1
|
Amphiphilic copolymers in biomedical applications: Synthesis routes and property control. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:111952. [PMID: 33812580 DOI: 10.1016/j.msec.2021.111952] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 12/16/2022]
Abstract
The request of new materials, matching strict requirements to be applied in precision and patient-specific medicine, is pushing for the synthesis of more and more complex block copolymers. Amphiphilic block copolymers are emerging in the biomedical field due to their great potential in terms of stimuli responsiveness, drug loading capabilities and reversible thermal gelation. Amphiphilicity guarantees self-assembly and thermoreversibility, while grafting polymers offers the possibility of combining blocks with various properties in one single material. These features make amphiphilic block copolymers excellent candidates for fine tuning drug delivery, gene therapy and for designing injectable hydrogels for tissue engineering. This manuscript revises the main techniques developed in the last decade for the synthesis of amphiphilic block copolymers for biomedical application. Strategies for fine tuning the properties of these novel materials during synthesis are discussed. A deep knowledge of the synthesis techniques and their effect on the performance and the biocompatibility of these polymers is the first step to move them from the lab to the bench. Current results predict a bright future for these materials in paving the way towards a smarter, less invasive, while more effective, medicine.
Collapse
|
2
|
Klonos PA, Papadopoulos L, Kasimatis M, Iatrou H, Kyritsis A, Bikiaris DN. Synthesis, Crystallization, Structure Memory Effects, and Molecular Dynamics of Biobased and Renewable Poly( n-alkylene succinate)s with n from 2 to 10. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02109] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Panagiotis A. Klonos
- Department of Physics, National Technical University of Athens, Zografou Campus, Athens 15780, Greece
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, Thessaloniki GR-541 24, Greece
| | - Lazaros Papadopoulos
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, Thessaloniki GR-541 24, Greece
| | - Maria Kasimatis
- Department of Chemistry, University of Athens, Panepistimiopolis, Zografou, Athens 15771, Greece
| | - Hermis Iatrou
- Department of Chemistry, University of Athens, Panepistimiopolis, Zografou, Athens 15771, Greece
| | - Apostolos Kyritsis
- Department of Physics, National Technical University of Athens, Zografou Campus, Athens 15780, Greece
| | - Dimitrios N. Bikiaris
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, Thessaloniki GR-541 24, Greece
| |
Collapse
|
3
|
Synthesis and Characterization of the Novel Nε-9-Fluorenylmethoxycarbonyl-l-Lysine N-Carboxy Anhydride. Synthesis of Well-Defined Linear and Branched Polypeptides. Polymers (Basel) 2020; 12:polym12122819. [PMID: 33261159 PMCID: PMC7759796 DOI: 10.3390/polym12122819] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 11/17/2022] Open
Abstract
The synthesis of well-defined polypeptides exhibiting complex macromolecular architectures requires the use of monomers that can be orthogonally deprotected, containing primary amines that will be used as the initiator for the Ring Opening Polymerization (ROP) of N-carboxy anhydrides. The synthesis and characterization of the novel monomer Nε-9-Fluorenylmethoxycarbonyl-l-Lysine N-carboxy anhydride (Nε-Fmoc-l-Lysine NCA), as well as the novel linear Poly(Nε-Fmoc-l-Lys)n homopolypeptide and Poly(l-Lysine)78-block-[Poly(l-Lysine)10-graft-Poly(l-Histidine)15] block-graft copolypeptide, are presented. The synthesis of the graft copolypeptide was conducted via ROP of the Nε-Boc-l-Lysine NCA while using n-hexylamine as the initiator, followed by the polymerization of Nε-Fmoc-l-Lysine NCA. The last block was selectively deprotected under basic conditions, and the resulting ε-amines were used as the initiating species for the ROP of Nim-Trityl-l-Histidine NCA. Finally, the Boc- and Trt- groups were deprotected by TFA. High Vacuum Techniques were applied to achieve the conditions that are required for the synthesis of well-defined polypeptides. The molecular characterization indicated that the polypeptides exhibited high degree of molecular and compositional homogeneity. Finally, Dynamic Light Scattering, ζ-potential, and Circular Dichroism measurements were used in order to investigate the ability of the polypeptide to self-assemble in different conditions. This monomer opens avenues for the synthesis of polypeptides with complex macromolecular architectures that can define the aggregation behavior, and, therefore, can lead to the synthesis of "smart" stimuli-responsive nanocarriers for controlled drug delivery applications.
Collapse
|
4
|
Lotocki V, Yazdani H, Zhang Q, Gran ER, Nyrko A, Maysinger D, Kakkar A. Miktoarm Star Polymers with Environment-Selective ROS/GSH Responsive Locations: From Modular Synthesis to Tuned Drug Release through Micellar Partial Corona Shedding and/or Core Disassembly. Macromol Biosci 2020; 21:e2000305. [PMID: 33620748 DOI: 10.1002/mabi.202000305] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/12/2020] [Indexed: 02/06/2023]
Abstract
Branched architectures with asymmetric polymeric arms provide an advantageous platform for the construction of tailored nanocarriers for therapeutic interventions. Simple and adaptable synthetic methodologies to amphiphilic miktoarm star polymers have been developed in which spatial location of reactive oxygen species (ROS) and glutathione (GSH) responsive entities is articulated to be on the corona shell surface or inside the core. The design of such architectures is facilitated through versatile building blocks and selected combinations of ring-opening polymerization, Steglich esterification, and alkyne-azide click reactions. Soft nanoparticles from aqueous self-assembly of these stimuli responsive miktoarm stars have low critical micelle concentrations and high drug loading efficiencies. Partial corona shedding upon response to ROS is accompanied by an increase in drug release, without significant changes to overall micelle morphology. The location of the GSH responsive unit at the core leads to micelle disassembly and complete drug release. Curcumin loaded soft nanoparticles show higher efficiencies in preventing ROS generation in extracellular and cellular environments, and in ROS scavenging in human glioblastoma cells. The ease in synthetic elaboration and an understanding of structure-property relationships in stimuli responsive nanoparticles offer a facile venue for well-controlled drug delivery, based on the extra- and intracellular concentrations of ROS and GSH.
Collapse
Affiliation(s)
- Victor Lotocki
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, H3A 0B8, Canada
| | - Hossein Yazdani
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, H3A 0B8, Canada.,Department of Chemistry, Shahid Beheshti University G.C., Tehran, 1983963113, Iran
| | - Qiaochu Zhang
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, H3A 0B8, Canada.,Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, Quebec, H3G 1Y6, Canada
| | - Evan Rizzel Gran
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, Quebec, H3G 1Y6, Canada
| | - Anastasiia Nyrko
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, H3A 0B8, Canada
| | - Dusica Maysinger
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, Quebec, H3G 1Y6, Canada
| | - Ashok Kakkar
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, H3A 0B8, Canada
| |
Collapse
|
5
|
Shi S, Yao C, Cen J, Li L, Liu G, Hu J, Liu S. High-Fidelity End-Functionalization of Poly(ethylene glycol) Using Stable and Potent Carbamate Linkages. Angew Chem Int Ed Engl 2020; 59:18172-18178. [PMID: 32643249 DOI: 10.1002/anie.202006687] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/05/2020] [Indexed: 01/16/2023]
Abstract
Commercial PEG-amine is of unreliable quality, and conventional PEG functionalization relies on esterification and etherification steps, suffering from incomplete conversion, harsh reaction conditions, and functional-group incompatibility. To solve these challenges, we propose an efficient strategy for PEG functionalization with carbamate linkages. By fine-tuning terminal amine basicity, stable and high-fidelity PEG-amine with carbamate linkage was obtained, as seen from the clean MALDI-TOF MS pattern. The carbamate strategy was further applied to the synthesis of high-fidelity multi-functionalized PEG with varying reactive groups. Compared to with an ester linkage, amphiphilic PEG-PS block copolymers bearing carbamate junction linkage exhibits preferential self-assembly tendency into vesicles. Moreover, nanoparticles of the latter demonstrate higher drug loading efficiency, encapsulation stability against enzymatic hydrolysis, and improved in vivo retention at the tumor region.
Collapse
Affiliation(s)
- Shengyu Shi
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui Province, 230026, China
| | - Chenzhi Yao
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui Province, 230026, China
| | - Jie Cen
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui Province, 230026, China
| | - Lei Li
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui Province, 230026, China
| | - Guhuan Liu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui Province, 230026, China
| | - Jinming Hu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui Province, 230026, China
| | - Shiyong Liu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui Province, 230026, China
| |
Collapse
|
6
|
Segal M, Ozery L, Slor G, Wagle SS, Ehm T, Beck R, Amir RJ. Architectural Change of the Shell-Forming Block from Linear to V-Shaped Accelerates Micellar Disassembly, but Slows the Complete Enzymatic Degradation of the Amphiphiles. Biomacromolecules 2020; 21:4076-4086. [PMID: 32833437 DOI: 10.1021/acs.biomac.0c00882] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tuning the enzymatic degradation and disassembly rates of polymeric amphiphiles and their assemblies is crucial for designing enzyme-responsive nanocarriers for controlled drug delivery applications. The common methods to control the enzymatic degradation of amphiphilic polymers are to tune the molecular weights and ratios of the hydrophilic and hydrophobic blocks. In addition to these approaches, the architecture of the hydrophilic block can also serve as a tool to tune enzymatic degradation and disassembly. To gain a deeper understanding of the effect of the molecular architecture of the hydrophilic block, we prepared two types of well-defined PEG-dendron amphiphiles bearing linear or V-shaped PEG chains as the hydrophilic blocks. The high molecular precision of these amphiphiles, which emerges from the utilization of dendrons as the hydrophobic blocks, allowed us to study the self-assembly and enzymatic degradation and disassembly of the two types of amphiphiles with high resolution. Interestingly, the micelles of the V-shaped amphiphiles were significantly smaller and disassembled faster than those of the amphiphiles based on linear PEG. However, the complete enzymatic cleavage of the hydrophobic end groups was significantly slower for the V-shaped amphiphiles. Our results show that the V-shaped architecture can stabilize the unimer state and, hence, plays a double role in the enzymatic degradation and the induced disassembly and how it can be utilized to control the release of encapsulated or bound molecular cargo.
Collapse
Affiliation(s)
- Merav Segal
- School of Chemistry, Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel.,Tel Aviv University Center for Nanoscience and Nanotechnology, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Lihi Ozery
- School of Chemistry, Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel.,Tel Aviv University Center for Nanoscience and Nanotechnology, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Gadi Slor
- School of Chemistry, Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel.,Tel Aviv University Center for Nanoscience and Nanotechnology, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Shreyas Shankar Wagle
- School of Chemistry, Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel.,Tel Aviv University Center for Nanoscience and Nanotechnology, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Tamara Ehm
- Tel Aviv University Center for Nanoscience and Nanotechnology, Tel-Aviv University, Tel-Aviv 6997801, Israel.,School of Physics, Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel.,Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Roy Beck
- Tel Aviv University Center for Nanoscience and Nanotechnology, Tel-Aviv University, Tel-Aviv 6997801, Israel.,School of Physics, Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel.,The Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Roey J Amir
- School of Chemistry, Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel.,Tel Aviv University Center for Nanoscience and Nanotechnology, Tel-Aviv University, Tel-Aviv 6997801, Israel.,Blavatnik Center for Drug Discovery, Tel-Aviv University, Tel-Aviv 6997801, Israel.,ADAMA Center for Novel Delivery Systems in Crop Protection, Tel-Aviv University, Tel-Aviv 6997801, Israel.,The Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
7
|
Shi S, Yao C, Cen J, Li L, Liu G, Hu J, Liu S. High‐Fidelity End‐Functionalization of Poly(ethylene glycol) Using Stable and Potent Carbamate Linkages. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006687] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Shengyu Shi
- CAS Key Laboratory of Soft Matter Chemistry Hefei National Laboratory for Physical Sciences at the Microscale Department of Polymer Science and Engineering University of Science and Technology of China 96 Jinzhai Road Hefei Anhui Province 230026 China
| | - Chenzhi Yao
- CAS Key Laboratory of Soft Matter Chemistry Hefei National Laboratory for Physical Sciences at the Microscale Department of Polymer Science and Engineering University of Science and Technology of China 96 Jinzhai Road Hefei Anhui Province 230026 China
| | - Jie Cen
- CAS Key Laboratory of Soft Matter Chemistry Hefei National Laboratory for Physical Sciences at the Microscale Department of Polymer Science and Engineering University of Science and Technology of China 96 Jinzhai Road Hefei Anhui Province 230026 China
| | - Lei Li
- CAS Key Laboratory of Soft Matter Chemistry Hefei National Laboratory for Physical Sciences at the Microscale Department of Polymer Science and Engineering University of Science and Technology of China 96 Jinzhai Road Hefei Anhui Province 230026 China
| | - Guhuan Liu
- CAS Key Laboratory of Soft Matter Chemistry Hefei National Laboratory for Physical Sciences at the Microscale Department of Polymer Science and Engineering University of Science and Technology of China 96 Jinzhai Road Hefei Anhui Province 230026 China
| | - Jinming Hu
- CAS Key Laboratory of Soft Matter Chemistry Hefei National Laboratory for Physical Sciences at the Microscale Department of Polymer Science and Engineering University of Science and Technology of China 96 Jinzhai Road Hefei Anhui Province 230026 China
| | - Shiyong Liu
- CAS Key Laboratory of Soft Matter Chemistry Hefei National Laboratory for Physical Sciences at the Microscale Department of Polymer Science and Engineering University of Science and Technology of China 96 Jinzhai Road Hefei Anhui Province 230026 China
| |
Collapse
|
8
|
Rasines Mazo A, Allison-Logan S, Karimi F, Chan NJA, Qiu W, Duan W, O’Brien-Simpson NM, Qiao GG. Ring opening polymerization of α-amino acids: advances in synthesis, architecture and applications of polypeptides and their hybrids. Chem Soc Rev 2020; 49:4737-4834. [DOI: 10.1039/c9cs00738e] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This review provides a comprehensive overview of the latest advances in the synthesis, architectural design and biomedical applications of polypeptides and their hybrids.
Collapse
Affiliation(s)
- Alicia Rasines Mazo
- Polymer Science Group
- Department of Chemical Engineering
- University of Melbourne
- Parkville
- Australia
| | - Stephanie Allison-Logan
- Polymer Science Group
- Department of Chemical Engineering
- University of Melbourne
- Parkville
- Australia
| | - Fatemeh Karimi
- Polymer Science Group
- Department of Chemical Engineering
- University of Melbourne
- Parkville
- Australia
| | - Nicholas Jun-An Chan
- Polymer Science Group
- Department of Chemical Engineering
- University of Melbourne
- Parkville
- Australia
| | - Wenlian Qiu
- Polymer Science Group
- Department of Chemical Engineering
- University of Melbourne
- Parkville
- Australia
| | - Wei Duan
- School of Medicine
- Deakin University
- Geelong
- Australia
| | - Neil M. O’Brien-Simpson
- Centre for Oral Health Research
- Melbourne Dental School and the Bio21 Institute of Molecular Science and Biotechnology
- University of Melbourne
- Parkville
- Australia
| | - Greg G. Qiao
- Polymer Science Group
- Department of Chemical Engineering
- University of Melbourne
- Parkville
- Australia
| |
Collapse
|