1
|
Huang Y, Wang N, Wang J, Ji X, Li A, Zhao H, Song W, Huang X, Wang T, Hao H. Unveiling the Factors Influencing Different Nucleation Pathways and Liquid-Liquid Phase Separation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:17786-17795. [PMID: 39120944 DOI: 10.1021/acs.langmuir.4c02276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
Exploring nucleation pathways has been a research hot spot in the fields of crystal engineering. In this work, vanillin as a model compound was utilized to explore the factors influencing different nucleation pathways with or without liquid-liquid phase separation (LLPS). A thermodynamic phase diagram of vanillin in the mixed solvent system of water and acetone from 10 to 55 °C was determined. It was found that the occurrence of LLPS might be related to different nucleation pathways. Under the guidance of a thermodynamic phase diagram, Raman spectroscopy and molecular simulation were applied to investigate the influencing factors of different nucleation paths. It was found that the degree of solvation is a key factor determining the nucleation path, and strong solvation could lead to LLPS. Additionally, the molecular self-assembly evolution during the crystallization process was further investigated by using small-angle X-ray scattering (SAXS) and dynamic light scattering (DLS). The findings indicate that larger clusters with a diffuse transition layer may lead to LLPS during the nucleation process.
Collapse
Affiliation(s)
- Yunhai Huang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Na Wang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, People's Republic of China
| | - Jingkang Wang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Xiongtao Ji
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Ao Li
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Hongtu Zhao
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Wenxi Song
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Xin Huang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, People's Republic of China
| | - Ting Wang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, People's Republic of China
| | - Hongxun Hao
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, People's Republic of China
| |
Collapse
|
2
|
Chen A, Cai P, Peng Y, Guo M, Su Y, Cai T. The role of alkyl chain length in the melt and solution crystallization of paliperidone aliphatic prodrugs. IUCRJ 2024; 11:23-33. [PMID: 37962472 PMCID: PMC10833388 DOI: 10.1107/s2052252523009582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023]
Abstract
Fatty acid-derivative prodrugs have been utilized extensively to improve the physicochemical, biopharmaceutical and pharmacokinetic properties of active pharmaceutical ingredients. However, to our knowledge, the crystallization behavior of prodrugs modified with different fatty acids has not been explored. In the present work, a series of paliperidone aliphatic prodrugs with alkyl chain lengths ranging from C4 to C16 was investigated with respect to crystal structure, crystal morphology and crystallization kinetics. The paliperidone derivatives exhibited isostructural crystal packing, despite the different alkyl chain lengths, and crystallized with the dominant (100) face in both melt and solution. The rate of crystallization for paliperidone derivatives in the melt increases with alkyl chain length owing to greater molecular mobility. In contrast, the longer chains prolong the nucleation induction time and reduce the crystal growth kinetics in solution. The results show a correlation between difficulty of nucleation in solution and the interfacial energy. This work provides insight into the crystallization behavior of paliperidone aliphatic prodrugs and reveals that the role of alkyl chain length in the crystallization behavior has a strong dependence on the crystallization method.
Collapse
Affiliation(s)
- An Chen
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
| | - Peishan Cai
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
| | - Yayun Peng
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
| | - Minshan Guo
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
| | - Yuan Su
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
| | - Ting Cai
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
| |
Collapse
|
3
|
Verma V, Bade I, Karde V, Heng JYY. Experimental Elucidation of Templated Crystallization and Secondary Processing of Peptides. Pharmaceutics 2023; 15:pharmaceutics15041288. [PMID: 37111774 PMCID: PMC10142637 DOI: 10.3390/pharmaceutics15041288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
The crystallization of peptides offers a sustainable and inexpensive alternative to the purification process. In this study, diglycine was crystallised in porous silica, showing the porous templates' positive yet discriminating effect. The diglycine induction time was reduced by five-fold and three-fold upon crystallising in the presence of silica with pore sizes of 6 nm and 10 nm, respectively. The diglycine induction time had a direct relationship with the silica pore size. The stable form (α-form) of diglycine was crystallised in the presence of porous silica, with the diglycine crystals obtained associated with the silica particles. Further, we studied the mechanical properties of diglycine tablets for their tabletability, compactability, and compressibility. The mechanical properties of the diglycine tablets were similar to those of pure MCC, even with the presence of diglycine crystals in the tablets. The diffusion studies of the tablets using the dialysis membrane presented an extended release of diglycine through the dialysis membrane, confirming that the peptide crystal can be used for oral formulation. Hence, the crystallization of peptides preserved their mechanical and pharmacological properties. More data on different peptides can help us produce oral formulation peptides faster than usual.
Collapse
Affiliation(s)
- Vivek Verma
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Isha Bade
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Vikram Karde
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Jerry Y Y Heng
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK
- Institute for Molecular Science and Engineering, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|