1
|
Vizoso D, Dingreville R. Dataset of simulated vibrational density of states and X-ray diffraction profiles of mechanically deformed and disordered atomic structures in Gold, Iron, Magnesium, and Silicon. Data Brief 2024; 55:110689. [PMID: 39100776 PMCID: PMC11296293 DOI: 10.1016/j.dib.2024.110689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/19/2024] [Accepted: 06/20/2024] [Indexed: 08/06/2024] Open
Abstract
This dataset is comprised of a library of atomistic structure files and corresponding X-ray diffraction (XRD) profiles and vibrational density of states (VDoS) profiles for bulk single crystal silicon (Si), gold (Au), magnesium (Mg), and iron (Fe) with and without disorder introduced into the atomic structure and with and without mechanical loading. Included with the atomistic structure files are descriptor files that measure the stress state, phase fractions, and dislocation content of the microstructures. All data was generated via molecular dynamics or molecular statics simulations using the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) code. This dataset can inform the understanding of how local or global changes to a materials microstructure can alter their spectroscopic and diffraction behavior across a variety of initial structure types (cubic diamond, face-centered cubic (FCC), hexagonal close-packed (HCP), and body-centered cubic (BCC) for Si, Au, Mg, and Fe, respectively) and overlapping changes to the microstructure (i.e., both disorder insertion and mechanical loading).
Collapse
Affiliation(s)
- Daniel Vizoso
- Center for Integrated Nanotechnologies, Sandia National Laboratories, 1515 Eubank Blvd SE, Albuquerque, NM 87185, USA
| | - Rémi Dingreville
- Center for Integrated Nanotechnologies, Sandia National Laboratories, 1515 Eubank Blvd SE, Albuquerque, NM 87185, USA
| |
Collapse
|
2
|
Kuznetsova V, Coogan Á, Botov D, Gromova Y, Ushakova EV, Gun'ko YK. Expanding the Horizons of Machine Learning in Nanomaterials to Chiral Nanostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308912. [PMID: 38241607 PMCID: PMC11167410 DOI: 10.1002/adma.202308912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/10/2024] [Indexed: 01/21/2024]
Abstract
Machine learning holds significant research potential in the field of nanotechnology, enabling nanomaterial structure and property predictions, facilitating materials design and discovery, and reducing the need for time-consuming and labor-intensive experiments and simulations. In contrast to their achiral counterparts, the application of machine learning for chiral nanomaterials is still in its infancy, with a limited number of publications to date. This is despite the great potential of machine learning to advance the development of new sustainable chiral materials with high values of optical activity, circularly polarized luminescence, and enantioselectivity, as well as for the analysis of structural chirality by electron microscopy. In this review, an analysis of machine learning methods used for studying achiral nanomaterials is provided, subsequently offering guidance on adapting and extending this work to chiral nanomaterials. An overview of chiral nanomaterials within the framework of synthesis-structure-property-application relationships is presented and insights on how to leverage machine learning for the study of these highly complex relationships are provided. Some key recent publications are reviewed and discussed on the application of machine learning for chiral nanomaterials. Finally, the review captures the key achievements, ongoing challenges, and the prospective outlook for this very important research field.
Collapse
Affiliation(s)
- Vera Kuznetsova
- School of Chemistry, CRANN and AMBER Research Centres, Trinity College Dublin, College Green, Dublin, D02 PN40, Ireland
| | - Áine Coogan
- School of Chemistry, CRANN and AMBER Research Centres, Trinity College Dublin, College Green, Dublin, D02 PN40, Ireland
| | - Dmitry Botov
- Everypixel Media Innovation Group, 021 Fillmore St., PMB 15, San Francisco, CA, 94115, USA
- Neapolis University Pafos, 2 Danais Avenue, Pafos, 8042, Cyprus
| | - Yulia Gromova
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford St., Cambridge, MA, 02138, USA
| | - Elena V Ushakova
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Yurii K Gun'ko
- School of Chemistry, CRANN and AMBER Research Centres, Trinity College Dublin, College Green, Dublin, D02 PN40, Ireland
| |
Collapse
|