1
|
Chen Y, Song H, Wang X, Huang R, Li S, Guan X. Propionate-functionalized chitosan hydrogel nanoparticles for effective oral delivery of insulin. Int J Biol Macromol 2025; 291:139159. [PMID: 39725095 DOI: 10.1016/j.ijbiomac.2024.139159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
Oral delivery of macromolecular drugs is often hampered by the harsh gastrointestinal environment, which makes the drugs have poor bioavailability. Insulin, the most used drug for diabetes, also faces the same challenge for oral administration. Hence, we decorated microbial metabolite propionate on chitosan (CS) to fabricate insulin-loaded propionate-modified CS hydrogel nanoparticles (IN-CS/PA HNPs). The prepared IN-CS/PA HNPs exhibited high encapsulation efficiency (> 95 %) and loading capacity (∼10 %) for insulin. The system provided better protection for insulin in gastrointestinal environment compared to unmodified IN-CS HNPs. Moreover, the active functional group of propionate can be recognized and transported by mono-carboxylate transporter protein 1 (MCT1) targeting. Thus, in both Caco-2 cells and the ligated intestinal loops of rats, IN-CS/PA HNPs significantly improved permeability and uptake of insulin on intestinal epithelium, which was attributed to MCT1-mediated endocytosis. In type 1 diabetic (T1D) rats, oral delivery of IN-CS/PA HNPs with 60 IU/kg insulin led to more stable and long-lasting hypoglycemic effect than a 5IU/kg dose of subcutaneously injected insulin. It also generated 2.29-fold and 11.88-fold higher relative oral bioavailability compared with empty IN-CS HNPs and free insulin, respectively. This study demonstrated that propanoic acid-functionalized chitosan hydrogel nanoparticles could improve the oral absorption of insulin by overcoming multiple barriers in gastrointestinal tract, providing a promising active targeting strategy for the oral delivery of macromolecules drugs.
Collapse
Affiliation(s)
- Yaqiong Chen
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Hongdong Song
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China
| | - Xinyue Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ruihan Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Sen Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China.
| |
Collapse
|
2
|
Song T, Yuan L, Wang J, Li W, Sun Y. Advances in the transport of oral nanoparticles in gastrointestinal tract. Colloids Surf B Biointerfaces 2025; 245:114321. [PMID: 39423764 DOI: 10.1016/j.colsurfb.2024.114321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/08/2024] [Accepted: 10/13/2024] [Indexed: 10/21/2024]
Abstract
Biological barriers in the gastrointestinal tract (GIT) prevent oral absorption of insoluble drugs. Recently, significant progress has been made in the development of various nanoparticles (NPs) designed to enhance the efficacy of oral drugs. However, the mechanism underlying the intracellular transport of NPs remains unclear, and there are still limitations to improving the oral bioavailability of drugs. This article reviews the challenges faced in the absorption of oral NPs, proposes strategies to overcome these barriers, and discusses the future prospects.
Collapse
Affiliation(s)
- Tingting Song
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Lu Yuan
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Jie Wang
- Department of Pharmacy, Qingdao Traditional Chinese Medicine Hospital, Qingdao Hiser Hospital Affiliated to Qingdao University, Qingdao 266033, China
| | - Wenjing Li
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
3
|
Ren C, Zhong D, Qi Y, Liu C, Liu X, Chen S, Yan S, Zhou M. Bioinspired pH-Responsive Microalgal Hydrogels for Oral Insulin Delivery with Both Hypoglycemic and Insulin Sensitizing Effects. ACS NANO 2023; 17:14161-14175. [PMID: 37406357 DOI: 10.1021/acsnano.3c04897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
The oral form of insulin is more convenient and has better patient compliance than subcutaneous or intravenous insulin. Current oral insulin preparations, however, cannot overcome the enzyme barrier, chemical barrier, and epithelial barrier of the gastrointestinal tract completely. In this study, a microalgae-based oral insulin delivery strategy (CV@INS@ALG) was developed using Chlorella vulgaris (CV)-based insulin delivery system cross-linking with sodium alginate (ALG). CV@INS@ALG could overcome the gastrointestinal barrier, protect insulin from harsh gastric conditions, and achieve a pH-responsive drug release in the intestine. CV@INS@ALG might contribute to two mechanisms of insulin absorption, including direct insulin release from the delivery system and endocytosis by M cells and macrophages. In the streptozotocin (STZ)-induced type 1 diabetic mouse model, CV@INS@ALG showed a more effective and long-lasting hypoglycemic effect than direct insulin injection and did not cause any damage to the intestinal tract. Additionally, the long-term oral administration of the carrier CV@ALG effectively ameliorated gut microbiota disorder, and significantly increased the abundance of probiotic Akkermansia in db/db type 2 diabetic mice, thereby enhancing the insulin sensitivity of mice. Microalgal insulin delivery systems could be degraded and metabolized in the intestinal tract after oral administration, showing good biodegradability and biosafety. This insulin delivery strategy based on microalgal biomaterials provides a natural, efficient, and multifunctional solution for oral insulin delivery.
Collapse
Affiliation(s)
- Chaojie Ren
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining 314400, China
| | - Danni Zhong
- Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining 314400, China
| | - Yuchen Qi
- Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining 314400, China
| | - Chaoyi Liu
- Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining 314400, China
| | - Xingyu Liu
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | | | - Sheng Yan
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Min Zhou
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining 314400, China
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou 310053, China
| |
Collapse
|
4
|
Ma Y, Li Q, Yang J, Cheng Y, Li C, Zhao C, Chen W, Huang D, Qian H. Crosslinked zwitterionic microcapsules to overcome gastrointestinal barriers for oral insulin delivery. Biomater Sci 2023; 11:975-984. [PMID: 36541189 DOI: 10.1039/d2bm01606k] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Oral insulin delivery has been extensively considered to achieve great patient compliance and convenience as well as favourable glucose homeostasis. However, its application is highly limited by the low insulin bioavailability owing to gastrointestinal barriers. Herein, we developed crosslinked zwitterionic microcapsules (CB-MCs@INS) based on a carboxyl betaine (CB)-modified poly(acryloyl carbonate-co-caprolactone) copolymer via the combination of microfluidics and UV-crosslinking to improve oral insulin delivery. CB-MC@INS microcapsules with high drug loading capacity (>40%) protected insulin from acid degradation in the harsh gastric environment. Through the introduction of CB-moieties, CB-MCs@INS possessed superior affinity for epithelial cells and improved insulin transport as compared to non-CB modified MCs@INS (5.15-fold), which was mainly attributed to the CB-mediated cell surface transporter via the PAT1 pathway. Moreover, the oral administration of CB-MCs@INS exhibited an excellent hypoglycaemic effect and maintained normoglycemia for up to 8 h in diabetic mice, demonstrating the great potential of crosslinked zwitterionic microcapsules as an oral insulin delivery platform for diabetes therapy.
Collapse
Affiliation(s)
- Yuhong Ma
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Qihang Li
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Jingru Yang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Yuan Cheng
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Caihua Li
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Changshun Zhao
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Wei Chen
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Dechun Huang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Hongliang Qian
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
5
|
Xu M, Qin H, Zheng Y, Chen J, Liang X, Huang J, Luo W, Yang R, Guan YQ. Construction of a double-responsive modified guar gum nanoparticles and its application in oral insulin administration. Colloids Surf B Biointerfaces 2022; 220:112858. [PMID: 36174491 DOI: 10.1016/j.colsurfb.2022.112858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/09/2022] [Accepted: 09/16/2022] [Indexed: 11/18/2022]
Abstract
The use of intelligent insulin delivery systems has become more important for treating diabetes. In this study, a dual-responsive oral insulin delivery nanocarrier that responds to glucose and pH has been developed. First, the oleic acid hydrophobic modified guar gum (GG) was synthesized by the esterification reaction, and the γ-polyglutamic acid (γ-PGA) was coupled with GG by the amidation reaction. The obtained pH-responsive copolymer (γ-PGA-GG) was cross-linked by concanavalin A to obtain pH/glucose dual-responsive nanocarriers, and insulin was effectively loaded into the dual-responsive nanocarriers. The insulin-loaded nanoparticles can achieve effective pH and glucose responses, releasing insulin on demand. In vitro and in vivo studies demonstrated the dual-responsive nanoparticles can protect insulin against the pH changes in the digestive tract and deliver insulin into the body to exert a hypoglycemic effect. Moreover, the dual-responsive nanoparticles have significant potential to be employed for oral insulin delivery.
Collapse
Affiliation(s)
- Mingze Xu
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Han Qin
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Yuxin Zheng
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Jiapeng Chen
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Xuanxi Liang
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Jinpeng Huang
- School of Life Science, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China; South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou 510631, China
| | - Wenfeng Luo
- School of Life Science, South China Normal University, Guangzhou 510631, China; South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou 510631, China
| | - Runcai Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - Yan-Qing Guan
- School of Life Science, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China; South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou 510631, China.
| |
Collapse
|
6
|
Iyer G, Dyawanapelly S, Jain R, Dandekar P. An overview of oral insulin delivery strategies (OIDS). Int J Biol Macromol 2022; 208:565-585. [PMID: 35346680 DOI: 10.1016/j.ijbiomac.2022.03.144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/07/2022] [Accepted: 03/22/2022] [Indexed: 02/07/2023]
Abstract
Despite tremendous efforts, the world continues its fight against the common chronic disease-diabetes. Diabetes is caused by elevated glucose levels in the blood, which can lead to several complications like glaucoma, cataract, kidney failure, diabetic ketoacidosis, heart attack, and stroke. According to recent statistics, China, India, and the US rank at the top three positions with regards to the number of patients affected by diabetes. Ever since its discovery, insulin is one of the major therapeutic molecules that is used to control the disease in the diabetic population, worldwide. The most common route of insulin administration has been the subcutaneous route. However, the limitations associated with this route have motivated global efforts to explore alternative strategies to deliver insulin, including pulmonary, transdermal, nasal, rectal, buccal, and oral routes. Oral insulin delivery is the most convenient and patient-centered route. However, the oral route is also associated with numerous drawbacks that present significant challenges to the scientific fraternity. The human physiological system acts as a formidable barrier to insulin, limiting its bioavailability. The present review covers the major barriers against oral insulin delivery and explains formulation strategies that have been adopted to overcome these barriers. The review focuses on oral insulin delivery strategies (OIDS) for increasing the bioavailability of oral insulin, including nanoparticles, microparticles, nano-in-microparticles, hydrogels, tablets, capsules, intestinal patches, and use of ionic liquids. It also highlights some of the notable recent advancements and clinical trials in oral insulin delivery. This formulation based OIDS may significantly improve patient compliance in the treatment of diabetes.
Collapse
Affiliation(s)
- Gayatri Iyer
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, NP Marg, Matunga, Mumbai 400019, India
| | - Sathish Dyawanapelly
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, NP Marg, Matunga, Mumbai 400019, India
| | - Ratnesh Jain
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai 400019, India.
| | - Prajakta Dandekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, NP Marg, Matunga, Mumbai 400019, India.
| |
Collapse
|
7
|
Glucose sensitive konjac glucomannan/concanavalin A nanoparticles as oral insulin delivery system. Int J Biol Macromol 2022; 202:296-308. [PMID: 35038475 DOI: 10.1016/j.ijbiomac.2022.01.048] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/30/2021] [Accepted: 01/08/2022] [Indexed: 12/18/2022]
Abstract
Compared with injection, oral drug delivery is a better mode of administration because of its security, low pain and simplicity. Insulin is the first choice for clinical treatment of type 1 diabetes, but, because insulin inability to resist gastrointestinal (GI) digestion results in poor oral bioavailability of insulin. Herein, we developed a targeted oral delivery system for diabetes. ConA-INS-KGM nanoparticles were prepared, loaded with insulin, fabricated from konjac glucomannan (KGM) and concanavalin A (ConA) through a crosslinking method, as an insulin oral delivery system in response to different blood glucose levels. The size of nanoparticles was characterized by TEM, which showed that these nanoparticles were formed spherical particles with a diameter of about 500 nm. In vitro release of insulin from these nanoparticles was studied, which indicated that insulin release is reversible at different glucose concentrations. In vivo tests demonstrated that they are safe and have high biocompatibility. Using the nanoparticles to treat diabetic mice, we found that they can control blood sugar levels for 6 h, retaining their glucose-sensitive properties during this time. Therefore, these nanoparticles have significant potential as glucose-responsive systems for diabetes and show great applications in biomedical fields.
Collapse
|
8
|
Shirzadian T, Nourbakhsh MS, Fattahi A, Bahrami G, Mohammadi G. Characterization and optimization of de-esterified Tragacanth-chitosan nanocomposite as a potential carrier for oral delivery of insulin: In vitro and ex vivo studies. J Biomed Mater Res A 2021; 109:2164-2172. [PMID: 33866680 DOI: 10.1002/jbm.a.37202] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 03/14/2021] [Accepted: 04/07/2021] [Indexed: 12/16/2022]
Abstract
Oral administration of insulin is one of the most challenging topics within this area, because insulin is degraded in stomach before it enters the bloodstream. In this study, for the first time, a nano-carrier for controlled and targeted oral delivery of insulin was developed using de-esterified Tragacanth and chitosan. The fabricated nanoparticles were synthesized using coacervation technique and their properties were optimized using response surface methodology. The effect of experimental variables on the particle size and loading efficiency was examined. In addition, the interactions between components were analyzed using Fourier transform infrared. The thermal stability of nanoparticles was studied by thermal gravimetric analysis. The insulin loading efficiency was measured and in vitro release profile and ex vivo insulin permeability was determined. Optimized nanoparticles showed spherical shape with a size less than 200 nm and zeta potential of +17 mV. Owing to their nanoscale dimensions and mucoadhesiveness, nanoparticles were synthesized using medium molecular weight of Chitosan. The insulin loading efficacy for the system was 6.4%, released under simulated gastrointestinal conditions in a pH-dependent manner. Based on all of the obtained results, it can be concluded that these nanoparticles can potentially be utilized as a carrier for the oral insulin delivery.
Collapse
Affiliation(s)
- Touraj Shirzadian
- Department of Biomedical Engineering, Faculty of New Sciences and Technologies, Semnan University, Semnan, Iran
| | - Mohammad Sadegh Nourbakhsh
- Department of Biomedical Engineering, Faculty of New Sciences and Technologies, Semnan University, Semnan, Iran.,Faculty of Materials and Metallurgical Engineering, Semnan University, Semnan, Iran
| | - Ali Fattahi
- Medical Biology Research Center, Medical School, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Pharmaceutical Sciences Research Center, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Gholamreza Bahrami
- Pharmaceutical Sciences Research Center, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ghobad Mohammadi
- Pharmaceutical Sciences Research Center, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
9
|
Benyettou F, Kaddour N, Prakasam T, Das G, Sharma SK, Thomas SA, Bekhti-Sari F, Whelan J, Alkhalifah MA, Khair M, Traboulsi H, Pasricha R, Jagannathan R, Mokhtari-Soulimane N, Gándara F, Trabolsi A. In vivo oral insulin delivery via covalent organic frameworks. Chem Sci 2021; 12:6037-6047. [PMID: 33995999 PMCID: PMC8098678 DOI: 10.1039/d0sc05328g] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 03/03/2021] [Indexed: 12/15/2022] Open
Abstract
With diabetes being the 7th leading cause of death worldwide, overcoming issues limiting the oral administration of insulin is of global significance. The development of imine-linked-covalent organic framework (nCOF) nanoparticles for oral insulin delivery to overcome these delivery barriers is herein reported. A gastro-resistant nCOF was prepared from layered nanosheets with insulin loaded between the nanosheet layers. The insulin-loaded nCOF exhibited insulin protection in digestive fluids in vitro as well as glucose-responsive release, and this hyperglycemia-induced release was confirmed in vivo in diabetic rats without noticeable toxic effects. This is strong evidence that nCOF-based oral insulin delivery systems could replace traditional subcutaneous injections easing insulin therapy.
Collapse
Affiliation(s)
- Farah Benyettou
- New York University Abu Dhabi P.O. Box 129188 Abu Dhabi United Arab Emirates
| | - Nawel Kaddour
- Laboratory of Physiology Physiopathology and Biochemistry of Nutrition, Department of Biology, University of Tlemcen Algeria
| | | | - Gobinda Das
- New York University Abu Dhabi P.O. Box 129188 Abu Dhabi United Arab Emirates
| | - Sudhir Kumar Sharma
- New York University Abu Dhabi P.O. Box 129188 Abu Dhabi United Arab Emirates
| | - Sneha Ann Thomas
- New York University Abu Dhabi P.O. Box 129188 Abu Dhabi United Arab Emirates
| | - Fadia Bekhti-Sari
- Laboratory of Physiology Physiopathology and Biochemistry of Nutrition, Department of Biology, University of Tlemcen Algeria
| | - Jamie Whelan
- New York University Abu Dhabi P.O. Box 129188 Abu Dhabi United Arab Emirates
| | - Mohammed A Alkhalifah
- Department of Chemistry, College of Science, King Faisal University P.O. Box 400, Al-Ahsa 31982 Saudi Arabia
- School of Chemistry, University of Bristol Cantocks Close Bristol BS8 1TS UK
| | - Mostafa Khair
- New York University Abu Dhabi P.O. Box 129188 Abu Dhabi United Arab Emirates
| | - Hassan Traboulsi
- Department of Chemistry, College of Science, King Faisal University P.O. Box 400, Al-Ahsa 31982 Saudi Arabia
| | - Renu Pasricha
- New York University Abu Dhabi P.O. Box 129188 Abu Dhabi United Arab Emirates
| | - Ramesh Jagannathan
- New York University Abu Dhabi P.O. Box 129188 Abu Dhabi United Arab Emirates
| | - Nassima Mokhtari-Soulimane
- Laboratory of Physiology Physiopathology and Biochemistry of Nutrition, Department of Biology, University of Tlemcen Algeria
| | | | - Ali Trabolsi
- New York University Abu Dhabi P.O. Box 129188 Abu Dhabi United Arab Emirates
| |
Collapse
|
10
|
Yu Y, Gao J, Jiang L, Wang J. Antidiabetic nephropathy effects of synthesized gold nanoparticles through mitigation of oxidative stress. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
11
|
Su T, Yang B, Gao T, Liu T, Li J. Polymer nanoparticle-assisted chemotherapy of pancreatic cancer. Ther Adv Med Oncol 2020; 12:1758835920915978. [PMID: 32426046 PMCID: PMC7222269 DOI: 10.1177/1758835920915978] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/20/2020] [Indexed: 12/16/2022] Open
Abstract
Pancreatic cancer is a lethal disease characterized by highly dense stroma fibrosis. Only 15-20% of patients with pancreatic cancer have resectable tumors, and only around 20% of them survive to 5 years. Traditional cancer treatments have little effect on their prognosis, and successful surgical resection combined with effective perioperative therapy is the main method for maximizing long-term survival. For this reason, chemotherapy is an adjunct treatment for resectable cancer and is the main therapy for incurable pancreatic cancer, including metastatic pancreatic adenocarcinoma. However, there are various side effects of chemotherapeutic medicine and low drug penetration because the complex tumor microenvironment limits the application of chemotherapy. As a novel strategy, polymer nanoparticles make it possible to target the tumor microenvironment, release cytotoxic agents through various responsive reactions, and thus overcome the treatment barrier. As drug carriers, polymer nanoparticles show marked advantages, such as increased drug delivery and efficiency, controlled drug release, decreased side effects, prolonged half-life, and evasion of immunogenic blockade. In this review, we discuss the factors that cause chemotherapy obstacles in pancreatic cancer, and introduce the application of polymer nanoparticles to treat pancreatic cancer.
Collapse
Affiliation(s)
- Tianqi Su
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Bo Yang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, People’s Republic of China
| | - Tianren Gao
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, People’s Republic of China
| | - Tongjun Liu
- Department of General Surgery, Second Hospital of Jilin University, Changchun 130041, People’s Republic of China
| | - Jiannan Li
- Department of General Surgery, Second Hospital of Jilin University, Changchun 130041, People’s Republic of China
| |
Collapse
|
12
|
He S, Fu W, Zou M, Xing W, Liu Z, Xu D. Construction and evaluation of SAK-HV protein oral dosage form based on chitosan quaternary ammonium salt-PLGA microsphere. J Drug Target 2019; 27:1108-1117. [DOI: 10.1080/1061186x.2019.1605520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Shiming He
- Institute of Military Cognition and Brain Sciences, Beijing, China
- College of Pharmaceutical Sciences, Hebei University, Baoding, China
| | - Wenliang Fu
- Institute of Military Cognition and Brain Sciences, Beijing, China
| | - Minji Zou
- Institute of Military Cognition and Brain Sciences, Beijing, China
| | - Weiwei Xing
- Institute of Military Cognition and Brain Sciences, Beijing, China
| | - Zhongcheng Liu
- College of Pharmaceutical Sciences, Hebei University, Baoding, China
| | - Donggang Xu
- Institute of Military Cognition and Brain Sciences, Beijing, China
| |
Collapse
|
13
|
Chen X, Ren Y, Feng Y, Xu X, Tan H, Li J. Cp1-11 peptide/insulin complex loaded pH-responsive nanoparticles with enhanced oral bioactivity. Int J Pharm 2019; 562:23-30. [DOI: 10.1016/j.ijpharm.2019.03.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 12/19/2022]
|
14
|
Abstract
Oral delivery is the most common method of drug administration with high safety and good compliance for patients. However, delivering therapeutic proteins to the target site via oral route involves tremendous challenge due to unfavourable conditions like biochemical barrier, mucus barrier and epithelial barriers. According to the functional differences of various protein drug delivery systems, the recent advances in pH responsive polymer-based drug delivery system, mucoadhesive polymer-based drug delivery system, absorption enhancers-based drug delivery system and composite polymer-based delivery system all were briefly summarised in this review, which not only clarified the clinic potential of these novel drug delivery systems, but also described the way for increasing oral bioavailability of therapeutic protein.
Collapse
Affiliation(s)
- Shiming He
- a Institute of Military Cognition and Brain Sciences , Beijing , China.,b College of Pharmaceutical Sciences , Hebei University , Baoding , China.,c Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences , Hebei university , Baoding , China
| | - Zhongcheng Liu
- b College of Pharmaceutical Sciences , Hebei University , Baoding , China.,c Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences , Hebei university , Baoding , China
| | - Donggang Xu
- a Institute of Military Cognition and Brain Sciences , Beijing , China
| |
Collapse
|
15
|
Zhang L, Qin H, Li J, Qiu JN, Huang JM, Li MC, Guan YQ. Preparation and characterization of layer-by-layer hypoglycemic nanoparticles with pH-sensitivity for oral insulin delivery. J Mater Chem B 2018; 6:7451-7461. [DOI: 10.1039/c8tb02113a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We developed an insulin oral delivery system with the combination of pH-sensitive material and structure to avoid intestinal degradation.
Collapse
Affiliation(s)
- Li Zhang
- School of Life Science, South China Normal University
- Guangzhou 510631
- China
- National Engineering Research Center for Healthcare Devices, Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Guangdong Institute of Medical Instruments
- Guangzhou 510500
| | - Han Qin
- School of Life Science, South China Normal University
- Guangzhou 510631
- China
- Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials South China Academy of Advanced Optoelectronics, South China Normal University
- Guangzhou 510006
| | - Jian Li
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University
- Guangzhou 510631
- China
| | - Jia-Ni Qiu
- School of Life Science, South China Normal University
- Guangzhou 510631
- China
- Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials South China Academy of Advanced Optoelectronics, South China Normal University
- Guangzhou 510006
| | - Jing-Min Huang
- School of Life Science, South China Normal University
- Guangzhou 510631
- China
- Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials South China Academy of Advanced Optoelectronics, South China Normal University
- Guangzhou 510006
| | - Ming-Chao Li
- School of Life Science, South China Normal University
- Guangzhou 510631
- China
- Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials South China Academy of Advanced Optoelectronics, South China Normal University
- Guangzhou 510006
| | - Yan-Qing Guan
- School of Life Science, South China Normal University
- Guangzhou 510631
- China
- Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials South China Academy of Advanced Optoelectronics, South China Normal University
- Guangzhou 510006
| |
Collapse
|
16
|
Ji N, Hong Y, Gu Z, Cheng L, Li Z, Li C. Fabrication and characterization of complex nanoparticles based on carboxymethyl short chain amylose and chitosan by ionic gelation. Food Funct 2018; 9:2902-2912. [DOI: 10.1039/c8fo00238j] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The combination of carboxymethyl short chain amylose with chitosan could be considered as a candidate for oral delivery of insulin.
Collapse
Affiliation(s)
- Na Ji
- The State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi-214122
- P. R. China
- School of Food Science and Technology
| | - Yan Hong
- The State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi-214122
- P. R. China
- School of Food Science and Technology
| | - Zhengbiao Gu
- The State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi-214122
- P. R. China
- School of Food Science and Technology
| | - Li Cheng
- The State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi-214122
- P. R. China
- School of Food Science and Technology
| | - Zhaofeng Li
- The State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi-214122
- P. R. China
- School of Food Science and Technology
| | - Caiming Li
- The State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi-214122
- P. R. China
- School of Food Science and Technology
| |
Collapse
|