1
|
Carter BM, Day GJ, Zhang WH, Sessions RB, Jackson CJ, Perriman AW. Partitioning of an Enzyme-Polymer Surfactant Nanocomplex into Lipid-Rich Cellular Compartments Drives In Situ Hydrolysis of Organophosphates. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401982. [PMID: 38992997 DOI: 10.1002/smll.202401982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/30/2024] [Indexed: 07/13/2024]
Abstract
Most organophosphates (OPs) are hydrophobic, and after exposure, can sequester into lipophilic regions within the body, such as adipose tissue, resulting in long term chronic effects. Consequently, there is an urgent need for therapeutic agents that can decontaminate OPs in these hydrophobic regions. Accordingly, an enzyme-polymer surfactant nanocomplex is designed and tested comprising chemically supercharged phosphotriesterase (Agrobacterium radiobacter; arPTE) electrostatically conjugated to amphiphilic polymer surfactant chains ([cat.arPTE][S-]). Experimentally-derived structural data are combined with molecular dynamics (MD) simulations to provide atomic level detail on conformational ensembles of the nanocomplex using dielectric constants relevant to aqueous and lipidic microenvironments. These show the formation of a compact admicelle pseudophase surfactant corona under aqueous conditions, which reconfigures to yield an extended conformation at a low dielectric constant, providing insight into the mechanism underpinning cell membrane binding. Significantly, it demonstrated that [cat.arPTE][S-] spontaneously binds to human mesenchymal stem cell membranes (hMSCs), resulting in on-cell OP hydrolysis. Moreover, the nanoconstruct can endocytose and partition into the intracellular fatty vacuoles of adipocytes and hydrolyze sequestered OP.
Collapse
Affiliation(s)
- Benjamin M Carter
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Graham J Day
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - William H Zhang
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | | | - Colin J Jackson
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australian National University, Canberra, ACT, 2601, Australia
| | - Adam W Perriman
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
2
|
Murata H, Kapil K, Kaupbayeva B, Russell AJ, Dordick JS, Matyjaszewski K. Artificial Zymogen Based on Protein-Polymer Hybrids. Biomacromolecules 2024. [PMID: 39422524 DOI: 10.1021/acs.biomac.4c01079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
This study explores the synthesis and application of artificial zymogens using protein-polymer hybrids to mimic the controlled enzyme activation observed in natural zymogens. Pro-trypsin (pro-TR) and pro-chymotrypsin (pro-CT) hybrids were engineered by modifying the surfaces of trypsin (TR) and chymotrypsin (CT) with cleavable peptide inhibitors utilizing surface-initiated atom transfer radical polymerization. These hybrids exhibited 70 and 90% reductions in catalytic efficiency for pro-TR and pro-CT, respectively, due to the inhibitory effect of the grafted peptide inhibitors. The activation of pro-TR by CT and pro-CT by TR resulted in 1.5- and 2.5-fold increases in enzymatic activity, respectively. Furthermore, the activated hybrids triggered an enzyme activation cascade, enabling amplification of activity through a dual pro-protease hybrid system. This study highlights the potential of artificial zymogens for therapeutic interventions and biodetection platforms by harnessing enzyme activation cascades for precise control of catalytic activity.
Collapse
Affiliation(s)
- Hironobu Murata
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Kriti Kapil
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Bibifatima Kaupbayeva
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
| | - Alan J Russell
- Amgen Research, 1 Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Jonathan S Dordick
- Department of Chemical and Biological Engineering, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
3
|
Pavón C, Ongaro A, Filipucci I, Ramakrishna SN, Mattarei A, Isa L, Klok HA, Lorandi F, Benetti EM. The Structural Dispersity of Oligoethylene Glycol-Containing Polymer Brushes Determines Their Interfacial Properties. J Am Chem Soc 2024. [PMID: 38859572 DOI: 10.1021/jacs.4c05565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Ought to their bioinert properties and facile synthesis, poly[(oligoethylene glycol)methacrylate]s (POEGMAs) have been raised as attractive alternatives to poly(ethylene glycols) (PEGs) in an array of (bio)material applications, especially when they are applied as polymer brush coatings. However, commercially available OEG-methacrylate (macro)monomers feature a broad distribution of OEG lengths, thus generating structurally polydisperse POEGMAs when polymerized through reversible deactivation radical polymerization. Here, we demonstrate that the interfacial physicochemical properties of POEGMA brushes are significantly affected by their structural dispersity, i.e., the degree of heterogeneity in the length of side OEG segments. POEGMA brushes synthesized from discrete (macro)monomers obtained through chromatographic purification of commercial mixtures show increased hydration and reduced adhesion when compared to their structurally polydisperse analogues. The observed alteration of interfacial properties is directly linked to the presence of monodisperse OEG side chains, which hamper intramolecular and intermolecular hydrophobic interactions while simultaneously promoting the association of water molecules. These phenomena provide structurally homogeneous POEGMA brushes with a more lubricious and protein repellent character with respect to their heterogeneous counterparts. More generally, in contrast to what has been assumed until now, the properties of POEGMA brushes cannot be anticipated while ruling out the effect of dispersity by (macro)monomer feeds. Simultaneously, side chain dispersity of POEGMAs emerges as a critical parameter for determining the interfacial characteristics of brushes.
Collapse
Affiliation(s)
- Carlos Pavón
- Laboratory for Macromolecular and Organic Chemistry, Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Alberto Ongaro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131 Padova, Italy
| | - Irene Filipucci
- Laboratory for Macromolecular and Organic Chemistry, Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymeres, École Polytechnique Fédérale de Lausanne (EPFL), Rte Cantonale, CH-1015 Lausanne, Switzerland
| | - Shivaprakash N Ramakrishna
- Laboratory for Soft Materials and Interfaces, ETH Zürich, Vladmir-Prelog-Weg 1-5, 8093 Zürich, Switzerland
| | - Andrea Mattarei
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131 Padova, Italy
| | - Lucio Isa
- Laboratory for Soft Materials and Interfaces, ETH Zürich, Vladmir-Prelog-Weg 1-5, 8093 Zürich, Switzerland
| | - Harm-Anton Klok
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymeres, École Polytechnique Fédérale de Lausanne (EPFL), Rte Cantonale, CH-1015 Lausanne, Switzerland
| | - Francesca Lorandi
- Laboratory for Macromolecular and Organic Chemistry, Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Edmondo M Benetti
- Laboratory for Macromolecular and Organic Chemistry, Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
4
|
Çalbaş B, Keobounnam AN, Korban C, Doratan AJ, Jean T, Sharma AY, Wright TA. Protein-polymer bioconjugation, immobilization, and encapsulation: a comparative review towards applicability, functionality, activity, and stability. Biomater Sci 2024; 12:2841-2864. [PMID: 38683585 DOI: 10.1039/d3bm01861j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Polymer-based biomaterials have received a lot of attention due to their biomedical, agricultural, and industrial potential. Soluble protein-polymer bioconjugates, immobilized proteins, and encapsulated proteins have been shown to tune enzymatic activity, improved pharmacokinetic ability, increased chemical and thermal stability, stimuli responsiveness, and introduced protein recovery. Controlled polymerization techniques, increased protein-polymer attachment techniques, improved polymer surface grafting techniques, controlled polymersome self-assembly, and sophisticated characterization methods have been utilized for the development of well-defined polymer-based biomaterials. In this review we aim to provide a brief account of the field, compare these methods for engineering biomaterials, provide future directions for the field, and highlight impacts of these forms of bioconjugation.
Collapse
Affiliation(s)
- Berke Çalbaş
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Ashley N Keobounnam
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Christopher Korban
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ainsley Jade Doratan
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Tiffany Jean
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Aryan Yashvardhan Sharma
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Thaiesha A Wright
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Darji S, Aayush A, Estes KM, Strock JD, Thompson DH. Unravelling the Mechanism of Elastin-like Polypeptide-Enzyme Fusion Stabilization in Organic Solvents. Biomacromolecules 2024; 25:272-281. [PMID: 38118170 DOI: 10.1021/acs.biomac.3c00982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Elastin-like polypeptides (ELP) are a class of materials that are widely used as purification tags and in potential therapeutic applications. We have used the hydrophobic nature of ELP to extract them into organic solvents and precipitate them to obtain highly pure materials. Although many different types of ELP have been rapidly purified in this manner, the underlying mechanism for this process and its ability to retain functional proteins within organic phase-rich media has been unclear. A cleavable ELP-Intein construct fused with the enzyme chorismate mutase (ELP-I-Cm2) was used to better understand the organic solvent extraction process for ELP and the factors impacting the retention of enzyme activity. Our extraction studies indicated that a cell lysis step was essential to stabilize the ELP-I-Cm2 in the organic phase, prevent intein cleavage, and extract the fusion protein with high efficiency and retained activity. Circular dichroism and infrared spectroscopic characterization of ELP-I-Cm2 in organic solvents and aqueous solutions of the extracted and precipitated material indicated that the ELP secondary structure was retained in both environments. Atomic force microscopy and negative stain transmission electron microscopy imaging of ELP-I-Cm2 in organic solvents revealed highly regular circular features that were ∼50 nm in diameter, in contrast to larger (>100 nm) irregular features found in aqueous solutions. Since reverse micelles have often been used in catalytic processes, we evaluated the enzymatic activity of the ELP-I-Cm2 reversed micelles in different organic solvent mixtures and found that Cm2-mediated reactions in organic media were of comparable rate and efficiency to those in aqueous media. Based on these findings, we report an exciting new opportunity for ELP-enzyme fusion applications by exploiting their ability to form catalytically active reverse micelles in organic media.
Collapse
Affiliation(s)
- Saloni Darji
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Aayush Aayush
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Kiera M Estes
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jocie D Strock
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - David H Thompson
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
6
|
Kehrein J, Sotriffer C. Molecular Dynamics Simulations for Rationalizing Polymer Bioconjugation Strategies: Challenges, Recent Developments, and Future Opportunities. ACS Biomater Sci Eng 2024; 10:51-74. [PMID: 37466304 DOI: 10.1021/acsbiomaterials.3c00636] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The covalent modification of proteins with polymers is a well-established method for improving the pharmacokinetic properties of therapeutically valuable biologics. The conjugated polymer chains of the resulting hybrid represent highly flexible macromolecular structures. As the dynamics of such systems remain rather elusive for established experimental techniques from the field of protein structure elucidation, molecular dynamics simulations have proven as a valuable tool for studying such conjugates at an atomistic level, thereby complementing experimental studies. With a focus on new developments, this review aims to provide researchers from the polymer bioconjugation field with a concise and up to date overview of such approaches. After introducing basic principles of molecular dynamics simulations, as well as methods for and potential pitfalls in modeling bioconjugates, the review illustrates how these computational techniques have contributed to the understanding of bioconjugates and bioconjugation strategies in the recent past and how they may lead to a more rational design of novel bioconjugates in the future.
Collapse
Affiliation(s)
- Josef Kehrein
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Würzburg 97074, Germany
| | - Christoph Sotriffer
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Würzburg 97074, Germany
| |
Collapse
|
7
|
Bisirri EA, Wright TA, Schwartz DK, Kaar JL. Tuning Polymer Composition Leads to Activity-Stability Tradeoff in Enzyme-Polymer Conjugates. Biomacromolecules 2023; 24:4033-4041. [PMID: 37610792 DOI: 10.1021/acs.biomac.3c00396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Protein-polymer conjugation provides an opportune means to adjust the local environment of proteins and enhance protein stability, performance, and solubility. Although much attention has been focused on tuning protein-polymer interactions, the properties of polymer-modified proteins may also be altered by polymer-polymer interactions. Herein, we sought to better understand the influence of polymer-polymer interactions on Candida rugosa lipase, which was modified with random co-polymers composed of sulfobetaine methacrylate (SBMA) and poly(ethylene glycol) methacrylate (PEGMA). Our findings suggest that there is an apparent activity-stability tradeoff as a function of polymer composition. Specifically, as the ratio of SBMA to PEGMA increased, lipase stability was enhanced, whereas activity decreased. By tuning the monomer ratio, we showed that lipase productivity could be optimized. These findings are discussed in the context of complex enzyme-polymer and polymer-polymer interactions and ultimately may enable more informed conjugate designs and improved enzyme productivity in industrial biotransformations under harsh or extreme conditions.
Collapse
Affiliation(s)
- Evan A Bisirri
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Thaiesha A Wright
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Daniel K Schwartz
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Joel L Kaar
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
8
|
Deng B, Burns E, McNelles SA, Sun J, Ortega J, Adronov A. Molecular Sieving with PEGylated Dendron-Protein Conjugates. Bioconjug Chem 2023; 34:1467-1476. [PMID: 37499133 DOI: 10.1021/acs.bioconjchem.3c00237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
A series of generation 3-5 dendrons based on a bis(2,2-hydroxymethylpropionic acid) (bis-MPA) scaffold bearing three respective lengths of linear poly(ethylene glycol) at their periphery and a dibenzocyclooctyne unit at their core was prepared. These dendrons were appended to the surface of azide-decorated α-chymotrypsin (α-CT) via strain-promoted azide-alkyne cycloaddition to yield a library of dendron-protein conjugates. These conjugates were characterized by FT-IR and NMR spectroscopy and were imaged using cryo-electron microscopy. The activity of the PEGylated α-CT-dendron conjugates was investigated using a small molecule (benzoyl-l-tyrosine p-nitroanilide) as well as different proteins of different sizes and crystallinities (casein and bovine serum albumin) as substrates. It was found that the activity of the conjugates toward the small molecule was largely retained, while the activity toward the proteins was significantly diminished. Furthermore, the results indicate that for most of the conjugates the PEG length had a more pronounced impact on enzyme activity than the dendron generation. Overall, the highest sieving ratios were found for α-CT-dendron conjugates decorated with G3-PEG2000, G4-PEG2000, and G5-PEG1000, with the latter two structures offering the best combination of sieving ratio and small molecule activity.
Collapse
Affiliation(s)
- Billy Deng
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Evan Burns
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Stuart A McNelles
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Jingyu Sun
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
- Centre for Structural Biology, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - Joaquin Ortega
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
- Centre for Structural Biology, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - Alex Adronov
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
- Brockhouse Institute for Materials Research, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| |
Collapse
|
9
|
Shen Z, Sun Y, Zhu G, Xu G, Yu Z, Lu H, Chen Y. Molecular Insights into the Improved Bioactivity of Interferon Conjugates Attached to a Helical Polyglutamate. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:6539-6547. [PMID: 37127842 DOI: 10.1021/acs.langmuir.3c00501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Attaching polymers, especially polyethylene glycol (PEG), to protein drugs has emerged as a successful strategy to prolong circulation time in the bloodstream. The hypothesis is that the flexible chain wobbles on the protein's surface, thus resisting potential nonspecific adsorption. Such a theoretical framework may be challenged when a helical polyglutamate is used to conjugate with target proteins. In this study, we investigated the structure-activity relationships of polyglutamate-interferon conjugates P(EG3Glu)-IFN using molecular simulations. Our results show that the local crowding effect induced by oligoethylene glycols (i.e., EG3) is the primary driving force for helix formation in P(EG3Glu), and its helicity can be effectively increased by reducing the free volume of the two termini. Furthermore, it was found that the steric hindrance induced by IFN is not conductive to the helicity of P(EG3Glu) but contributes to its dominant orientation relative to interferon. The orientation of IFN relative to the helical P(EG3Glu) can help to protect the protein drug from neutralizing antibodies while maintaining its bioactivity. These findings suggest that the helical structure and its orientation are critical factors to consider when updating the theoretical framework for protein-polymer conjugates.
Collapse
Affiliation(s)
- Zhuanglin Shen
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060, China
| | - Yiming Sun
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Guoliang Zhu
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Gaixia Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060, China
| | - Zhenqiang Yu
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Hua Lu
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yantao Chen
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| |
Collapse
|
10
|
Recent Advances in the Application of ATRP in the Synthesis of Drug Delivery Systems. Polymers (Basel) 2023; 15:polym15051234. [PMID: 36904474 PMCID: PMC10007417 DOI: 10.3390/polym15051234] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Advances in atom transfer radical polymerization (ATRP) have enabled the precise design and preparation of nanostructured polymeric materials for a variety of biomedical applications. This paper briefly summarizes recent developments in the synthesis of bio-therapeutics for drug delivery based on linear and branched block copolymers and bioconjugates using ATRP, which have been tested in drug delivery systems (DDSs) over the past decade. An important trend is the rapid development of a number of smart DDSs that can release bioactive materials in response to certain external stimuli, either physical (e.g., light, ultrasound, or temperature) or chemical factors (e.g., changes in pH values and/or environmental redox potential). The use of ATRPs in the synthesis of polymeric bioconjugates containing drugs, proteins, and nucleic acids, as well as systems applied in combination therapies, has also received considerable attention.
Collapse
|
11
|
Holz E, Darwish M, Tesar DB, Shatz-Binder W. A Review of Protein- and Peptide-Based Chemical Conjugates: Past, Present, and Future. Pharmaceutics 2023; 15:600. [PMID: 36839922 PMCID: PMC9959917 DOI: 10.3390/pharmaceutics15020600] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Over the past few decades, the complexity of molecular entities being advanced for therapeutic purposes has continued to evolve. A main propellent fueling innovation is the perpetual mandate within the pharmaceutical industry to meet the needs of novel disease areas and/or delivery challenges. As new mechanisms of action are uncovered, and as our understanding of existing mechanisms grows, the properties that are required and/or leveraged to enable therapeutic development continue to expand. One rapidly evolving area of interest is that of chemically enhanced peptide and protein therapeutics. While a variety of conjugate molecules such as antibody-drug conjugates, peptide/protein-PEG conjugates, and protein conjugate vaccines are already well established, others, such as antibody-oligonucleotide conjugates and peptide/protein conjugates using non-PEG polymers, are newer to clinical development. This review will evaluate the current development landscape of protein-based chemical conjugates with special attention to considerations such as modulation of pharmacokinetics, safety/tolerability, and entry into difficult to access targets, as well as bioavailability. Furthermore, for the purpose of this review, the types of molecules discussed are divided into two categories: (1) therapeutics that are enhanced by protein or peptide bioconjugation, and (2) protein and peptide therapeutics that require chemical modifications. Overall, the breadth of novel peptide- or protein-based therapeutics moving through the pipeline each year supports a path forward for the pursuit of even more complex therapeutic strategies.
Collapse
Affiliation(s)
- Emily Holz
- Department of Pharmaceutical Development, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Martine Darwish
- Department of Protein Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Devin B. Tesar
- Department of Pharmaceutical Development, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Whitney Shatz-Binder
- Department of Pharmaceutical Development, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
- Department of Protein Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| |
Collapse
|
12
|
Pritzlaff A, Ferré G, Mulry E, Lin L, Pour NG, Savin DA, Harris M, Eddy MT. Atomic-Scale View of Protein-PEG Interactions that Redirect the Thermal Unfolding Pathway of PEGylated Human Galectin-3. Angew Chem Int Ed Engl 2022; 61:e202203784. [PMID: 35922375 PMCID: PMC9529833 DOI: 10.1002/anie.202203784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Indexed: 07/28/2023]
Abstract
PEGylation is a promising approach to address the central challenge of applying biologics, i.e., lack of protein stability in the demanding environment of the human body. Wider application is hindered by lack of atomic level understanding of protein-PEG interactions, preventing design of conjugates with predicted properties. We deployed an integrative structural and biophysical approach to address this critical challenge with the PEGylated carbohydrate recognition domain of human galectin-3 (Gal3C), a lectin essential for cell adhesion and potential biologic. PEGylation dramatically increased Gal3C thermal stability, forming a stable intermediate and redirecting its unfolding pathway. Structural details revealed by NMR pointed to a potential role of PEG localization facilitated by charged residues. Replacing these residues subtly altered the protein-PEG interface and thermal unfolding behavior, providing insight into rationally designing conjugates while preserving PEGylation benefits.
Collapse
Affiliation(s)
- Amanda Pritzlaff
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Guillaume Ferré
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Emma Mulry
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Ling Lin
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | | | - Daniel A. Savin
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Michael Harris
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Matthew T. Eddy
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
13
|
Kaupbayeva B, Murata H, Rule GS, Matyjaszewski K, Russell AJ. Rational Control of Protein-Protein Interactions with Protein-ATRP-Generated Protease-Sensitive Polymer Cages. Biomacromolecules 2022; 23:3831-3846. [PMID: 35984406 DOI: 10.1021/acs.biomac.2c00679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protease-protease interactions lie at the heart of the biological cascades that provide rapid molecular responses to living systems. Blood clotting cascades, apoptosis signaling networks, bacterial infection, and virus trafficking have all evolved to be activated and sustained by protease-protease interactions. Biomimetic strategies designed to target drugs to specific locations have generated proprotein drugs that can be activated by proteolytic cleavage to release native protein. We have previously demonstrated that the modification of enzymes with a custom-designed comb-shaped polymer nanoarmor can shield the enzyme surface and eliminate almost all protein-protein interactions. We now describe the synthesis and characterization of protease-sensitive comb-shaped nanoarmor cages using poly(ethylene glycol) [Sundy, J. S. Arthritis Rheum. 2008, 58(9), 2882-2891]methacrylate macromonomers where the PEG tines of the comb are connected to the backbone of the growing polymer chain by peptide linkers. Protease-induced cleavage of the tines of the comb releases a polymer-modified protein that can once again participate in protein-protein interactions. Atom transfer radical polymerization (ATRP) was used to copolymerize the macromonomer and carboxybetaine methacrylate from initiator-labeled chymotrypsin and trypsin enzymes, yielding proprotease conjugates that retained activity toward small peptide substrates but prevented activity against proteins. Native proteases triggered the release of the PEG side chains from the polymer backbone within 20 min, thereby increasing the activity of the conjugate toward larger protein substrates by 100%. Biomimetic cascade initiation of nanoarmored protease-sensitive protein-polymer conjugates may open the door to a new class of responsive targeted therapies.
Collapse
Affiliation(s)
- Bibifatima Kaupbayeva
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States.,Center for Polymer-Based Protein Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States.,National Laboratory Astana, Nazarbayev University, Nur-Sultan City 010000, Kazakhstan
| | - Hironobu Murata
- Center for Polymer-Based Protein Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States.,Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Gordon S Rule
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States.,Center for Polymer-Based Protein Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Center for Polymer-Based Protein Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States.,Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Alan J Russell
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States.,Center for Polymer-Based Protein Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States.,Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States.,Amgen, 1 Amgen Center Drive, Thousand Oaks, California 91320, United States
| |
Collapse
|
14
|
Pritzlaff A, Ferré G, Mulry E, Lin L, Pour NG, Eddy M, Savin DA, Harris M. Atomic‐Scale View of Protein–PEG Interactions that Redirect the Thermal Unfolding Pathway of PEGylated Human Galectin‐3. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | - Emma Mulry
- University of Florida Department of Chemistry UNITED STATES
| | - Ling Lin
- University of Florida Department of Chemistry UNITED STATES
| | | | - Matthew Eddy
- University of Florida Chemistry 126 Sisler Hall 32611 Gainesville UNITED STATES
| | | | - Michael Harris
- University of Florida Department of Chemistry UNITED STATES
| |
Collapse
|
15
|
Applying Synthetic Biology with Rational Design to Nature’s Greatest Challenges: Bioengineering Immunotherapeutics for the Treatment of Glioblastoma. IMMUNO 2021. [DOI: 10.3390/immuno2010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Improvements in bioengineering methodology and tools have allowed for significant progress in the development of therapeutics and diagnostics in medicine, as well as progress in many other diverse industries, such as materials manufacturing, food and agriculture, and consumer goods. Glioblastomas present significant challenges to adequate treatment, in part due to their immune-evasive and manipulative nature. Rational-design bioengineering using novel scaffolds, biomaterials, and inspiration across disciplines can push the boundaries in treatment development to create effective therapeutics for glioblastomas. In this review, we will discuss bioengineering strategies currently applied across diseases and disciplines to inspire creative development for GBM immunotherapies.
Collapse
|
16
|
Chen K, Quan M, Dong X, Shi Q, Sun Y. Low modification of PETase enhances its activity toward degrading PET: Effect of conjugate monomer property. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108151] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Perera BLA, Colina CM. Cluster formation of initiators as a tool to impose conformational stability to unstructured regions of a protein. Mol Phys 2021. [DOI: 10.1080/00268976.2021.1963000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- B. Lakshitha A. Perera
- Department of Chemistry, University of Florida, Gainesville, FL, USA
- George and Josephine Butler Polymer Research Laboratory, University of Florida, Gainesville, FL, USA
- Center for Macromolecular Science and Engineering, University of Florida, Gainesville, FL, USA
| | - Coray M. Colina
- Department of Chemistry, University of Florida, Gainesville, FL, USA
- George and Josephine Butler Polymer Research Laboratory, University of Florida, Gainesville, FL, USA
- Center for Macromolecular Science and Engineering, University of Florida, Gainesville, FL, USA
- Department of Material Science and Engineering, University of Florida, Gainesville, FL, USA
| |
Collapse
|
18
|
General method to stabilize mesophilic proteins in hyperthermal water. iScience 2021; 24:102503. [PMID: 34113834 PMCID: PMC8169989 DOI: 10.1016/j.isci.2021.102503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/14/2021] [Accepted: 04/29/2021] [Indexed: 11/23/2022] Open
Abstract
The stability of protein structures and biological functions at normal temperature is closely linked with the universal aqueous environment of organisms. Preserving bioactivities of proteins in hyperthermia water would expand their functional capabilities beyond those in native environments. However, only a limited number of proteins derived from hyperthermophiles are thermostable at elevated temperatures. Triggered by this, here we describe a general method to stabilize mesophilic proteins in hyperthermia water. The mesophilic proteins, protected by amphiphilic polymers with multiple binding sites, maintain their secondary and tertiary structures after incubation even in boiling water. This approach, outside the conventional environment for bioactivities of mesophilic proteins, provides a general strategy to dramatically increase the Tm (melting temperature) of mesophilic proteins without any changes to amino sequences of the native proteins. Current work offers a new insight with protein stability engineering for potential application, including vaccine storage and enzyme engineering. Preserving bioactivities of proteins in hyperthermia water is promising. Amphiphilic polymers could protect mesophilic proteins even in boiling water. Mesophilic proteins protected by amphiphilic polymers show dramatically increased Tm. The method offers application prospect for vaccine storage and enzyme engineering.
Collapse
|
19
|
Kaupbayeva B, Boye S, Munasinghe A, Murata H, Matyjaszewski K, Lederer A, Colina CM, Russell AJ. Molecular Dynamics-Guided Design of a Functional Protein-ATRP Conjugate That Eliminates Protein-Protein Interactions. Bioconjug Chem 2021; 32:821-832. [PMID: 33784809 DOI: 10.1021/acs.bioconjchem.1c00098] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Even the most advanced protein-polymer conjugate therapeutics do not eliminate antibody-protein and receptor-protein recognition. Next-generation bioconjugate drugs will need to replace stochastic selection with rational design to select desirable levels of protein-protein interaction while retaining function. The "Holy Grail" for rational design would be to generate functional enzymes that are fully catalytic with small molecule substrates while eliminating interaction between the protein surface and larger molecules. Using chymotrypsin, an important enzyme that is used to treat pancreatic insufficiency, we have designed a series of molecular chimeras with varied grafting densities and shapes. Guided by molecular dynamic simulations and next-generation molecular chimera characterization with asymmetric flow field-flow fractionation chromatography, we grew linear, branched, and comb-shaped architectures from the surface of the protein by atom-transfer radical polymerization. Comb-shaped polymers, grafted from the surface of chymotrypsin, completely prevented enzyme inhibition with protein inhibitors without sacrificing the ability of the enzyme to catalyze the hydrolysis of a peptide substrate. Asymmetric flow field-flow fractionation coupled with multiangle laser light scattering including dynamic light scattering showed that nanoarmor designed with comb-shaped polymers was particularly compact and spherical. The polymer structure significantly increased protein stability and reduced protein-protein interactions. Atomistic molecular dynamic simulations predicted that a dense nanoarmor with long-armed comb-shaped polymer would act as an almost perfect molecular sieve to filter large ligands from substrates. Surprisingly, a conjugate that was composed of 99% polymer was needed before the elimination of protein-protein interactions.
Collapse
Affiliation(s)
- Bibifatima Kaupbayeva
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States.,Center for Polymer-Based Protein Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Susanne Boye
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany
| | - Aravinda Munasinghe
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States.,George & Josephine Butler Polymer Research Laboratory, University of Florida, Gainesville, Florida 32611, United States
| | - Hironobu Murata
- Center for Polymer-Based Protein Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Center for Polymer-Based Protein Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States.,Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Albena Lederer
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany.,Technische Universität Dresden, 01062, Dresden, Germany.,Stellenbosch University, Department of Chemistry and Polymer Science, Private Bag X1, Matieland 7602, South Africa
| | - Coray M Colina
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States.,George & Josephine Butler Polymer Research Laboratory, University of Florida, Gainesville, Florida 32611, United States.,Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Alan J Russell
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States.,Center for Polymer-Based Protein Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States.,Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States.,Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
20
|
Rahman MS, Brown J, Murphy R, Carnes S, Carey B, Averick S, Konkolewicz D, Page RC. Polymer Modification of Lipases, Substrate Interactions, and Potential Inhibition. Biomacromolecules 2021; 22:309-318. [PMID: 33416313 DOI: 10.1021/acs.biomac.0c01159] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
An industrially important enzyme, Candida antarctica lipase B (CalB), was modified with a range of functional polymers including hydrophilic, hydrophobic, anionic, and cationic character using a "grafting to" approach. We determined the impact of polymer chain length on CalB activity by synthesizing biohybrids of CalB with each polymer at three different chain lengths, using reversible addition-fragmentation chain transfer (RAFT) polymerization. The activity of CalB in both aqueous and aqueous-organic media mixtures was significantly enhanced for acrylamide (Am) and N,N-dimethyl acrylamide (DMAm) conjugates, with activity remaining approximately constant in 25 and 50% ethanol solvent systems. Interestingly, the activity of N,N-dimethylaminopropyl-acrylamide (DMAPA) conjugates increased gradually with increasing organic solvent content in the system. Contrary to other literature reports, our study showed significantly diminished activity for hydrophobic polymer-protein conjugates. Functional thermal stability assays also displayed a considerable enhancement of retained activity of Am, DMAm, and DMAPA conjugates compared to the native CalB enzyme. Thus, this study provides an insight into possible advances in lipase production, which can lead to new improved lipase bioconjugates with increased activity and stability.
Collapse
Affiliation(s)
- Monica Sharfin Rahman
- Department of Chemistry and Biochemistry, Miami University, 651 E High St., Oxford, Ohio 45056, United States
| | - Julian Brown
- Department of Chemistry and Biochemistry, Miami University, 651 E High St., Oxford, Ohio 45056, United States
| | - Reena Murphy
- Department of Chemistry and Biochemistry, Miami University, 651 E High St., Oxford, Ohio 45056, United States
| | - Sydney Carnes
- Department of Chemistry and Biochemistry, Miami University, 651 E High St., Oxford, Ohio 45056, United States
| | - Ben Carey
- Department of Chemistry and Biochemistry, Miami University, 651 E High St., Oxford, Ohio 45056, United States
| | - Saadyah Averick
- Neuroscience Institute, Allegheny Health Network, Allegheny General Hospital, Pittsburgh, Pennsylvania 15212, United States
| | - Dominik Konkolewicz
- Department of Chemistry and Biochemistry, Miami University, 651 E High St., Oxford, Ohio 45056, United States
| | - Richard C Page
- Department of Chemistry and Biochemistry, Miami University, 651 E High St., Oxford, Ohio 45056, United States
| |
Collapse
|
21
|
|
22
|
Zhang L, Murata H, Amitai G, Smith PN, Matyjaszewski K, Russell AJ. Catalytic Detoxification of Organophosphorus Nerve Agents by Butyrylcholinesterase-Polymer-Oxime Bioscavengers. Biomacromolecules 2020; 21:3867-3877. [DOI: 10.1021/acs.biomac.0c00959] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Libin Zhang
- Center for Polymer-Based Protein Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Hironobu Murata
- Center for Polymer-Based Protein Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Gabriel Amitai
- Wohl Drug Discovery Institute, Nancy and Stephen Grand Israel National Center for Personalized Medicine (G-INCPM), Weizmann Institute of Science, Rehovot 760001, Israel
| | - Paige N. Smith
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Center for Polymer-Based Protein Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
- Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Alan J. Russell
- Center for Polymer-Based Protein Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
- Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
23
|
Rodriguez-Abetxuko A, Sánchez-deAlcázar D, Muñumer P, Beloqui A. Tunable Polymeric Scaffolds for Enzyme Immobilization. Front Bioeng Biotechnol 2020; 8:830. [PMID: 32850710 PMCID: PMC7406678 DOI: 10.3389/fbioe.2020.00830] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/29/2020] [Indexed: 12/12/2022] Open
Abstract
The number of methodologies for the immobilization of enzymes using polymeric supports is continuously growing due to the developments in the fields of biotechnology, polymer chemistry, and nanotechnology in the last years. Despite being excellent catalysts, enzymes are very sensitive molecules and can undergo denaturation beyond their natural environment. For overcoming this issue, polymer chemistry offers a wealth of opportunities for the successful combination of enzymes with versatile natural or synthetic polymers. The fabrication of functional, stable, and robust biocatalytic hybrid materials (nanoparticles, capsules, hydrogels, or films) has been proven advantageous for several applications such as biomedicine, organic synthesis, biosensing, and bioremediation. In this review, supported with recent examples of enzyme-protein hybrids, we provide an overview of the methods used to combine both macromolecules, as well as the future directions and the main challenges that are currently being tackled in this field.
Collapse
Affiliation(s)
| | | | - Pablo Muñumer
- PolyZymes group, POLYMAT and Department of Applied Chemistry (UPV/EHU), San Sebastián, Spain
| | - Ana Beloqui
- PolyZymes group, POLYMAT and Department of Applied Chemistry (UPV/EHU), San Sebastián, Spain
- Department of Applied Chemistry, University of the Basque Country, San Sebastián, Spain
- IKERBASQUE, Bilbao, Spain
| |
Collapse
|
24
|
Kabir A, Ahmed M. Elucidating the Role of Thermal Flexibility of Hydrogels in Protein Refolding. ACS APPLIED BIO MATERIALS 2020; 3:4253-4262. [DOI: 10.1021/acsabm.0c00324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Burridge KM, Shurina BA, Kozuszek CT, Parnell RF, Montgomery JS, VanPelt JL, Daman NM, McCarrick RM, Ramelot TA, Konkolewicz D, Page RC. Mapping protein-polymer conformations in bioconjugates with atomic precision. Chem Sci 2020; 11:6160-6166. [PMID: 32953011 PMCID: PMC7480076 DOI: 10.1039/d0sc02200d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/02/2020] [Indexed: 12/14/2022] Open
Abstract
Rational design of protein-polymer bioconjugates is hindered by limited experimental data and mechanistic understanding on interactions between the two. In this communication, nuclear magnetic resonance (NMR) paramagnetic relaxation enhancement (PRE) reports on distances between paramagnetic spin labels and NMR active nuclei, informing on the conformation of conjugated polymers. 1H/15N-heteronuclear single quantum coherence (HSQC) NMR spectra were collected for ubiquitin (Ub) modified with block copolymers incorporating spin labels at different positions along their backbone. The resultant PRE data show that the conjugated polymers have conformations biased towards the nonpolar β-sheet face of Ub, rather than behaving as if in solution. The bioconjugates are stabilized against denaturation by guanidine-hydrochloride, as measured by circular dichroism (CD), and this stabilization is attributed to the interaction between the protein and conjugated polymer.
Collapse
Affiliation(s)
- Kevin M Burridge
- Department of Chemistry and Biochemistry , Miami University , 651 E High St. , Oxford , OH 45056 , USA . ;
| | - Ben A Shurina
- Department of Chemistry and Biochemistry , Miami University , 651 E High St. , Oxford , OH 45056 , USA . ;
| | - Caleb T Kozuszek
- Department of Chemistry and Biochemistry , Miami University , 651 E High St. , Oxford , OH 45056 , USA . ;
| | - Ryan F Parnell
- Department of Chemistry and Biochemistry , Miami University , 651 E High St. , Oxford , OH 45056 , USA . ;
| | - Jonathan S Montgomery
- Department of Chemistry and Biochemistry , Miami University , 651 E High St. , Oxford , OH 45056 , USA . ;
| | - Jamie L VanPelt
- Department of Chemistry and Biochemistry , Miami University , 651 E High St. , Oxford , OH 45056 , USA . ;
| | - Nicholas M Daman
- Department of Chemistry and Biochemistry , Miami University , 651 E High St. , Oxford , OH 45056 , USA . ;
| | - Robert M McCarrick
- Department of Chemistry and Biochemistry , Miami University , 651 E High St. , Oxford , OH 45056 , USA . ;
| | - Theresa A Ramelot
- Department of Chemistry and Biochemistry , Miami University , 651 E High St. , Oxford , OH 45056 , USA . ;
| | - Dominik Konkolewicz
- Department of Chemistry and Biochemistry , Miami University , 651 E High St. , Oxford , OH 45056 , USA . ;
| | - Richard C Page
- Department of Chemistry and Biochemistry , Miami University , 651 E High St. , Oxford , OH 45056 , USA . ;
| |
Collapse
|
26
|
Lee H. Molecular Simulations of PEGylated Biomolecules, Liposomes, and Nanoparticles for Drug Delivery Applications. Pharmaceutics 2020; 12:E533. [PMID: 32531886 PMCID: PMC7355693 DOI: 10.3390/pharmaceutics12060533] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 12/17/2022] Open
Abstract
Since the first polyethylene glycol (PEG)ylated protein was approved by the FDA in 1990, PEGylation has been successfully applied to develop drug delivery systems through experiments, but these experimental results are not always easy to interpret at the atomic level because of the limited resolution of experimental techniques. To determine the optimal size, structure, and density of PEG for drug delivery, the structure and dynamics of PEGylated drug carriers need to be understood close to the atomic scale, as can be done using molecular dynamics simulations, assuming that these simulations can be validated by successful comparisons to experiments. Starting with the development of all-atom and coarse-grained PEG models in 1990s, PEGylated drug carriers have been widely simulated. In particular, recent advances in computer performance and simulation methodologies have allowed for molecular simulations of large complexes of PEGylated drug carriers interacting with other molecules such as anticancer drugs, plasma proteins, membranes, and receptors, which makes it possible to interpret experimental observations at a nearly atomistic resolution, as well as help in the rational design of drug delivery systems for applications in nanomedicine. Here, simulation studies on the following PEGylated drug topics will be reviewed: proteins and peptides, liposomes, and nanoparticles such as dendrimers and carbon nanotubes.
Collapse
Affiliation(s)
- Hwankyu Lee
- Department of Chemical Engineering, Dankook University, Yongin 16890, Korea
| |
Collapse
|
27
|
Activation and stabilization of lipase by grafting copolymer of hydrophobic and zwitterionic monomers onto the enzyme. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107557] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
28
|
Kovaliov M, Wright TA, Cheng B, Mathers RT, Zhang X, Meng D, Szcześniak K, Jenczyk J, Jurga S, Cohen-Karni D, Page RC, Konkolewicz D, Averick S. Toward Next-Generation Biohybrid Catalyst Design: Influence of Degree of Polymerization on Enzyme Activity. Bioconjug Chem 2020; 31:939-947. [DOI: 10.1021/acs.bioconjchem.0c00084] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Marina Kovaliov
- Neuroscience Institute, Allegheny Health Network, Allegheny General Hospital, Pittsburgh, Pennsylvania 15212, United States
| | - Thaiesha A. Wright
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45011, United States
| | - Boyle Cheng
- Neuroscience Institute, Allegheny Health Network, Allegheny General Hospital, Pittsburgh, Pennsylvania 15212, United States
| | - Robert T. Mathers
- Department of Chemistry, Penn State University, New Kensington, Pennsylvania 15068, United States
| | - Xiangyu Zhang
- Dave C. Swalm School of Chemical Engineering, Mississippi State University, Starkville, Mississippi 39762, United States
| | - Dong Meng
- Dave C. Swalm School of Chemical Engineering, Mississippi State University, Starkville, Mississippi 39762, United States
| | - Katarzyna Szcześniak
- NanoBioMedical Centre, Adam Mickiewicz University, Poznań, 61614, Poland
- Faculty of Chemical Technology, Poznan University of Technology, Poznań, Berdychowo 4, 60-965 Poznań, Poland
| | - Jacek Jenczyk
- NanoBioMedical Centre, Adam Mickiewicz University, Poznań, 61614, Poland
| | - Stefan Jurga
- NanoBioMedical Centre, Adam Mickiewicz University, Poznań, 61614, Poland
| | - Devora Cohen-Karni
- Preclinical Education, Lake Erie College of Osteopathic Medicine at Seton Hill, Greensburg, Pennsylvania 15601, United States
| | - Richard C. Page
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45011, United States
| | - Dominik Konkolewicz
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45011, United States
| | - Saadyah Averick
- Neuroscience Institute, Allegheny Health Network, Allegheny General Hospital, Pittsburgh, Pennsylvania 15212, United States
| |
Collapse
|
29
|
Munasinghe A, Baker SL, Lin P, Russell AJ, Colina CM. Structure-function-dynamics of α-chymotrypsin based conjugates as a function of polymer charge. SOFT MATTER 2020; 16:456-465. [PMID: 31803897 DOI: 10.1039/c9sm01842e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The field of protein-polymer conjugates has suffered from a lack of predictive tools and design guidelines to synthesize highly active and stable conjugates. In order to develop this type of information, structure-function-dynamics relationships must be understood. These relationships depend strongly on protein-polymer interactions and how these influence protein dynamics and conformations. Probing nanoscale interactions is experimentally difficult, but computational tools, such as molecular dynamics simulations, can easily obtain atomic resolution. Atomistic molecular dynamics simulations were used to study α-chymotrypsin (CT) densely conjugated with either zwitterionic, positively charged, or negatively charged polymers. Charged polymers interacted with the protein surface to varying degrees and in different regions of the polymer, depending on their flexibilities. Specific interactions of the negatively charged polymer with CT caused structural deformations in CT's substrate binding pocket and active site while no deformations were observed for zwitterionic and positively charged polymers. Attachment of polymers displaced water molecules from CT's surface into the polymer phase and polymer hydration correlated with the Hofmeister series.
Collapse
Affiliation(s)
- Aravinda Munasinghe
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA.
| | | | | | | | | |
Collapse
|
30
|
Zhang L, Baker SL, Murata H, Harris N, Ji W, Amitai G, Matyjaszewski K, Russell AJ. Tuning Butyrylcholinesterase Inactivation and Reactivation by Polymer-Based Protein Engineering. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1901904. [PMID: 31921563 PMCID: PMC6947490 DOI: 10.1002/advs.201901904] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/21/2019] [Indexed: 05/11/2023]
Abstract
Organophosphate nerve agents rapidly inhibit cholinesterases thereby destroying the ability to sustain life. Strong nucleophiles, such as oximes, have been used as therapeutic reactivators of cholinesterase-organophosphate complexes, but suffer from short half-lives and limited efficacy across the broad spectrum of organophosphate nerve agents. Cholinesterases have been used as long-lived therapeutic bioscavengers for unreacted organophosphates with limited success because they react with organophosphate nerve agents with one-to-one stoichiometries. The chemical power of nucleophilic reactivators is coupled to long-lived bioscavengers by designing and synthesizing cholinesterase-polymer-oxime conjugates using atom transfer radical polymerization and azide-alkyne "click" chemistry. Detailed kinetic studies show that butyrylcholinesterase-polymer-oxime activity is dependent on the electrostatic properties of the polymers and the amount of oxime within the conjugate. The covalent coupling of oxime-containing polymers to the surface of butyrylcholinesterase slows the rate of inactivation of paraoxon, a model nerve agent. Furthermore, when the enzyme is covalently inhibited by paraoxon, the covalently attached oxime induced inter- and intramolecular reactivation. Intramolecular reactivation will open the door to the generation of a new class of nerve agent scavengers that couple the speed and selectivity of biology to the ruggedness and simplicity of synthetic chemicals.
Collapse
Affiliation(s)
- Libin Zhang
- Center for Polymer‐Based Protein EngineeringCarnegie Mellon University5000 Forbes AvenuePittsburghPA15213USA
| | - Stefanie L. Baker
- Center for Polymer‐Based Protein EngineeringCarnegie Mellon University5000 Forbes AvenuePittsburghPA15213USA
- Department of Biomedical EngineeringCarnegie Mellon University5000 Forbes AvenuePittsburghPA15213USA
| | - Hironobu Murata
- Center for Polymer‐Based Protein EngineeringCarnegie Mellon University5000 Forbes AvenuePittsburghPA15213USA
| | - Nicholas Harris
- Center for Polymer‐Based Protein EngineeringCarnegie Mellon University5000 Forbes AvenuePittsburghPA15213USA
- Department of Biotechnology EngineeringORT Braude Academic CollegeKarmielPOB78Israel
| | - Weihang Ji
- Center for Polymer‐Based Protein EngineeringCarnegie Mellon University5000 Forbes AvenuePittsburghPA15213USA
| | - Gabriel Amitai
- Wohl Drug Discovery InstituteNancy and Stephen Grand Israel National Center for Personalized Medicine (G‐INCPM)Weizmann Institute of ScienceRehovot760001Israel
| | - Krzysztof Matyjaszewski
- Center for Polymer‐Based Protein EngineeringCarnegie Mellon University5000 Forbes AvenuePittsburghPA15213USA
- Department of ChemistryDepartment of Chemical EngineeringCarnegie Mellon University4400 Fifth AvenuePittsburghPA15213USA
| | - Alan J. Russell
- Center for Polymer‐Based Protein EngineeringCarnegie Mellon University5000 Forbes AvenuePittsburghPA15213USA
- Department of Biomedical EngineeringCarnegie Mellon University5000 Forbes AvenuePittsburghPA15213USA
- Department of ChemistryDepartment of Chemical EngineeringCarnegie Mellon University4400 Fifth AvenuePittsburghPA15213USA
| |
Collapse
|
31
|
Baker SL, Kaupbayeva B, Lathwal S, Das SR, Russell AJ, Matyjaszewski K. Atom Transfer Radical Polymerization for Biorelated Hybrid Materials. Biomacromolecules 2019; 20:4272-4298. [PMID: 31738532 DOI: 10.1021/acs.biomac.9b01271] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Proteins, nucleic acids, lipid vesicles, and carbohydrates are the major classes of biomacromolecules that function to sustain life. Biology also uses post-translation modification to increase the diversity and functionality of these materials, which has inspired attaching various other types of polymers to biomacromolecules. These polymers can be naturally (carbohydrates and biomimetic polymers) or synthetically derived and have unique properties with tunable architectures. Polymers are either grafted-to or grown-from the biomacromolecule's surface, and characteristics including polymer molar mass, grafting density, and degree of branching can be controlled by changing reaction stoichiometries. The resultant conjugated products display a chimerism of properties such as polymer-induced enhancement in stability with maintained bioactivity, and while polymers are most often conjugated to proteins, they are starting to be attached to nucleic acids and lipid membranes (cells) as well. The fundamental studies with protein-polymer conjugates have improved our synthetic approaches, characterization techniques, and understanding of structure-function relationships that will lay the groundwork for creating new conjugated biomacromolecular products which could lead to breakthroughs in genetic and tissue engineering.
Collapse
Affiliation(s)
- Stefanie L Baker
- Department of Biomedical Engineering , Carnegie Mellon University , Scott Hall 4N201, 5000 Forbes Avenue , Pittsburgh , Pennsylvania 15213 , United States.,Center for Polymer-Based Protein Engineering , Carnegie Mellon University , 5000 Forbes Avenue , Pittsburgh , Pennsylvania 15213 , United States
| | - Bibifatima Kaupbayeva
- Center for Polymer-Based Protein Engineering , Carnegie Mellon University , 5000 Forbes Avenue , Pittsburgh , Pennsylvania 15213 , United States.,Department of Biological Sciences , Carnegie Mellon University , 4400 Fifth Avenue , Pittsburgh , Pennsylvania 15213 , United States
| | - Sushil Lathwal
- Department of Chemistry , Carnegie Mellon University , 4400 Fifth Avenue , Pittsburgh , Pennsylvania 15213 , United States
| | - Subha R Das
- Department of Chemistry , Carnegie Mellon University , 4400 Fifth Avenue , Pittsburgh , Pennsylvania 15213 , United States
| | - Alan J Russell
- Department of Biomedical Engineering , Carnegie Mellon University , Scott Hall 4N201, 5000 Forbes Avenue , Pittsburgh , Pennsylvania 15213 , United States.,Center for Polymer-Based Protein Engineering , Carnegie Mellon University , 5000 Forbes Avenue , Pittsburgh , Pennsylvania 15213 , United States.,Department of Biological Sciences , Carnegie Mellon University , 4400 Fifth Avenue , Pittsburgh , Pennsylvania 15213 , United States.,Department of Chemistry , Carnegie Mellon University , 4400 Fifth Avenue , Pittsburgh , Pennsylvania 15213 , United States.,Department of Chemical Engineering , Carnegie Mellon University , 5000 Forbes Avenue , Pittsburgh , Pennsylvania 15213 , United States
| | - Krzysztof Matyjaszewski
- Center for Polymer-Based Protein Engineering , Carnegie Mellon University , 5000 Forbes Avenue , Pittsburgh , Pennsylvania 15213 , United States.,Department of Chemistry , Carnegie Mellon University , 4400 Fifth Avenue , Pittsburgh , Pennsylvania 15213 , United States.,Department of Chemical Engineering , Carnegie Mellon University , 5000 Forbes Avenue , Pittsburgh , Pennsylvania 15213 , United States
| |
Collapse
|
32
|
Baker SL, Munasinghe A, Kaupbayeva B, Rebecca Kang N, Certiat M, Murata H, Matyjaszewski K, Lin P, Colina CM, Russell AJ. Transforming protein-polymer conjugate purification by tuning protein solubility. Nat Commun 2019; 10:4718. [PMID: 31624254 PMCID: PMC6797786 DOI: 10.1038/s41467-019-12612-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/20/2019] [Indexed: 02/07/2023] Open
Abstract
Almost all commercial proteins are purified using ammonium sulfate precipitation. Protein-polymer conjugates are synthesized from pure starting materials, and the struggle to separate conjugates from polymer, native protein, and from isomers has vexed scientists for decades. We have discovered that covalent polymer attachment has a transformational effect on protein solubility in salt solutions. Here, protein-polymer conjugates with a variety of polymers, grafting densities, and polymer lengths are generated using atom transfer radical polymerization. Charged polymers increase conjugate solubility in ammonium sulfate and completely prevent precipitation even at 100% saturation. Atomistic molecular dynamic simulations show the impact is driven by an anti-polyelectrolyte effect from zwitterionic polymers. Uncharged polymers exhibit polymer length-dependent decreased solubility. The differences in salting-out are then used to simply purify mixtures of conjugates and native proteins into single species. Increasing protein solubility in salt solutions through polymer conjugation could lead to many new applications of protein-polymer conjugates.
Collapse
Affiliation(s)
- Stefanie L Baker
- Department of Biomedical Engineering, Scott Hall 4N201, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
- Center for Polymer-Based Protein Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Aravinda Munasinghe
- Department of Chemistry, 354 Leigh Hall, University of Florida, Gainesville, FL, 32611, USA
- George and Josephine Butler Polymer Research Laboratory, University of Florida, Gainesville, FL, 32611, USA
- Center for Macromolecular Science and Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Bibifatima Kaupbayeva
- Center for Polymer-Based Protein Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Nin Rebecca Kang
- Department of Biomedical Engineering, Scott Hall 4N201, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Marie Certiat
- Department of Chemistry, 354 Leigh Hall, University of Florida, Gainesville, FL, 32611, USA
- Université Paul Sabatier, Toulouse, 31062, France
| | - Hironobu Murata
- Center for Polymer-Based Protein Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Krzysztof Matyjaszewski
- Center for Polymer-Based Protein Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Ping Lin
- Department of Chemistry, 354 Leigh Hall, University of Florida, Gainesville, FL, 32611, USA
- George and Josephine Butler Polymer Research Laboratory, University of Florida, Gainesville, FL, 32611, USA
- Center for Macromolecular Science and Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Coray M Colina
- Department of Chemistry, 354 Leigh Hall, University of Florida, Gainesville, FL, 32611, USA
- George and Josephine Butler Polymer Research Laboratory, University of Florida, Gainesville, FL, 32611, USA
- Center for Macromolecular Science and Engineering, University of Florida, Gainesville, FL, 32611, USA
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Alan J Russell
- Department of Biomedical Engineering, Scott Hall 4N201, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
- Center for Polymer-Based Protein Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
33
|
Baker SL, Murata H, Kaupbayeva B, Tasbolat A, Matyjaszewski K, Russell AJ. Charge-Preserving Atom Transfer Radical Polymerization Initiator Rescues the Lost Function of Negatively Charged Protein–Polymer Conjugates. Biomacromolecules 2019; 20:2392-2405. [DOI: 10.1021/acs.biomac.9b00379] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
| | | | | | - Adina Tasbolat
- Department of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, 71 Al-Farabi Avenue, Almaty 050040, Republic of Kazakhstan
| | | | | |
Collapse
|
34
|
Shao Q. A computational avenue towards understanding and design of zwitterionic anti-biofouling materials. MOLECULAR SIMULATION 2019. [DOI: 10.1080/08927022.2019.1599118] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Qing Shao
- Chemical and Materials Engineering, University of Kentucky, Lexington KY, USA
| |
Collapse
|
35
|
Russo D, de Angelis A, Garvey CJ, Wurm FR, Appavou MS, Prevost S. Effect of Polymer Chain Density on Protein–Polymer Conjugate Conformation. Biomacromolecules 2019; 20:1944-1955. [DOI: 10.1021/acs.biomac.9b00184] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Daniela Russo
- Consiglio Nazionale delle Ricerche & Istituto Officina dei Materiali, Institut Laue Langevin, 38042 Grenoble, France
- Australian Nuclear
Science and Technology Organization, New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | | | - Christopher. J. Garvey
- Australian Nuclear
Science and Technology Organization, New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - Frederick R. Wurm
- Max-Planck-Institut
für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany
| | - Marie-Sousai Appavou
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstraße, 185748 Garching, Germany
| | | |
Collapse
|
36
|
|
37
|
Sun Y, Li Z, Wu J, Wang Z, Dong Y, Wang H, Brash JL, Yuan L, Chen H. Gold nanoparticle–protein conjugate dually-responsive to pH and temperature for modulation of enzyme activity. J Mater Chem B 2019. [DOI: 10.1039/c9tb00325h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The enzymatic activity of the dual-responsive gold nanoparticle–protein–polymer conjugate can be modulated almost in a full range under different pH and temperature conditions.
Collapse
Affiliation(s)
- Ya Sun
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Zhenhua Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Jingxian Wu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Zhiqiang Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Yishi Dong
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Hongwei Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - John L. Brash
- School of Biomedical Engineering
- Department of Chemical Engineering
- McMaster University
- Hamilton
- Canada
| | - Lin Yuan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| |
Collapse
|