1
|
Parashar K, Zhang Z, Buturlim V, Jiang J, Roseborough A, Nyman M, Gofryk K, Pachter R, Saparov B. Structural and Physical Properties of Two Distinct 2D Lead Halides with Intercalated Cu(II). JOURNAL OF MATERIALS CHEMISTRY. C 2024; 12:9372-9384. [PMID: 39308752 PMCID: PMC11412573 DOI: 10.1039/d4tc01322k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Transition metal cation intercalation between the layers of two-dimensional (2D) metal halides is an underexplored research area. In this work we focus on the synthesis and physical property characterizations of two layered hybrid lead halides: a new compound [Cu(O2C-CH2-NH2)2]Pb2Br4 and the previously reported [Cu(O2C-(CH2)3-NH3)2]PbBr4. These compounds exhibit 2D layered crystal structures with incorporated Cu2+ between the metal halide layers, which is achieved by combining Cu(II) and lead bromide with suitable amino acid precursors. The resultant [Cu(O2C-(CH2)3-NH3)2]PbBr4 adopts a 2D layered perovskite structure, whereas the new compound [Cu(O2C-CH2-NH2)2]Pb2Br4 crystallizes with a new structure type based on edge-sharing dodecahedral PbBr5O3 building blocks. [Cu(O2C-CH2-NH2)2]Pb2Br4 is a semiconductor with a bandgap of 3.25 eV. It shows anisotropic charge transport properties with a semiconductor resistivity of 1.44×1010 Ω·cm (measured along the a-axis) and 2.17×1010 Ω·cm (along the bc-plane), respectively. The fabricated prototype detector based on this material showed response to soft low-energy X-rays at 8 keV with a detector sensitivity of 1462.7 μCGy-1cm-2, indicating its potential application for ionizing radiation detection. These encouraging results are discussed together with the results from density functional theory calculations, optical, magnetic, and thermal property characterization experiments.
Collapse
Affiliation(s)
- Kanika Parashar
- Department of Chemistry & Biochemistry, The University of Oklahoma, Norman, Oklahoma 73019-5251, United States
| | - Zheng Zhang
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Volodymyr Buturlim
- Glenn T. Seaborg Institute, Idaho National Laboratory, Idaho Falls, ID 83415, USA
| | - Jie Jiang
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, OH 45433, USA
| | | | - May Nyman
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA
| | - Krzysztof Gofryk
- Glenn T. Seaborg Institute, Idaho National Laboratory, Idaho Falls, ID 83415, USA
| | - Ruth Pachter
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, OH 45433, USA
| | - Bayram Saparov
- Department of Chemistry & Biochemistry, The University of Oklahoma, Norman, Oklahoma 73019-5251, United States
| |
Collapse
|
2
|
Ali N, Shehzad K, Attique S, Ali A, Akram F, Younis A, Ali S, Sun Y, Yu G, Wu H, Dai N. Exploring Non-Toxic Lower Dimensional Perovskites for Next-Generation X-Ray Detectors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310946. [PMID: 38229536 DOI: 10.1002/smll.202310946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Indexed: 01/18/2024]
Abstract
Owing to their extraordinary photophysical properties, organometal halide perovskites are emerging as a new material class for X-ray detection. However, the existence of toxic lead makes their commercialization questionable and should readily be replaced. Accordingly, several lead alternatives have been introduced into the framework of conventional perovskites, resulting in various new perovskite dimensionalities. Among these, Pb-free lower dimensional perovskites (LPVKs) not only show promising X-ray detecting properties due to their higher ionic migration energy, wider and tunable energy bandgap, smaller dark currents, and structural versatility but also exhibit extended environmental stability. Herein, first, the structural organization of the PVKs (including LPVKs) is summarized. In the context of X-ray detectors (XDs), the outstanding properties of the LPVKs and active layer synthesis routes are elaborated afterward. Subsequently, their applications in direct XDs are extensively discussed and the device performance, in terms of the synthesis method, device architecture, active layer size, figure of merits, and device stability are tabulated. Finally, the review is concluded with an in-depth outlook, thoroughly exploring the present challenges to LPVKs XDs, proposing innovative solutions, and future directions. This review provides valuable insights into optimizing non-toxic Pb-free perovskite XDs, paving the way for future advancements in the field.
Collapse
Affiliation(s)
- Nasir Ali
- Research Center for Frontier Fundamental Studies, Zhejiang Labs, Yuhang District, Hangzhou, Zhejiang, 311121, P. R. China
| | - Khurram Shehzad
- Research Center for Frontier Fundamental Studies, Zhejiang Labs, Yuhang District, Hangzhou, Zhejiang, 311121, P. R. China
| | - Sanam Attique
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Ayaz Ali
- Research Center for Frontier Fundamental Studies, Zhejiang Labs, Yuhang District, Hangzhou, Zhejiang, 311121, P. R. China
| | - Fazli Akram
- Center for High Technology Materials and the Department of Mechanical Engineering, The University of New Mexico, Albuquerque, NM, 87131, USA
| | - Adnan Younis
- Department of Physics, College of Science, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates
| | - Shahid Ali
- Department of Physics, University of Peshawar, Peshawar, 25000, Pakistan
| | - Yan Sun
- Research Center for Frontier Fundamental Studies, Zhejiang Labs, Yuhang District, Hangzhou, Zhejiang, 311121, P. R. China
| | - Guolin Yu
- Research Center for Frontier Fundamental Studies, Zhejiang Labs, Yuhang District, Hangzhou, Zhejiang, 311121, P. R. China
| | - Huizhen Wu
- Research Center for Frontier Fundamental Studies, Zhejiang Labs, Yuhang District, Hangzhou, Zhejiang, 311121, P. R. China
- School of Physics, State Key Laboratory for Silicon Materials, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Ning Dai
- Research Center for Frontier Fundamental Studies, Zhejiang Labs, Yuhang District, Hangzhou, Zhejiang, 311121, P. R. China
| |
Collapse
|
3
|
Li W, Li M, He Y, Song J, Guo K, Pan W, Wei H. Arising 2D Perovskites for Ionizing Radiation Detection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309588. [PMID: 38579272 DOI: 10.1002/adma.202309588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 02/26/2024] [Indexed: 04/07/2024]
Abstract
2D perovskites have greatly improved moisture stability owing to the large organic cations embedded in the inorganic octahedral structure, which also suppresses the ions migration and reduces the dark current. The suppression of ions migration by 2D perovskites effectively suppresses excessive device noise and baseline drift and shows excellent potential in the direct X-ray detection field. In addition, 2D perovskites have gradually emerged with many unique properties, such as anisotropy, tunable bandgap, high photoluminescence quantum yield, and wide range exciton binding energy, which continuously promote the development of 2D perovskites in ionizing radiation detection. This review aims to systematically summarize the advances and progress of 2D halide perovskite semiconductor and scintillator ionizing radiation detectors, including reported alpha (α) particle, beta (β) particle, neutron, X-ray, and gamma (γ) ray detection. The unique structural features of 2D perovskites and their advantages in X-ray detection are discussed. Development directions are also proposed to overcome the limitations of 2D halide perovskite radiation detectors.
Collapse
Affiliation(s)
- Weijun Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Mingbian Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yuhong He
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Jinmei Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Keke Guo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Wanting Pan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Haotong Wei
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
- Optical Functional Theragnostic Joint Laboratory of Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
4
|
Pinky T, Popy DA, Zhang Z, Jiang J, Pachter R, Saparov B. Synthesis and Characterization of New Hybrid Organic-Inorganic Metal Halides [(CH 3) 3SO]M 2I 3 (M = Cu and Ag). Inorg Chem 2024; 63:2174-2184. [PMID: 38235735 DOI: 10.1021/acs.inorgchem.3c04119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Recently, all-inorganic copper(I) metal halides have emerged as promising optical materials due to their high light emission efficiencies. This work details the crystal structure of the two hybrid organic-inorganic metal halides [(CH3)3SO]M2I3 (M = Cu and Ag) and their alloyed derivatives [(CH3)3SO]Cu2-xAgxI3 (x = 0.2; 1.25), which were obtained by incorporating trimethylsulfoxonium organic cation (CH3)3SO+ in place of Cs+ in the yellow-emitting all-inorganic CsCu2I3. These compounds are isostructural and centrosymmetric with the space group Pnma, featuring one-dimensional edge-sharing [M2I3]- anionic double chains separated by rows of (CH3)3SO+ cations. Based on density functional theory calculations, the highest occupied molecular orbitals (HOMOs) of [(CH3)3SO]M2I3 (M = Cu and Ag) are dominated by the Cu or Ag d and I p orbitals, while the lowest unoccupied molecular orbitals (LUMOs) are Cu or Ag s and I p orbitals. [(CH3)3SO]Cu2I3 single crystals exhibit a semiconductor resistivity of 9.94 × 109 Ω·cm. Furthermore, a prototype [(CH3)3SO]Cu2I3 single-crystal-based X-ray detector with a detection sensitivity of 200.54 uCGy-1 cm-2 (at electrical field E = 41.67 V/mm) was fabricated, indicating the potential use of [(CH3)3SO]Cu2I3 for radiation detection applications.
Collapse
Affiliation(s)
- Tamanna Pinky
- Department of Chemistry & Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Dilruba A Popy
- Department of Chemistry & Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Zheng Zhang
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Jie Jiang
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Dayton, Ohio 45433, United States
| | - Ruth Pachter
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Dayton, Ohio 45433, United States
| | - Bayram Saparov
- Department of Chemistry & Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
5
|
Zhang Z, Pugliano TM, Cao D, Kim D, Annam RS, Popy DA, Pinky T, Yang G, Garg J, Borunda MF, Saparov B. Crystal Growth, Structural and Electronic Characterizations of Zero-Dimensional Metal Halide (TEP)InBr 4 Single Crystals for X-Ray Detection. JOURNAL OF MATERIALS CHEMISTRY. C 2023; 11:15357-15365. [PMID: 38304018 PMCID: PMC10829011 DOI: 10.1039/d3tc02787b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Recently, metal halides have shown great potential for applications such as solar energy harvesting, light emission, and ionizing radiation detection. In this work, we report the preparation, structural, thermal, and electronic properties of a new zero-dimensional (0D) halide (TEP)InBr4 (where TEP is tetraethylphosphonium organic cation, C8H20P+). (TEP)InBr4 single crystals are obtained within a few days of continuous crystal growth time via a solution growth methodology. (TEP)InBr4 shows a relatively large optical bandgap energy of 4.32 eV and a low thermal conductivity between 0.33±0.05 and 0.45±0.07 W/m-K. Based on the density functional theory (DFT) calculations, the highest occupied molecular orbitals (HOMOs) of (TEP)InBr4 are dominated by the Br states, while the lowest unoccupied molecular orbitals (LUMOs) are constituted by both In and Br states. (TEP)InBr4 single crystals exhibit a semiconductor resistivity of 1.73×1013 Ω·cm and a mobility-lifetime (mu-tau) product of 2.07×10-5 cm2/V. Finally, a prototype (TEP)InBr4 single crystal-based X-ray detector with a detection sensitivity of 569.85 uCGy-1cm-2 (at electrical field E=100 V/mm) was fabricated, indicating the potential use of (TEP)InBr4 for radiation detection applications.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019
| | - Tony M. Pugliano
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019
| | - Da Cao
- Department of Nuclear Engineering, North Carolina State University, Raleigh, NC 27607
| | - Doup Kim
- Department of Nuclear Engineering, North Carolina State University, Raleigh, NC 27607
| | - Roshan S. Annam
- School of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, OK 73019
| | - Dilruba A. Popy
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019
| | - Tamanna Pinky
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019
| | - Ge Yang
- Department of Nuclear Engineering, North Carolina State University, Raleigh, NC 27607
| | - Jivtesh Garg
- School of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, OK 73019
| | - Mario F. Borunda
- Department of Physics, Oklahoma State University, Stillwater, OK 74078
| | - Bayram Saparov
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019
| |
Collapse
|
6
|
He X, Deng Y, Ouyang D, Zhang N, Wang J, Murthy AA, Spanopoulos I, Islam SM, Tu Q, Xing G, Li Y, Dravid VP, Zhai T. Recent Development of Halide Perovskite Materials and Devices for Ionizing Radiation Detection. Chem Rev 2023; 123:1207-1261. [PMID: 36728153 DOI: 10.1021/acs.chemrev.2c00404] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Ionizing radiation such as X-rays and γ-rays has been extensively studied and used in various fields such as medical imaging, radiographic nondestructive testing, nuclear defense, homeland security, and scientific research. Therefore, the detection of such high-energy radiation with high-sensitivity and low-cost-based materials and devices is highly important and desirable. Halide perovskites have emerged as promising candidates for radiation detection due to the large light absorption coefficient, large resistivity, low leakage current, high mobility, and simplicity in synthesis and processing as compared with commercial silicon (Si) and amorphous selenium (a-Se). In this review, we provide an extensive overview of current progress in terms of materials development and corresponding device architectures for radiation detection. We discuss the properties of a plethora of reported compounds involving organic-inorganic hybrid, all-inorganic, all-organic perovskite and antiperovskite structures, as well as the continuous breakthroughs in device architectures, performance, and environmental stability. We focus on the critical advancements of the field in the past few years and we provide valuable insight for the development of next-generation materials and devices for radiation detection and imaging applications.
Collapse
Affiliation(s)
- Xiaoyu He
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei430074, People's Republic of China
| | - Yao Deng
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei430074, People's Republic of China
| | - Decai Ouyang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei430074, People's Republic of China
| | - Na Zhang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei430074, People's Republic of China
| | - Jing Wang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei430074, People's Republic of China
| | - Akshay A Murthy
- Department of Materials Science and Engineering, Northwestern University Atomic and Nanoscale Characterization Experimental (NUANCE) Center, International Institute for Nanotechnology (IIN), and Department of Mechanical Engineering, Northwestern University, Evanston, Illinois60208, United States
| | - Ioannis Spanopoulos
- Department of Chemistry, University of South Florida, Tampa, Florida33620, United States
| | - Saiful M Islam
- Department of Chemistry, Physics, and Atmospheric Sciences, Jackson State University, Jackson, Mississippi39217, United States
| | - Qing Tu
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas77840, United States
| | - Guichuan Xing
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao, SAR999078, People's Republic of China
| | - Yuan Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei430074, People's Republic of China
| | - Vinayak P Dravid
- Department of Materials Science and Engineering, Northwestern University Atomic and Nanoscale Characterization Experimental (NUANCE) Center, International Institute for Nanotechnology (IIN), and Department of Mechanical Engineering, Northwestern University, Evanston, Illinois60208, United States
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei430074, People's Republic of China
| |
Collapse
|
7
|
Electronic structures and optical properties of (Ph4P)MX2 (M = Cu, Ag; X = Cl, Br). J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|