1
|
Ding W, Gu J, Xu W, Wu J, Huang Y, Zhang S, Lin S. The Biosynthesis and Applications of Protein Lipidation. Chem Rev 2024; 124:12176-12212. [PMID: 39441663 DOI: 10.1021/acs.chemrev.4c00419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Protein lipidation dramatically affects protein structure, localization, and trafficking via remodeling protein-membrane and protein-protein interactions through hydrophobic lipid moieties. Understanding the biosynthesis of lipidated proteins, whether natural ones or mimetics, is crucial for reconstructing, validating, and studying the molecular mechanisms and biological functions of protein lipidation. In this Perspective, we first provide an overview of the natural enzymatic biosynthetic pathways of protein lipidation in mammalian cells, focusing on the enzymatic machineries and their chemical linkages. We then discuss strategies to biosynthesize protein lipidation in mammalian cells by engineering modification machineries and substrates. Additionally, we explore site-specific protein lipidation biosynthesis in vitro via enzyme-mediated ligations and in vivo primarily through genetic code expansion strategies. We also discuss the use of small molecule tools to modulate the process of protein lipidation biosynthesis. Finally, we provide concluding remarks and discuss future directions for the biosynthesis and applications of protein lipidation.
Collapse
Affiliation(s)
- Wenlong Ding
- Life Sciences Institute, Institute of Fundamental and Transdisciplinary Research, Zhejiang University, Hangzhou 310058, China
- Center for Oncology Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China
| | - Jiayu Gu
- Department of Medical Oncology, State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Wenyuan Xu
- Life Sciences Institute, Institute of Fundamental and Transdisciplinary Research, Zhejiang University, Hangzhou 310058, China
| | - Jing Wu
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China
| | - Yiwen Huang
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuai Zhang
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China
| | - Shixian Lin
- Life Sciences Institute, Institute of Fundamental and Transdisciplinary Research, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Shaoxing Institute, Zhejiang University, Shaoxing 321000, China
- Department of Medical Oncology, State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
2
|
Ghosh R, Singh B, Basu S, Mondal A, Maiti PK, De M. Reversing the Trend: Deciphering Self-Assembly of Unconventional Amphiphiles Having Both Alkyl-Chain and PEG. Chempluschem 2024; 89:e202400147. [PMID: 38623044 DOI: 10.1002/cplu.202400147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/17/2024]
Abstract
In the field of molecular self-assembly, the core of an assembly is always made up of hydrophobic moiety like a long alkyl chain, whereas the outer part has always been a hydrophilic moiety such as poly(ethylene glycol) (PEG), or charged species. Hence, reversing the trend to manifest self-assembled structures with a PEG core and a surface consisting of alkyl chains in aqueous system is incredibly challenging. Herein, we architected a unique class of cationic bolaamphiphiles containing low molecular weight PEG and alkyl chains of different lengths. The bolaamphiphiles spontaneously form vesicles without external stimuli. These vesicles are unprecedented because PEG makes up the vesicle core, while the alkyl chains appear on the vesicles' exterior. Hence, this particular design reverses the usual trend of self-assembly formation. The vesicle size increases with the increase in alkyl chain-length. To our great surprise, we obtained large micelles for longest alkyl-chain amphiphile, which in turn act as a gemini amphiphile. The shift from a particular bolaamphiphile to gemini amphiphile with the variation of alkyl chain is also unexplored. Therefore, this specific class of self-assembled structure would compound a new paradigm in molecular self-assembly and supramolecular chemistry.
Collapse
Affiliation(s)
- Rita Ghosh
- Department of Organic Chemistry, Indian Institute of Science, Bengaluru, 560012, India
| | - Bharat Singh
- Department of Physics, Indian Institute of Science, Bengaluru, 560012, India
| | - Subhadip Basu
- Department of Physics, Indian Institute of Science, Bengaluru, 560012, India
| | - Avijit Mondal
- Department of Organic Chemistry, Indian Institute of Science, Bengaluru, 560012, India
| | - Prabal Kumar Maiti
- Department of Physics, Indian Institute of Science, Bengaluru, 560012, India
| | - Mrinmoy De
- Department of Organic Chemistry, Indian Institute of Science, Bengaluru, 560012, India
| |
Collapse
|
3
|
Strader RL, Shmidov Y, Chilkoti A. Encoding Structure in Intrinsically Disordered Protein Biomaterials. Acc Chem Res 2024; 57:302-311. [PMID: 38194282 PMCID: PMC11354101 DOI: 10.1021/acs.accounts.3c00624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
In nature, proteins range from those with highly ordered secondary and tertiary structures to those that completely lack a well-defined three-dimensional structure, termed intrinsically disordered proteins (IDPs). IDPs are generally characterized by one or more segments that have a compositional bias toward small hydrophilic amino acids and proline residues that promote structural disorder and are called intrinsically disordered regions (IDRs). The combination of IDRs with ordered regions and the interactions between the two determine the phase behavior, structure, and function of IDPs. Nature also diversifies the structure of proteins and thereby their functions by hybridization of the proteins with other moieties such as glycans and lipids; for instance, post-translationally glycosylated and lipidated proteins are important cell membrane components. Additionally, diversity in protein structure and function is achieved in nature through cross-linking proteins within themselves or with other domains to create various topologies. For example, an essential characteristic of the extracellular matrix (ECM) is the cross-linking of its network components, including proteins such as collagen and elastin, as well as polysaccharides such as hyaluronic acid (HA). Inspired by nature, synthetic IDP (SynIDP)-based biomaterials can be designed by employing similar strategies with the goal of introducing structural diversity and hence unique physiochemical properties. This Account describes such materials produced over the past decade and following one or more of the following approaches: (1) incorporating highly ordered domains into SynIDPs, (2) conjugating SynIDPs to other moieties through either genetically encoded post-translational modification or chemical conjugation, and (3) engineering the topology of SynIDPs via chemical modification. These approaches introduce modifications to the primary structure of SynIDPs, which are then translated to unique three-dimensional secondary and tertiary structures. Beginning with completely disordered SynIDPs as the point of origin, structure may be introduced into SynIDPs by each of these three unique approaches individually along orthogonal axes or by combinations of the three, enabling bioinspired designs to theoretically span the entire range of three-dimensional structural possibilities. Furthermore, the resultant structures span a wide range of length scales, from nano- to meso- to micro- and even macrostructures. In this Account, emphasis is placed on the physiochemical properties and structural features of the described materials. Conjugates of SynIDPs to synthetic polymers and materials achieved by simple mixing of components are outside the scope of this Account. Related biomedical applications are described briefly. Finally, we note future directions for the design of functional SynIDP-based biomaterials.
Collapse
Affiliation(s)
- Rachel L. Strader
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, 27708, USA
| | - Yulia Shmidov
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, 27708, USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, 27708, USA
| |
Collapse
|
4
|
Ji J, Hossain MS, Krueger EN, Zhang Z, Nangia S, Carpentier B, Martel M, Nangia S, Mozhdehi D. Lipidation Alters the Structure and Hydration of Myristoylated Intrinsically Disordered Proteins. Biomacromolecules 2023; 24:1244-1257. [PMID: 36757021 PMCID: PMC10017028 DOI: 10.1021/acs.biomac.2c01309] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/25/2023] [Indexed: 02/10/2023]
Abstract
Lipidated proteins are an emerging class of hybrid biomaterials that can integrate the functional capabilities of proteins into precisely engineered nano-biomaterials with potential applications in biotechnology, nanoscience, and biomedical engineering. For instance, fatty-acid-modified elastin-like polypeptides (FAMEs) combine the hierarchical assembly of lipids with the thermoresponsive character of elastin-like polypeptides (ELPs) to form nanocarriers with emergent temperature-dependent structural (shape or size) characteristics. Here, we report the biophysical underpinnings of thermoresponsive behavior of FAMEs using computational nanoscopy, spectroscopy, scattering, and microscopy. This integrated approach revealed that temperature and molecular syntax alter the structure, contact, and hydration of lipid, lipidation site, and protein, aligning with the changes in the nanomorphology of FAMEs. These findings enable a better understanding of the biophysical consequence of lipidation in biology and the rational design of the biomaterials and therapeutics that rival the exquisite hierarchy and capabilities of biological systems.
Collapse
Affiliation(s)
- Jingjing Ji
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Md Shahadat Hossain
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Emily N. Krueger
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Zhe Zhang
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Shivangi Nangia
- Department
of Chemistry, University of Hartford, West Hartford, Connecticut 06117, United States
| | - Britnie Carpentier
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Mae Martel
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Shikha Nangia
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
- BioInspired
Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, New York 13244, United States
| | - Davoud Mozhdehi
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
- BioInspired
Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, New York 13244, United States
- Department
of Biology, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
5
|
Garanger E, Lecommandoux S. Emerging opportunities in bioconjugates of Elastin-like polypeptides with synthetic or natural polymers. Adv Drug Deliv Rev 2022; 191:114589. [PMID: 36323382 DOI: 10.1016/j.addr.2022.114589] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/10/2022] [Accepted: 10/24/2022] [Indexed: 01/24/2023]
Abstract
Nature is an everlasting source of inspiration for chemical and polymer scientists seeking to develop ever more innovative materials with greater performances. Natural structural proteins are particularly scrutinized to design biomimetic materials. Often characterized by repeat peptide sequences, that together interact by inter- and intramolecular interactions and form a 3D skeleton, they contribute to the mechanical properties of individual cells, tissues, organs, and whole organisms. (Numata, K. Polymer Journal 2020, 52, 1043-1056) Among them elastin, and its main repeat sequences, have been a source of intense studies for more than 50 years resulting in the specific research field dedicated to elastin-like polypeptides (ELPs). These are currently widely investigated in different applications, namely protein purification, tissue engineering, and drug delivery, and some technologies based on ELPs are currently explored by several start-up companies. In the present review, we have summarized pioneering contributions on ELPs, progress made in their genetic engineering, and understanding of their thermal behavior and self-assembly properties. Considered as intrinsically disordered protein polymers, we have finally focused on the works where ELPs have been conjugated to other synthetic macromolecules as covalent hybrid, statistical, graft, or block copolymers, highlighting the huge opportunities that have still not been explored so far.
Collapse
Affiliation(s)
- Elisabeth Garanger
- Université de Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, ENSCBP, 16 Avenue Pey-Berland, Pessac F-33600, France.
| | - Sébastien Lecommandoux
- Université de Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, ENSCBP, 16 Avenue Pey-Berland, Pessac F-33600, France.
| |
Collapse
|
6
|
Gueta O, Amiram M. Expanding the chemical repertoire of protein-based polymers for drug-delivery applications. Adv Drug Deliv Rev 2022; 190:114460. [PMID: 36030987 DOI: 10.1016/j.addr.2022.114460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/12/2022] [Indexed: 01/24/2023]
Abstract
Expanding the chemical repertoire of natural and artificial protein-based polymers (PBPs) can enable the production of sequence-defined, yet chemically diverse, biopolymers with customized or new properties that cannot be accessed in PBPs composed of only natural amino acids. Various approaches can enable the expansion of the chemical repertoire of PBPs, including chemical and enzymatic treatments or the incorporation of unnatural amino acids. These techniques are employed to install a wide variety of chemical groups-such as bio-orthogonally reactive, cross-linkable, post-translation modifications, and environmentally responsive groups-which, in turn, can facilitate the design of customized PBP-based drug-delivery systems with modified, fine-tuned, or entirely new properties and functions. Here, we detail the existing and emerging technologies for expanding the chemical repertoire of PBPs and review several chemical groups that either demonstrate or are anticipated to show potential in the design of PBP-based drug delivery systems. Finally, we provide our perspective on the remaining challenges and future directions in this field.
Collapse
Affiliation(s)
- Osher Gueta
- The Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel
| | - Miriam Amiram
- The Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel.
| |
Collapse
|
7
|
Hossain MS, Zhang Z, Ashok S, Jenks AR, Lynch CJ, Hougland JL, Mozhdehi D. Temperature-Responsive Nano-Biomaterials from Genetically Encoded Farnesylated Disordered Proteins. ACS APPLIED BIO MATERIALS 2022; 5:1846-1856. [PMID: 35044146 PMCID: PMC9115796 DOI: 10.1021/acsabm.1c01162] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/06/2022] [Indexed: 11/30/2022]
Abstract
Despite broad interest in understanding the biological implications of protein farnesylation in regulating different facets of cell biology, the use of this post-translational modification to develop protein-based materials and therapies remains underexplored. The progress has been slow due to the lack of accessible methodologies to generate farnesylated proteins with broad physicochemical diversities rapidly. This limitation, in turn, has hindered the empirical elucidation of farnesylated proteins' sequence-structure-function rules. To address this gap, we genetically engineered prokaryotes to develop operationally simple, high-yield biosynthetic routes to produce farnesylated proteins and revealed determinants of their emergent material properties (nano-aggregation and phase-behavior) using scattering, calorimetry, and microscopy. These outcomes foster the development of farnesylated proteins as recombinant therapeutics or biomaterials with molecularly programmable assembly.
Collapse
Affiliation(s)
- Md. Shahadat Hossain
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Zhe Zhang
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Sudhat Ashok
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Ashley R. Jenks
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Christopher J. Lynch
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - James L. Hougland
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
- Department
of Biology, Syracuse University, Syracuse, New York 13244, United States
- BioInspired
Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, New York 13244, United States
| | - Davoud Mozhdehi
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
- Department
of Biology, Syracuse University, Syracuse, New York 13244, United States
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
- BioInspired
Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
8
|
Hadar D, Strugach DS, Amiram M. Conjugates of Recombinant Protein‐Based Polymers: Combining Precision with Chemical Diversity. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202100142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Dagan Hadar
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering Ben-Gurion University of the Negev P.O. Box 653 Beer-Sheva 8410501 Israel
| | - Daniela S. Strugach
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering Ben-Gurion University of the Negev P.O. Box 653 Beer-Sheva 8410501 Israel
| | - Miriam Amiram
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering Ben-Gurion University of the Negev P.O. Box 653 Beer-Sheva 8410501 Israel
| |
Collapse
|
9
|
Hossain MS, Ji J, Lynch CJ, Guzman M, Nangia S, Mozhdehi D. Adaptive Recombinant Nanoworms from Genetically Encodable Star Amphiphiles. Biomacromolecules 2022; 23:863-876. [PMID: 34942072 PMCID: PMC8924867 DOI: 10.1021/acs.biomac.1c01314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/09/2021] [Indexed: 02/04/2023]
Abstract
Recombinant nanoworms are promising candidates for materials and biomedical applications ranging from the templated synthesis of nanomaterials to multivalent display of bioactive peptides and targeted delivery of theranostic agents. However, molecular design principles to synthesize these assemblies (which are thermodynamically favorable only in a narrow region of the phase diagram) remain unclear. To advance the identification of design principles for the programmable assembly of proteins into well-defined nanoworms and to broaden their stability regimes, we were inspired by the ability of topologically engineered synthetic macromolecules to acess rare mesophases. To test this design principle in biomacromolecular assemblies, we used post-translational modifications (PTMs) to generate lipidated proteins with precise topological and compositional asymmetry. Using an integrated experimental and computational approach, we show that the material properties (thermoresponse and nanoscale assembly) of these hybrid amphiphiles are modulated by their amphiphilic architecture. Importantly, we demonstrate that the judicious choice of amphiphilic architecture can be used to program the assembly of proteins into adaptive nanoworms, which undergo a morphological transition (sphere-to-nanoworms) in response to temperature stimuli.
Collapse
Affiliation(s)
- Md Shahadat Hossain
- Department
of Chemistry, Syracuse University, 1-014 Center for Science and Technology, 111 College Place, Syracuse, New York 13244, United
States
| | - Jingjing Ji
- Department
of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, New York 13244, United
States
| | - Christopher J. Lynch
- Department
of Chemistry, Syracuse University, 1-014 Center for Science and Technology, 111 College Place, Syracuse, New York 13244, United
States
| | - Miguel Guzman
- Department
of Chemistry, Syracuse University, 1-014 Center for Science and Technology, 111 College Place, Syracuse, New York 13244, United
States
| | - Shikha Nangia
- Department
of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, New York 13244, United
States
- BioInspired
Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, New York 13244, United States
| | - Davoud Mozhdehi
- Department
of Chemistry, Syracuse University, 1-014 Center for Science and Technology, 111 College Place, Syracuse, New York 13244, United
States
- BioInspired
Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
10
|
Khodaverdi M, Hossain MS, Zhang Z, Martino RP, Nehls CW, Mozhdehi D. Pathway‐Selection for Programmable Assembly of Genetically Encoded Amphiphiles by Thermal Processing. CHEMSYSTEMSCHEM 2021. [DOI: 10.1002/syst.202100037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Masoumeh Khodaverdi
- Department of Chemistry Syracuse University Center for Science and Technology, 111 Syracuse NY 13244 USA
| | - Md Shahadat Hossain
- Department of Chemistry Syracuse University Center for Science and Technology, 111 Syracuse NY 13244 USA
| | - Zhe Zhang
- Department of Chemistry Syracuse University Center for Science and Technology, 111 Syracuse NY 13244 USA
| | - Robert P. Martino
- Department of Chemistry Syracuse University Center for Science and Technology, 111 Syracuse NY 13244 USA
| | - Connor W. Nehls
- Department of Chemistry Syracuse University Center for Science and Technology, 111 Syracuse NY 13244 USA
| | - Davoud Mozhdehi
- Department of Chemistry Syracuse University Center for Science and Technology, 111 Syracuse NY 13244 USA
- BioInspired Syracuse Institute for Material and Living Systems Syracuse University Syracuse NY 13244 USA
| |
Collapse
|
11
|
Ibrahimova V, Zhao H, Ibarboure E, Garanger E, Lecommandoux S. Thermosensitive Vesicles from Chemically Encoded Lipid‐Grafted Elastin‐like Polypeptides. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Vusala Ibrahimova
- University of Bordeaux CNRS Bordeaux INP, LCPO, UMR 5629 33600 Pessac France
| | - Hang Zhao
- University of Bordeaux CNRS Bordeaux INP, LCPO, UMR 5629 33600 Pessac France
| | - Emmanuel Ibarboure
- University of Bordeaux CNRS Bordeaux INP, LCPO, UMR 5629 33600 Pessac France
| | - Elisabeth Garanger
- University of Bordeaux CNRS Bordeaux INP, LCPO, UMR 5629 33600 Pessac France
| | | |
Collapse
|
12
|
Ibrahimova V, Zhao H, Ibarboure E, Garanger E, Lecommandoux S. Thermosensitive Vesicles from Chemically Encoded Lipid-Grafted Elastin-like Polypeptides. Angew Chem Int Ed Engl 2021; 60:15036-15040. [PMID: 33856091 DOI: 10.1002/anie.202102807] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/26/2021] [Indexed: 12/14/2022]
Abstract
Biomimetic design to afford smart functional biomaterials with exquisite properties represents synthetic challenges and provides unique perspectives. In this context, elastin-like polypeptides (ELPs) recently became highly attractive building blocks in the development of lipoprotein-based membranes. In addition to the bioengineered post-translational modifications of genetically encoded recombinant ELPs developed so far, we report here a simple and versatile method to design biohybrid brush-like lipid-grafted-ELPs using chemical post-modification reactions. We have explored a combination of methionine alkylation and click chemistry to create a new class of hybrid lipoprotein mimics. Our design allowed the formation of biomimetic vesicles with controlled permeability, correlated to the temperature-responsiveness of ELPs.
Collapse
Affiliation(s)
- Vusala Ibrahimova
- University of Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, 33600, Pessac, France
| | - Hang Zhao
- University of Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, 33600, Pessac, France
| | - Emmanuel Ibarboure
- University of Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, 33600, Pessac, France
| | - Elisabeth Garanger
- University of Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, 33600, Pessac, France
| | | |
Collapse
|
13
|
Barbee MH, Wright ZM, Allen BP, Taylor HF, Patteson EF, Knight AS. Protein-Mimetic Self-Assembly with Synthetic Macromolecules. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02826] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Meredith H. Barbee
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Zoe M. Wright
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Benjamin P. Allen
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Hailey F. Taylor
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Emily F. Patteson
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Abigail S. Knight
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
14
|
Scheibel DM, Hossain MS, Smith AL, Lynch CJ, Mozhdehi D. Post-Translational Modification Mimicry for Programmable Assembly of Elastin-Based Protein Polymers. ACS Macro Lett 2020; 9:371-376. [PMID: 35648543 DOI: 10.1021/acsmacrolett.0c00041] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Post-translational modification (PTM) of protein polymers is emerging as a powerful bioinspired strategy to create protein-based hybrid materials with molecularly encoded assembly and function for applications in nanobiotechnology and medicine. While these modifications can be accomplished by harnessing native biological machinery (i.e., enzymes), the evolutionarily programmed specificity of these enzymes (recognition of select substrates and the limited repertoire of ligation chemistries catalyzed by these enzymes) can limit the type and linkage of PTMs appended to proteins. One approach to overcome this limitation is to leverage advances in site-selective biomolecular modification to prepare synthetic mimics of naturally occurring PTMs that are absent in nature. As a proof of concept, we used scalable bio-orthogonal reactions to prepare synthetic mimics of lipidated proteins with tunable assembly and disassembly. Additionally, we demonstrated that our PTM mimicry regulates the stimuli-responsive phase behavior of intrinsically disordered biopolymers, modulates their self-assembly at the nanoscale, and can be used for programmable disassembly of these materials in acidic environments. Synthetic PTM mimicry opens a path to encode new assembly and disassembly capabilities into hybrid materials that cannot be produced via biosynthesis.
Collapse
Affiliation(s)
- Dieter M. Scheibel
- Department of Chemistry, 1-014 Center for Science and Technology, Syracuse University, Syracuse, New York 13244, United States
| | - Md. Shahadat Hossain
- Department of Chemistry, 1-014 Center for Science and Technology, Syracuse University, Syracuse, New York 13244, United States
| | - Amy L. Smith
- Department of Chemistry, 1-014 Center for Science and Technology, Syracuse University, Syracuse, New York 13244, United States
| | - Christopher J. Lynch
- Department of Chemistry, 1-014 Center for Science and Technology, Syracuse University, Syracuse, New York 13244, United States
| | - Davoud Mozhdehi
- Department of Chemistry, 1-014 Center for Science and Technology, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|