
| | - Irakli Javakhishvili
- Danish Polymer Centre, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Build. 229, 2800 Kongens Lyngby, Denmark
| | - Shingo Kobayashi
- Soft Materials Chemistry, Institute for Materials Chemistry and Engineering, Kyushu University, Build. CE41, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Ryohei Koguchi
- Soft Materials Chemistry, Institute for Materials Chemistry and Engineering, Kyushu University, Build. CE41, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
- AGC Inc. New Product R&D Center, 1150 Hazawa-cho, Kanagawa-ku, Yokohama, Kanagawa 221-8755, Japan
| | - Daiki Murakami
- Soft Materials Chemistry, Institute for Materials Chemistry and Engineering, Kyushu University, Build. CE41, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Toshiki Sonoda
- Soft Materials Chemistry, Institute for Materials Chemistry and Engineering, Kyushu University, Build. CE41, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Masaru Tanaka
- Soft Materials Chemistry, Institute for Materials Chemistry and Engineering, Kyushu University, Build. CE41, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| |
Collapse
|
45
|
Chen X, Taguchi T. Hydrophobically modified poly(vinyl alcohol)s as antithrombogenic coating materials. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 102:289-298. [DOI: 10.1016/j.msec.2019.04.059] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/27/2019] [Accepted: 04/20/2019] [Indexed: 11/28/2022]
|
46
|
Koguchi R, Jankova K, Tanabe N, Amino Y, Hayasaka Y, Kobayashi D, Miyajima T, Yamamoto K, Tanaka M. Controlling the Hydration Structure with a Small Amount of Fluorine To Produce Blood Compatible Fluorinated Poly(2-methoxyethyl acrylate). Biomacromolecules 2019; 20:2265-2275. [PMID: 31042022 DOI: 10.1021/acs.biomac.9b00201] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Poly(2-methoxyethyl acrylate) (PMEA) shows excellent blood compatibility because of the existence of intermediate water. Various modifications of PMEA by changing its main or side chain's chemical structure allowed tuning of the water content and the blood compatibility of numerous novel polymers. Here, we exploit a possibility of manipulating the surface hydration structure of PMEA by incorporation of small amounts of hydrophobic fluorine groups in MEA polymers using atom-transfer radical polymerization and the (macro) initiator concept. Two kinds of fluorinated MEA polymers with similar molecular weights and the same 5.5 mol % of fluorine content were synthesized using the bromoester of 2,2,3,3,4,4,5,5,6,6,7,7,8,8-pentadecafluoro-1-octanol (F15) and poly(2,2,2-trifluoroethyl methacrylate) (PTFEMA) as (macro) initiators, appearing liquid and solid at room temperature, respectively. The fibrinogen adsorption of the two varieties of fluorinated MEA polymers was different, which could not be explained only by the bulk hydration structure. Both polymers show a nanostructured morphology in the hydrated state with different sizes of the features. The measured elastic modulus of the domains appearing in atomic force microscopy and the intermediate water content shed light on the distinct mechanism of blood compatibility. Contact angle measurements reveal the surface hydration dynamics-while in the hydrated state, F15- b-PMEA reorients easily to the surface exposing its PMEA part to the water, the small solid PTFEMA block with high glass-transition temperature suppresses the movement of PTFEMA- b-PMEA and its reconstruction on the surface. These findings illustrate that in order to make a better blood compatible polymer, the chains containing sufficient intermediate water need to be mobile and efficiently oriented to the water surface.
Collapse
Affiliation(s)
- Ryohei Koguchi
- Soft Materials Chemistry, Institute for Materials Chemistry and Engineering , Kyushu University , Build. CE41, 744 Motooka , Nishi-ku, Fukuoka 819-0395 , Japan.,AGC Incorporation New Product R&D Center , 1150 Hazawa-cho , Kanagawa-ku, Yokohama , Kanagawa 221-8755 , Japan
| | - Katja Jankova
- Soft Materials Chemistry, Institute for Materials Chemistry and Engineering , Kyushu University , Build. CE41, 744 Motooka , Nishi-ku, Fukuoka 819-0395 , Japan.,Department of Energy Conversion and Storage , Technical University of Denmark , Elektrovej, Build. 375 , 2800 Kongens Lyngby , Denmark
| | - Noriko Tanabe
- AGC Incorporation Innovative Technology Research Center , 1150 Hazawa-cho , Kanagawa-ku, Yokohama , Kanagawa 221-8755 , Japan
| | - Yosuke Amino
- AGC Incorporation Innovative Technology Research Center , 1150 Hazawa-cho , Kanagawa-ku, Yokohama , Kanagawa 221-8755 , Japan
| | - Yuki Hayasaka
- AGC Incorporation Innovative Technology Research Center , 1150 Hazawa-cho , Kanagawa-ku, Yokohama , Kanagawa 221-8755 , Japan
| | - Daisuke Kobayashi
- AGC Incorporation Innovative Technology Research Center , 1150 Hazawa-cho , Kanagawa-ku, Yokohama , Kanagawa 221-8755 , Japan
| | - Tatsuya Miyajima
- AGC Incorporation Innovative Technology Research Center , 1150 Hazawa-cho , Kanagawa-ku, Yokohama , Kanagawa 221-8755 , Japan
| | - Kyoko Yamamoto
- AGC Incorporation New Product R&D Center , 1150 Hazawa-cho , Kanagawa-ku, Yokohama , Kanagawa 221-8755 , Japan
| | - Masaru Tanaka
- Soft Materials Chemistry, Institute for Materials Chemistry and Engineering , Kyushu University , Build. CE41, 744 Motooka , Nishi-ku, Fukuoka 819-0395 , Japan
| |
Collapse
|
47
|
Araki T, Yoshida F, Uemura T, Noda Y, Yoshimoto S, Kaiju T, Suzuki T, Hamanaka H, Baba K, Hayakawa H, Yabumoto T, Mochizuki H, Kobayashi S, Tanaka M, Hirata M, Sekitani T. Long-Term Implantable, Flexible, and Transparent Neural Interface Based on Ag/Au Core-Shell Nanowires. Adv Healthc Mater 2019; 8:e1900130. [PMID: 30946540 DOI: 10.1002/adhm.201900130] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/11/2019] [Indexed: 12/11/2022]
Abstract
Neural interfaces enabling light transmittance rely on optogenetics to control and monitor specific neural activity, thereby facilitating deeper understanding of intractable diseases. This study reports the material strategy underlying an optogenetic neural interface comprising stretchable and transparent conductive tracks and capable of demonstrating high biocompatibility after long-term (5-month) implantation. Ag/Au core-shell nanowires contribute toward improving track performance in terms of stretchability (<60% strain), transparency (<83%), and electrical resistance (15 Ω sq-1 ). The neural interface integrated with gel-coated exterior microelectrodes preserves low impedance (1.1-3.2 Ω cm2 ) in a saline solution over the evaluated 5-month period. Besides the use of efficient conductive materials, surface treatment using antithrombogenic polymer tends to prevent the growth of granulation tissue, thereby facilitating clear monitoring of electrocorticograms (ECoG) in a rodent during chronic implantation. The flexible and transparent neural interface pathologically exhibits noncytotoxicity and low inflammatory response while efficiently recording evoked ECoG in a nonhuman primate via optogenetic stimulation. The proposed highly reliable interface can be employed in multifaceted approaches for translational research based on chronic implants.
Collapse
Affiliation(s)
- Teppei Araki
- Institute of Scientific and Industrial Research (ISIR) Osaka University Mihogaoka 8‐1 Ibaraki Osaka 567‐0047 Japan
| | - Fumiaki Yoshida
- Endowed Research Department of Clinical Neuroengineering Global Center for Medical Engineering and Informatics Osaka University 2‐2 Yamadaoka Suita Osaka 565‐0871 Japan
- Center for Information and Neural Networks National Institute of Information and Communications Technology (NICT) and Osaka University 1‐4 Yamadaoka Suita Osaka 565‐0871 Japan
- Department of Neurosurgery Graduate School of Medical Sciences Kyushu University 3‐1‐1, Maidashi, Higashi‐ku Fukuoka 812‐8582 Japan
- Japan Science and Technology Agency Precursory Research for Embryonic Science and Technology (PRESTO) 4‐1‐8 Honcho Kawaguchi Saitama 332‐0012 Japan
| | - Takafumi Uemura
- Institute of Scientific and Industrial Research (ISIR) Osaka University Mihogaoka 8‐1 Ibaraki Osaka 567‐0047 Japan
| | - Yuki Noda
- Institute of Scientific and Industrial Research (ISIR) Osaka University Mihogaoka 8‐1 Ibaraki Osaka 567‐0047 Japan
| | - Shusuke Yoshimoto
- Institute of Scientific and Industrial Research (ISIR) Osaka University Mihogaoka 8‐1 Ibaraki Osaka 567‐0047 Japan
| | - Taro Kaiju
- Center for Information and Neural Networks National Institute of Information and Communications Technology (NICT) and Osaka University 1‐4 Yamadaoka Suita Osaka 565‐0871 Japan
| | - Takafumi Suzuki
- Center for Information and Neural Networks National Institute of Information and Communications Technology (NICT) and Osaka University 1‐4 Yamadaoka Suita Osaka 565‐0871 Japan
| | - Hiroki Hamanaka
- Endowed Research Department of Clinical Neuroengineering Global Center for Medical Engineering and Informatics Osaka University 2‐2 Yamadaoka Suita Osaka 565‐0871 Japan
- Center for Information and Neural Networks National Institute of Information and Communications Technology (NICT) and Osaka University 1‐4 Yamadaoka Suita Osaka 565‐0871 Japan
| | - Kousuke Baba
- Department of Neurology Graduate School of Medicine Osaka University 2‐2 Yamadaoka Suita Osaka 565‐0871 Japan
| | - Hideki Hayakawa
- Department of Neurology Graduate School of Medicine Osaka University 2‐2 Yamadaoka Suita Osaka 565‐0871 Japan
| | - Taiki Yabumoto
- Department of Neurology Graduate School of Medicine Osaka University 2‐2 Yamadaoka Suita Osaka 565‐0871 Japan
| | - Hideki Mochizuki
- Department of Neurology Graduate School of Medicine Osaka University 2‐2 Yamadaoka Suita Osaka 565‐0871 Japan
| | - Shingo Kobayashi
- Institute for Materials Chemistry and Engineering (IMCE) Kyushu University 744 Motooka, Nishi‐ku Fukuoka 819‐0395 Japan
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering (IMCE) Kyushu University 744 Motooka, Nishi‐ku Fukuoka 819‐0395 Japan
| | - Masayuki Hirata
- Endowed Research Department of Clinical Neuroengineering Global Center for Medical Engineering and Informatics Osaka University 2‐2 Yamadaoka Suita Osaka 565‐0871 Japan
- Center for Information and Neural Networks National Institute of Information and Communications Technology (NICT) and Osaka University 1‐4 Yamadaoka Suita Osaka 565‐0871 Japan
| | - Tsuyoshi Sekitani
- Institute of Scientific and Industrial Research (ISIR) Osaka University Mihogaoka 8‐1 Ibaraki Osaka 567‐0047 Japan
| |
Collapse
|
48
|
Analyses of equilibrium water content and blood compatibility for Poly(2-methoxyethyl acrylate) by molecular dynamics simulation. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
49
|
Murakami D, Mawatari N, Sonoda T, Kashiwazaki A, Tanaka M. Effect of the Molecular Weight of Poly(2-methoxyethyl acrylate) on Interfacial Structure and Blood Compatibility. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:2808-2813. [PMID: 30673282 DOI: 10.1021/acs.langmuir.8b02971] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The blood-compatible polymer poly(2-methoxyethyl acrylate) (PMEA) is composed of nanometer-scale interfacial structures because of the phase separation of the polymer and water at the PMEA/phosphate-buffered saline (PBS) interface. We synthesized PMEA with four different molecular weights (19, 30, 44, and 183 kg/mol) to investigate the effect of the molecular weight on the interfacial structures and blood compatibility. The amounts of intermediate water and fibrinogen adsorption were not affected by the molecular weight of PMEA. In contrast, the degree of denaturation of adsorbed fibrinogen molecules and platelet adhesion increased as the molecular weight increased. Atomic force microscopy observation revealed that the domain size of the microphase separation structures observed at the PMEA/PBS interfaces drastically (nearly 3 times in the mean area of a domain) changed with the molecular weight. PMEA with a lower molecular weight showed a smaller polymer-rich domain size, as expected on the basis of the microphase separation of polymer-rich and water-rich domains. The small domain size suppressed the aggregation and denaturation of adsorbed fibrinogen molecules because only a few fibrinogen molecules were adsorbed on a domain. Increasing the domain size enhanced the denaturation of adsorbed fibrinogen molecules. Controlling the interfacial structures is crucial for ensuring the blood compatibility of polymer interfaces.
Collapse
Affiliation(s)
| | | | | | | | - Masaru Tanaka
- Frontier Center for Organic System Innovations , Yamagata University , 4-3-16 Jonan , Yonezawa , Yamagata 992-8510 , Japan
| |
Collapse
|
50
|
Okada M, Hara ES, Kobayashi D, Kai S, Ogura K, Tanaka M, Matsumoto T. Intermediate Water on Calcium Phosphate Minerals: Its Origin and Role in Crystal Growth. ACS APPLIED BIO MATERIALS 2019; 2:981-986. [DOI: 10.1021/acsabm.9b00014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Masahiro Okada
- Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Emilio Satoshi Hara
- Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Daisuke Kobayashi
- Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Shoki Kai
- Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Keiko Ogura
- Soft Biomaterials Research Center, Frontier Center for Organic Materials, Frontier Center for Organic Material Systems, Frontier Center for Organic System Innovations, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Masaru Tanaka
- Soft Biomaterials Research Center, Frontier Center for Organic Materials, Frontier Center for Organic Material Systems, Frontier Center for Organic System Innovations, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
- Soft Materials Chemistry, Institute of Material Chemistry and Engineering, Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takuya Matsumoto
- Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| |
Collapse
|