1
|
Mostovaya O, Shiabiev I, Ovchinnikov D, Pysin D, Mukhametzyanov T, Stanavaya A, Abashkin V, Shcharbin D, Khannanov A, Kutyreva M, Shen M, Shi X, Padnya P, Stoikov I. PAMAM-Calix-Dendrimers: Third Generation Synthesis and Impact of Generation and Macrocyclic Core Conformation on Hemotoxicity and Calf Thymus DNA Binding. Pharmaceutics 2024; 16:1379. [PMID: 39598503 PMCID: PMC11597237 DOI: 10.3390/pharmaceutics16111379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/24/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Current promising treatments for many diseases are based on the use of therapeutic nucleic acids, including DNA. However, the list of nanocarriers is limited due to their low biocompatibility, high cost, and toxicity. The design of synthetic building blocks for creating universal delivery systems for genetic material is an unsolved problem. In this work, we propose PAMAM dendrimers with rigid thiacalixarene core in various conformations, i.e., PAMAM-calix-dendrimers, as a platform for a supramolecular universal constructor for nanomedicine. Results: Third generation PAMAM dendrimers with a macrocyclic core in three conformations (cone, partial cone, and 1,3-alternate) were synthesized for the first time. The obtained dendrimers were capable of binding and compacting calf thymus DNA, whereby the binding efficiency improved with increasing generation, while the influence of the macrocyclic core was reduced. A dramatic effect of the macrocyclic core conformation on the hemolytic activity of PAMAM-calix-dendrimers was observed. Specifically, a notable reduction in hemotoxicity was associated with a decrease in compound amphiphilicity. Conclusions: We hope the results will help reduce financial and labor costs in developing new drug delivery systems based on dendrimers.
Collapse
Affiliation(s)
- Olga Mostovaya
- A.M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia; (O.M.); (I.S.); (D.O.); (D.P.); (T.M.); (A.K.); (M.K.)
| | - Igor Shiabiev
- A.M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia; (O.M.); (I.S.); (D.O.); (D.P.); (T.M.); (A.K.); (M.K.)
| | - Daniil Ovchinnikov
- A.M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia; (O.M.); (I.S.); (D.O.); (D.P.); (T.M.); (A.K.); (M.K.)
| | - Dmitry Pysin
- A.M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia; (O.M.); (I.S.); (D.O.); (D.P.); (T.M.); (A.K.); (M.K.)
| | - Timur Mukhametzyanov
- A.M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia; (O.M.); (I.S.); (D.O.); (D.P.); (T.M.); (A.K.); (M.K.)
| | - Alesia Stanavaya
- Institute of Biophysics and Cell Engineering of NASB, 27 Akademicheskaya St., 220072 Minsk, Belarus; (A.S.); (V.A.); (D.S.)
| | - Viktar Abashkin
- Institute of Biophysics and Cell Engineering of NASB, 27 Akademicheskaya St., 220072 Minsk, Belarus; (A.S.); (V.A.); (D.S.)
| | - Dzmitry Shcharbin
- Institute of Biophysics and Cell Engineering of NASB, 27 Akademicheskaya St., 220072 Minsk, Belarus; (A.S.); (V.A.); (D.S.)
| | - Arthur Khannanov
- A.M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia; (O.M.); (I.S.); (D.O.); (D.P.); (T.M.); (A.K.); (M.K.)
| | - Marianna Kutyreva
- A.M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia; (O.M.); (I.S.); (D.O.); (D.P.); (T.M.); (A.K.); (M.K.)
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China; (M.S.); (X.S.)
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China; (M.S.); (X.S.)
- CQM—Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Pavel Padnya
- A.M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia; (O.M.); (I.S.); (D.O.); (D.P.); (T.M.); (A.K.); (M.K.)
| | - Ivan Stoikov
- A.M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia; (O.M.); (I.S.); (D.O.); (D.P.); (T.M.); (A.K.); (M.K.)
| |
Collapse
|
2
|
Nazarova A, Shiabiev I, Shibaeva K, Mostovaya O, Mukhametzyanov T, Khannanov A, Evtugyn V, Zelenikhin P, Shi X, Shen M, Padnya P, Stoikov I. Thiacalixarene Carboxylic Acid Derivatives as Inhibitors of Lysozyme Fibrillation. Int J Mol Sci 2024; 25:4721. [PMID: 38731940 PMCID: PMC11083589 DOI: 10.3390/ijms25094721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Amyloid fibroproliferation leads to organ damage and is associated with a number of neurodegenerative diseases affecting populations worldwide. There are several ways to protect against fibril formation, including inhibition. A variety of organic compounds based on molecular recognition of amino acids within the protein have been proposed for the design of such inhibitors. However, the role of macrocyclic compounds, i.e., thiacalix[4]arenes, in inhibiting fibrillation is still almost unknown. In the present work, the use of water-soluble thiacalix[4]arene derivatives for the inhibition of hen egg-white lysozyme (HEWL) amyloid fibrillation is proposed for the first time. The binding of HEWL by the synthesized thiacalix[4]arenes (logKa = 5.05-5.13, 1:1 stoichiometry) leads to the formation of stable supramolecular systems capable of stabilizing the protein structure and protecting against fibrillation by 29-45%. The macrocycle conformation has little effect on protein binding strength, and the native HEWL secondary structure does not change via interaction. The synthesized compounds are non-toxic to the A549 cell line in the range of 0.5-250 µg/mL. The results obtained may be useful for further investigation of the anti-amyloidogenic role of thiacalix[4]arenes, and also open up future prospects for the creation of new ways to prevent neurodegenerative diseases.
Collapse
Affiliation(s)
- Anastasia Nazarova
- A. M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
| | - Igor Shiabiev
- A. M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
| | - Ksenia Shibaeva
- A. M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
| | - Olga Mostovaya
- A. M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
| | - Timur Mukhametzyanov
- A. M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
| | - Arthur Khannanov
- A. M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
| | - Vladimir Evtugyn
- Interdisciplinary Center of Analytical Microscopy, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
| | - Pavel Zelenikhin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
- CQM—Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Pavel Padnya
- A. M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
| | - Ivan Stoikov
- A. M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
| |
Collapse
|
3
|
Ueda M, Isozaki M, Mazaki Y. Synthesis, Structure, and Characterization of Thiacalix[4]-2,8-thianthrene. Molecules 2023; 28:5462. [PMID: 37513336 PMCID: PMC10383442 DOI: 10.3390/molecules28145462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/11/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
Sulfur-containing macrocycles have attracted substantial interest because they exhibit unique characteristics due to their polygonal ring-shaped skeleton. In this study, a thianthrene-based cyclic tetramer with the sulfur linker, thiacalix[4]-2,8-thianthrene (TC[4]TT), was successfully prepared from a cyclo-p-phenylenesulfide derivative using acid-induced intramolecular condensation. Single crystal X-ray diffraction revealed that TC[4]TT adopts an alternative octagonal form recessed to the inner side. Its internal cavity included small solvents, such as chloroform and carbon disulfide. Due to its polygonal geometry, TC[4]TT laminated in a honeycomb-like pattern with a porous channel. Furthermore, TC[4]TT showed fluorescence and phosphorescence emission in a CH2Cl2 solution at ambient and liquid nitrogen temperatures. Both emission bands were slightly redshifted compared with those of the reference compounds (di(thanthren-2-yl)sulfane (TT2S) and thianthrene (TT)). This work describes a sulfur-containing thiacalixheterocycle-based macrocyclic system with intriguing supramolecular chemistry based on molecular tiling and photophysical properties in solution.
Collapse
Affiliation(s)
- Masafumi Ueda
- Department of Chemistry, Graduate School of Science, Kitasato University, Sagamihara 252-0373, Kanagawa, Japan
| | - Moe Isozaki
- Department of Chemistry, Graduate School of Science, Kitasato University, Sagamihara 252-0373, Kanagawa, Japan
| | - Yasuhiro Mazaki
- Department of Chemistry, Graduate School of Science, Kitasato University, Sagamihara 252-0373, Kanagawa, Japan
| |
Collapse
|
4
|
Nugmanova АR, Yakimova LS, Shibaeva KS, Stoikov II. Metal (Na+, K+, Cs+) Template Effect–Controlled Synthesis of Stereoisomers of Tetrasubstituted (Thia)calix[4]arene Derivatives Containing Sulfonatoalkyl Moieties on the Lower Rim. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222120052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
5
|
Abstract
ConspectusThis Account summarizes the progress in protein-calixarene complexation, tracing the developments from binary recognition to the glue activity of calixarenes and beyond to macrocycle-mediated frameworks. During the past 10 years, we have been tackling the question of protein-calixarene complexation in several ways, mainly by cocrystallization and X-ray structure determination as well as by solution state methods, NMR spectroscopy, isothermal titration calorimetry (ITC), and light scattering. Much of this work benefitted from collaboration, highlighted here. Our first breakthrough was the cocrystallization of cationic cytochrome c with sulfonato-calix[4]arene leading to a crystal structure defining three binding sites. Together with NMR studies, a dynamic complexation was deduced in which the calixarene explores the protein surface. Other cationic proteins were similarly amenable to cocrystallization with sulfonato-calix[4]arene, confirming calixarene-arginine/lysine encapsulation and consequent protein assembly. Calixarenes bearing anionic substituents such as sulfonate or phosphonate, but not carboxylate, have proven useful.Studies with larger calix[n]arenes (n = 6, 8) demonstrated the bigger better binder phenomenon with increased affinities and more interesting assemblies, including solution-state oligomerization and porous frameworks. While the calix[4]arene cavity accommodates a single cationic side chain, the larger macrocycles adopt different conformations, molding to the protein surface and accommodating several residues (hydrophobic, polar, and/or charged) in small cavities. In addition to accommodating protein features, the calixarene can bind exogenous components such as polyethylene glycol (PEG), metal ions, buffer, and additives. Ternary cocrystallization of cytochrome c, sulfonato-calix[8]arene, and spermine resulted in altered framework fabrication due to calixarene encapsulation of the tetraamine. Besides host-guest chemistry with exogenous components, the calixarene can also self-assemble, with numerous instances of macrocycle dimers.Calixarene complexation enables protein encapsulation, not merely side chain encapsulation. Cocrystal structures of sulfonato-calix[8]arene with cytochrome c or Ralstonia solanacearum lectin (RSL) provide evidence of encapsulation, with multiple calixarenes masking the same protein. NMR studies of cytochrome c and sulfonato-calix[8]arene are also consistent with multisite binding. In the case of RSL, a C3 symmetric trimer, up to six calixarenes bind the protein yielding a cubic framework mediated by calixarene dimers. Biomolecular calixarene complexation has evolved from molecular recognition to framework construction. This latter development contributes to the challenge in design and preparation of porous molecular materials. Cytochrome c and sulfonato-calix[8]arene form frameworks with >60% solvent in which the degree of porosity depends on the protein:calixarene ratio and the crystallization conditions. Recent developments with RSL led to three frameworks with varying porosity depending on the crystallization conditions, particularly the pH. NMR studies indicate a pH-triggered assembly in which two acidic residues appear to play key roles. The field of supramolecular protein chemistry is growing, and this Account aims to encourage new developments at the interface between biomolecular and synthetic/supramolecular chemistry.
Collapse
Affiliation(s)
- Peter B Crowley
- School of Biological and Chemical Sciences, University of Galway, University Road, Galway H91 TK33, Ireland
| |
Collapse
|