1
|
Duan QY, Zhu YX, Jia HR, Wang SH, Wu FG. Nanogels: Synthesis, properties, and recent biomedical applications. PROGRESS IN MATERIALS SCIENCE 2023; 139:101167. [DOI: 10.1016/j.pmatsci.2023.101167] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
2
|
Wang X, Li Y, Jia F, Cui X, Pan Z, Wu Y. Boosting nutrient starvation-dominated cancer therapy through curcumin-augmented mitochondrial Ca 2+ overload and obatoclax-mediated autophagy inhibition as supported by a novel nano-modulator GO-Alg@CaP/CO. J Nanobiotechnology 2022; 20:225. [PMID: 35551609 PMCID: PMC9097046 DOI: 10.1186/s12951-022-01439-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/26/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND By hindering energy supply pathway for cancer cells, an alternative therapeutic strategy modality is put forward: tumor starvation therapy. And yet only in this blockade of glucose supply which is far from enough to result in sheer apoptosis of cancer cells. RESULTS In an effort to boost nutrient starvation-dominated cancer therapy, here a novel mitochondrial Ca2+ modulator Alg@CaP were tailor-made for the immobilization of Glucose oxidase for depriving the intra-tumoral glucose, followed by the loading of Curcumin to augment mitochondrial Ca2+ overload to maximize the therapeutic efficiency of cancer starvation therapy via mitochondrial dysfunctions. Also, autophagy inhibitors Obatoclax were synchronously incorporated in this nano-modulator to highlight autophagy inhibition. CONCLUSION Here, a promising complementary modality for the trebling additive efficacy of starvation therapy was described for cutting off the existing energy sources in starvation therapy through Curcumin-augmented mitochondrial Ca2+ overload and Obatoclax-mediated autophagy inhibition.
Collapse
Affiliation(s)
- Xuan Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 First North Road, Zhongguancun, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yunhao Li
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China
| | - Fan Jia
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 First North Road, Zhongguancun, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xinyue Cui
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 First North Road, Zhongguancun, Beijing, 100190, China
| | - Zian Pan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 First North Road, Zhongguancun, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yan Wu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 First North Road, Zhongguancun, Beijing, 100190, China. .,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
3
|
Park JC, Kim DH, Song YH, Cha HJ, Seo JH. Electrohydrodynamic Sprayable Amphiphilic Polysaccharide-Clasped Nanoscale Self-Assembly for In Vivo Imaging. ACS APPLIED MATERIALS & INTERFACES 2020; 12:38899-38905. [PMID: 32805844 DOI: 10.1021/acsami.0c07473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The work presented in this report demonstrates that amphiphilic polysaccharide-clasped self-assembly (Amp-SA) with nanometer size, encapsulating hydrophobic nanoparticles (NPs) can be generated via electrohydrodynamic spraying. It is observed that the formation of hydrophobic NP-encapsulated Amp-SA is dependent on the surface chemistry of NPs. The citrate-coated magnetic NPs (MNPs-Cit) were also prepared and compared. The hydrophobic magnetic NP-encapsulated Amp-SA (Amp-SA-M) exhibited around 2.7-2.8-fold higher values in r2 relaxivity than that of MNPs-Cit. In addition, the resulting Amp-SA-M achieved ∼17.2-fold higher values in r2/r1 ratios than MNPs-Cit. The enhanced performances in magnetic transverse (r2) relaxivity and r2/r1 ratio as well as the in vivo behavior of Amp-SA-M suggest the potential of Amp-SA-M as a promising MRI nanoprobe. This approach based on the nature-originated amphiphilic biopolymers may provide a novel insight into electrohydrodynamic techniques that have the ability to create various nanostructures, encapsulating high-quality hydrophobic nanomaterials for applications in diverse biotechnology.
Collapse
Affiliation(s)
- Jeong Chan Park
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| | - Do Hyeon Kim
- School of Chemical Engineering, Yeungnam University, 280 Daehakro, Gyeongsan, Gyeongbuk 38541, Korea
| | - Young Hoon Song
- School of Chemical Engineering, Yeungnam University, 280 Daehakro, Gyeongsan, Gyeongbuk 38541, Korea
| | - Hyung Joon Cha
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| | - Jeong Hyun Seo
- School of Chemical Engineering, Yeungnam University, 280 Daehakro, Gyeongsan, Gyeongbuk 38541, Korea
| |
Collapse
|