1
|
Laysandra L, Rusli RA, Chen YW, Chen SJ, Yeh YW, Tsai TL, Huang JH, Chuang KS, Njotoprajitno A, Chiu YC. Elastic and Self-Healing Copolymer Coatings with Antimicrobial Function. ACS APPLIED MATERIALS & INTERFACES 2024; 16:25194-25209. [PMID: 38684227 PMCID: PMC11103657 DOI: 10.1021/acsami.4c00431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024]
Abstract
The revolutionary self-healing function for long-term and safe service processes has inspired researchers to implement them in various fields, including in the application of antimicrobial protective coatings. Despite the great advances that have been made in the field of fabricating self-healing and antimicrobial polymers, their poor transparency and the trade-off between the mechanical and self-healing properties limit the utility of the materials as transparent antimicrobial protective coatings for wearable optical and display devices. Considering the compatibility in the blending process, our group proposed a self-healing, self-cross-linkable poly{(n-butyl acrylate)-co-[N-(hydroxymethyl)acrylamide]} copolymer (AP)-based protective coating combined with two types of commercial cationic antimicrobial agents (i.e., dimethyl octadecyl (3-trimethoxysilylpropyl) ammonium chloride (DTSACL) and chlorhexidine gluconate (CHG)), leading to the fabrication of a multifunctional modified compound film of (AP/b%CHG)-grafted-a%DTSACL. The first highlight of this research is that the reactivity of the hydroxyl group in the N-(hydroxymethyl)acrylamide of the copolymer side chains under thermal conditions facilitates the "grafting to" process with the trimethoxysilane groups of DTSACL to form AP-grafted-DTSACL, yielding favorable thermal stability, improvement in hydrophobicity, and enhancement of mechanical strength. Second, we highlight that the addition of CHG can generate covalent and noncovalent interactions in a complex manner between the two biguanide groups of CHG with the AP and DTSACL via a thermal-triggered cross-linking reaction. The noncovalent interactions synergistically serve as diverse dynamic hydrogen bonds, leading to complete healing upon scratches and even showing over 80% self-healing efficiency on full-cut, while covalent bonding can effectively improve elasticity and mechanical strength. The soft nature of CHG also takes part in improving the self-healing of the copolymer. Moreover, it was discovered that the addition of CHG can enhance antimicrobial effectiveness, as demonstrated by the long-term superior antibacterial activity (100%) against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria and the antifouling function on a glass substrate and/or a silica wafer coated by the modified polymer.
Collapse
Affiliation(s)
- Livy Laysandra
- Department
of Chemical Engineering, National Taiwan
University of Science and Technology, Taipei 10607, Taiwan
| | - Randy Arthur Rusli
- Department
of Chemical Engineering, National Taiwan
University of Science and Technology, Taipei 10607, Taiwan
| | - Yu-Wei Chen
- Department
of Chemical Engineering, National Taiwan
University of Science and Technology, Taipei 10607, Taiwan
| | - Shi-Ju Chen
- Taipei
Municipal Zhongshan Girls High School, Taipei 10617, Taiwan
| | - Yao-Wei Yeh
- Department
of Biomedical Engineering, College of Engineering, National Cheng Kung University, Tainan 704, Taiwan
| | - Tsung-Lin Tsai
- Department
of Biomedical Engineering, College of Engineering, National Cheng Kung University, Tainan 704, Taiwan
- Department
of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Jui-Hsiung Huang
- Department
of Green Material Technology, Green Technology
Research Institute, CPC Corporation, Kaohsiung City 811, Taiwan
| | - Kao-Shu Chuang
- Department
of Green Material Technology, Green Technology
Research Institute, CPC Corporation, Kaohsiung City 811, Taiwan
| | - Andreas Njotoprajitno
- Department
of Chemical Engineering, National Taiwan
University of Science and Technology, Taipei 10607, Taiwan
| | - Yu-Cheng Chiu
- Department
of Chemical Engineering, National Taiwan
University of Science and Technology, Taipei 10607, Taiwan
- Advanced
Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
2
|
Muneeswaran ZP, Teoman B, Wang Y, Chaudhry H, Brinzari TV, Verma G, Ranasinghe L, Kaler KR, Huang X, He X, Thomas B, Xu S, Cheng CY, Boyd JM, Chen D, Hao Z, Ma S, Asefa T, Pan L, Dubovoy V. Novel anionic surfactant-modified chlorhexidine and its potent antimicrobial properties. Dalton Trans 2024; 53:2670-2677. [PMID: 38224288 DOI: 10.1039/d3dt02559d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Chlorhexidine dodecyl sulfate (CHX-DS) was synthesized and characterized via single-crystal X-ray diffraction (SC-XRD), 1H nuclear magnetic resonance (NMR) spectroscopy, 1H nuclear Overhauser effect spectroscopy (NOESY), and attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR). The solid-state structure, comprising a 1 : 2 stoichiometric ratio of chlorhexidine cations [C22H30Cl2N10]2+ to dodecyl sulfate anions [C12H25SO4]-, is the first report of chlorhexidine isolated with a surfactant. CHX-DS exhibits broad-spectrum antibacterial activity and demonstrates superior efficacy for reducing bacteria-generated volatile sulfur compounds (VSCs) as compared to chlorhexidine gluconate (CHG). The minimum inhibitory concentrations (MICs) of CHX-DS were 7.5, 2.5, 2.5, and 10 μM for S. enterica, E. coli, S. aureus, and S. mutans, respectively. Furthermore, MIC assays for E. coli and S. mutans demonstrate that CHX-DS and CHX exhibit a statistically significant efficacy enhancement in 2.5 μM treatment as compared to CHG. CHX-DS was incorporated into SBA-15, a mesoporous silica nanoparticle (MSN) framework, and its release was qualitatively measured via UV-vis in aqueous media, which suggests its potential as an advanced functional material for drug delivery applications.
Collapse
Affiliation(s)
- Zilma Pereira Muneeswaran
- Colgate-Palmolive Company, 909 River Road, Piscataway, New Jersey 08854, USA.
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854, USA
| | - Baran Teoman
- Colgate-Palmolive Company, 909 River Road, Piscataway, New Jersey 08854, USA.
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, 323 Dr. Martin Luther King Jr Boulevard, Newark, New Jersey 07102, USA
| | - Yu Wang
- Colgate-Palmolive Company, 909 River Road, Piscataway, New Jersey 08854, USA.
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854, USA
| | - Haroon Chaudhry
- Colgate-Palmolive Company, 909 River Road, Piscataway, New Jersey 08854, USA.
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854, USA
| | - Tatiana V Brinzari
- Colgate-Palmolive Company, 909 River Road, Piscataway, New Jersey 08854, USA.
| | - Gaurav Verma
- Department of Chemistry, University of North Texas, 1508 W. Mulberry Street, Denton, Texas 76201, USA
| | - Lomaani Ranasinghe
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, 76 Lipman Drive, New Brunswick, New Jersey 08901, USA
| | - Kylie Ryan Kaler
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, 76 Lipman Drive, New Brunswick, New Jersey 08901, USA
| | - Xiaoyi Huang
- Colgate-Palmolive Company, 338 Qingnian Road, Economic Development Zone, Guangzhou 510620, China
| | - Xing He
- Colgate-Palmolive Company, 338 Qingnian Road, Economic Development Zone, Guangzhou 510620, China
| | - Belvin Thomas
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854, USA
| | - Shiyou Xu
- Colgate-Palmolive Company, 909 River Road, Piscataway, New Jersey 08854, USA.
| | - Chi-Yuan Cheng
- Colgate-Palmolive Company, 909 River Road, Piscataway, New Jersey 08854, USA.
| | - Jeffrey M Boyd
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, 76 Lipman Drive, New Brunswick, New Jersey 08901, USA
| | - Dailin Chen
- Colgate-Palmolive Company, 338 Qingnian Road, Economic Development Zone, Guangzhou 510620, China
| | - Zhigang Hao
- Colgate-Palmolive Company, 909 River Road, Piscataway, New Jersey 08854, USA.
| | - Shengqian Ma
- Department of Chemistry, University of North Texas, 1508 W. Mulberry Street, Denton, Texas 76201, USA
| | - Tewodros Asefa
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854, USA
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, New Jersey 08854, USA
| | - Long Pan
- Colgate-Palmolive Company, 909 River Road, Piscataway, New Jersey 08854, USA.
| | - Viktor Dubovoy
- Colgate-Palmolive Company, 909 River Road, Piscataway, New Jersey 08854, USA.
| |
Collapse
|
3
|
Sharma B, Shukla S, Rattan R, Fatima M, Goel M, Bhat M, Dutta S, Ranjan RK, Sharma M. Antimicrobial Agents Based on Metal Complexes: Present Situation and Future Prospects. Int J Biomater 2022; 2022:6819080. [PMID: 36531969 PMCID: PMC9754840 DOI: 10.1155/2022/6819080] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 09/30/2022] [Accepted: 10/10/2022] [Indexed: 08/27/2023] Open
Abstract
The rise in antimicrobial resistance is a cause of serious concern since the ages. Therefore, a dire need to explore new antimicrobial entities that can combat against the increasing threat of antibiotic resistance is realized. Studies have shown that the activity of the strongest antibiotics has reduced drastically against many microbes such as microfungi and bacteria (Gram-positive and Gram-negative). A ray of hope, however, was witnessed in early 1940s with the development of new drug discovery and use of metal complexes as antibiotics. Many new metal-based drugs were developed from the metal complexes which are potentially active against a number of ailments such as cancer, malaria, and neurodegenerative diseases. Therefore, this review is an attempt to describe the present scenario and future development of metal complexes as antibiotics against wide array of microbes.
Collapse
Affiliation(s)
- Bharti Sharma
- School of Biosciences and Biotechnology, BGSB University, Rajouri, Jammu and Kashmir 185234, India
| | - Sudeep Shukla
- Environment Pollution Analysis Lab, Bhiwadi, Alwar, Rajasthan 301019, India
| | - Rohit Rattan
- WWF-India Field Office, ITI Road, Rajouri, Jammu and Kashmir 185132, India
| | - Musarrat Fatima
- Department of Botany, BGSB University, Rajouri, Jammu and Kashmir 185234, India
| | - Mayurika Goel
- TERI Deakin Nanobiotechnology Centre, Sustainable Agriculture Program, The Energy and Resource Institute, Gurugram, Haryana, India
| | - Mamta Bhat
- School of Biosciences and Biotechnology, BGSB University, Rajouri, Jammu and Kashmir 185234, India
| | - Shruti Dutta
- Amity School of Earth and Environmental Sciences, Amity University Haryana, Haryana, India
| | | | - Mamta Sharma
- Aditi Mahavidyalaya, University of Delhi, New Delhi, India
| |
Collapse
|
5
|
Hill SA, Steinfort R, Mücke S, Reifenberger J, Sengpiel T, Hartmann L. Exploring Cyclic Sulfamidate Building Blocks for the Synthesis of Sequence-Defined Macromolecules. Macromol Rapid Commun 2021; 42:e2100193. [PMID: 33945179 DOI: 10.1002/marc.202100193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/20/2021] [Indexed: 01/07/2023]
Abstract
The preparation of sequence-defined macromolecules using cyclic sulfamidates on solid-phase is outlined. The challenges surrounding an AB+CD approach are described with focus on understanding the formation of ring-opened side products when using amide coupling reagents. To avoid undesired side product formation, a strategy of iterative ring-openings of cyclic sulfamidates on solid-phase is explored. Ring-opening on primary and secondary amines is successfully reported, generating both linear and branched chain growth. However, attempts to selectively cleave N-sulfate bearing sp3 -hybridized groups cannot be demonstrated, limiting the overall building block scope for this methodology. Consequently, the active ring-opening of cyclic sulfamidates on amine-functionalized oligo(amidoamine) backbones is successfully applied to produce sequence-defined, N-sulfated macromolecules.
Collapse
Affiliation(s)
- Stephen Andrew Hill
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Robert Steinfort
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Sandra Mücke
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Josefine Reifenberger
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Tobias Sengpiel
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Laura Hartmann
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| |
Collapse
|