1
|
Ji L, Huang J, Yu L, Jin H, Hu X, Sun Y, Yin F, Cai Y. Recent advances in nanoagents delivery system-based phototherapy for osteosarcoma treatment. Int J Pharm 2024; 665:124633. [PMID: 39187032 DOI: 10.1016/j.ijpharm.2024.124633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/09/2024] [Accepted: 08/22/2024] [Indexed: 08/28/2024]
Abstract
Osteosarcoma (OS) is a prevalent and highly malignant bone tumor, characterized by its aggressive nature, invasiveness, and rapid progression, contributing to a high mortality rate, particularly among adolescents. Traditional treatment modalities, including surgical resection, radiotherapy, and chemotherapy, face significant challenges, especially in addressing chemotherapy resistance and managing postoperative recurrence and metastasis. Phototherapy (PT), encompassing photodynamic therapy (PDT) and photothermal therapy (PTT), offers unique advantages such as low toxicity, minimal drug resistance, selective destruction, and temporal control, making it a promising approach for the clinical treatment of various malignant tumors. Constructing multifunctional delivery systems presents an opportunity to effectively combine tumor PDT, PTT, and chemotherapy, creating a synergistic anti-tumor effect. This review aims to consolidate the progress in the application of novel delivery system-mediated phototherapy in osteosarcoma. By summarizing advancements in this field, the objective is to propose a rational combination therapy involving targeted delivery systems and phototherapy for tumors, thereby expanding treatment options and enhancing the prognosis for osteosarcoma patients. In conclusion, the integration of innovative delivery systems with phototherapy represents a promising avenue in osteosarcoma treatment, offering a comprehensive approach to overcome challenges associated with conventional treatments and improve patient outcomes.
Collapse
Affiliation(s)
- Lichen Ji
- Zhejiang Chinese Medical University, Hangzhou 310053, China; Center for Rehabilitation Medicine Rehabilitation & Sports Medicine Research Institute of Zhejiang Province Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China; Department of Joint Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200092, China
| | - Jiaqing Huang
- Zhejiang Chinese Medical University, Hangzhou 310053, China; Center for Rehabilitation Medicine Rehabilitation & Sports Medicine Research Institute of Zhejiang Province Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China; Department of Hematology, Hangzhou First People's Hospital, Hangzhou 310003, China
| | - Liting Yu
- Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Huihui Jin
- Zhejiang Chinese Medical University, Hangzhou 310053, China; Center for Rehabilitation Medicine Rehabilitation & Sports Medicine Research Institute of Zhejiang Province Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Xuanhan Hu
- Zhejiang Chinese Medical University, Hangzhou 310053, China; Center for Rehabilitation Medicine Rehabilitation & Sports Medicine Research Institute of Zhejiang Province Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Yuan Sun
- College of Chemistry Engineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Feng Yin
- Department of Joint Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200092, China.
| | - Yu Cai
- Center for Rehabilitation Medicine Rehabilitation & Sports Medicine Research Institute of Zhejiang Province Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China.
| |
Collapse
|
2
|
Skrzyniarz K, Takvor-Mena S, Lach K, Łysek-Gładysińska M, Barrios-Gumiel Ó, Cano J, Ciepluch K. Molecular mechanism of action of imidazolium carbosilane dendrimers on the outer bacterial membrane - From membrane damage to permeability to antimicrobial endolysin. J Colloid Interface Sci 2024; 665:814-824. [PMID: 38555749 DOI: 10.1016/j.jcis.2024.03.130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 04/02/2024]
Abstract
The outer bacterial membrane of drug-resistant bacteria is a significant barrier to many antimicrobials. Therefore, the development of new antibacterials primarily focuses on damaging the outer bacterial membrane of Gram-negative bacteria. Among many membrane-disrupting substances, the most promising are cationic dendritic systems. However, the mode of action may vary among different strains due to variations in the lipid compositions of the membrane. Here, we investigated the interaction of two types of cationic imidazolium carbosilane dendrimers: one with a single cationic group (methyl imidazolium) and the other with the same cationic group but attached to a functional group (a pendant pyridyl moiety), capable of establishing interactions with membranes through H-bonding or ion-dipole electrostatic interactions. We used different models of the outer membrane of Gram-negative bacteria - Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter baumannii. Additionally, we assessed the combined effect of the dendrimers and the antibacterial endolysin on P. aeruginosa. Our results show that the mechanism of action depends on the type of dendrimer and the lipid composition of the membrane. We also demonstrate that the alteration of membrane fluidity and permeability to endolysin by the methyl imidazolium and pyridyl imidazolium dendrimers may play a more significant role in antimicrobial activity compared to membrane damage caused by positively charged dendrimers.
Collapse
Affiliation(s)
- Kinga Skrzyniarz
- Division of Medical Biology, Jan Kochanowski University in Kielce, Uniwersytecka Street 7, 25-640 Kielce, Poland
| | - Samuel Takvor-Mena
- Department of Organic and Inorganic Chemistry, Research Institute in Chemistry "Andrés M. del Río" (IQAR), University of Alcalá, 28805 Alcalá de Henares, Spain; Networking Research Center for Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain; Ramón y Cajal Institute of Health Research, IRYCIS, Ctra. de Colmenar Viejo, Km. 9, 28034 Madrid, Spain
| | - Karolina Lach
- Division of Medical Biology, Jan Kochanowski University in Kielce, Uniwersytecka Street 7, 25-640 Kielce, Poland
| | - Małgorzata Łysek-Gładysińska
- Division of Medical Biology, Jan Kochanowski University in Kielce, Uniwersytecka Street 7, 25-640 Kielce, Poland
| | - Óscar Barrios-Gumiel
- Department of Organic and Inorganic Chemistry, Research Institute in Chemistry "Andrés M. del Río" (IQAR), University of Alcalá, 28805 Alcalá de Henares, Spain; Networking Research Center for Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain; Ramón y Cajal Institute of Health Research, IRYCIS, Ctra. de Colmenar Viejo, Km. 9, 28034 Madrid, Spain
| | - Jesús Cano
- Department of Organic and Inorganic Chemistry, Research Institute in Chemistry "Andrés M. del Río" (IQAR), University of Alcalá, 28805 Alcalá de Henares, Spain; Networking Research Center for Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain; Ramón y Cajal Institute of Health Research, IRYCIS, Ctra. de Colmenar Viejo, Km. 9, 28034 Madrid, Spain
| | - Karol Ciepluch
- Division of Medical Biology, Jan Kochanowski University in Kielce, Uniwersytecka Street 7, 25-640 Kielce, Poland.
| |
Collapse
|
3
|
Liu L, Li Z, Yang B, Jia X, Wang S. Recent Research Progress on Polyamidoamine-Engineered Hydrogels for Biomedical Applications. Biomolecules 2024; 14:620. [PMID: 38927024 PMCID: PMC11201556 DOI: 10.3390/biom14060620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 06/28/2024] Open
Abstract
Hydrogels are three-dimensional crosslinked functional materials with water-absorbing and swelling properties. Many hydrogels can store a variety of small functional molecules to structurally and functionally mimic the natural extracellular matrix; hence, they have been extensively studied for biomedical applications. Polyamidoamine (PAMAM) dendrimers have an ethylenediamine core and a large number of peripheral amino groups, which can be used to engineer various polymer hydrogels. In this review, an update on the progress of using PAMAM dendrimers for multifunctional hydrogel design was given. The synthesis of these hydrogels, which includes click chemistry reactions, aza-Michael addition, Schiff base reactions, amidation reactions, enzymatic reactions, and radical polymerization, together with research progress in terms of their application in the fields of drug delivery, tissue engineering, drug-free tumor therapy, and other related fields, was discussed in detail. Furthermore, the biomedical applications of PAMAM-engineered nano-hydrogels, which combine the advantages of dendrimers, hydrogels, and nanoparticles, were also summarized. This review will help researchers to design and develop more functional hydrogel materials based on PAMAM dendrimers.
Collapse
Affiliation(s)
- Li Liu
- Outpatient Department of Anhui Medical University First Affiliated Hospital, The First Affiliated Hospital of Anhui Medical University, No. 120 Wanshui Road, Hefei High-Tech Zone, Hefei 230000, China
| | - Zhiling Li
- Outpatient Department of Anhui Medical University First Affiliated Hospital, The First Affiliated Hospital of Anhui Medical University, No. 120 Wanshui Road, Hefei High-Tech Zone, Hefei 230000, China
| | - Baiyan Yang
- Outpatient Department of Anhui Medical University First Affiliated Hospital, The First Affiliated Hospital of Anhui Medical University, No. 120 Wanshui Road, Hefei High-Tech Zone, Hefei 230000, China
| | - Xiaoqing Jia
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, China
| | - Shige Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, China
| |
Collapse
|
4
|
Muñoz-Sánchez S, Barrios-Gumiel A, de la Mata FJ, García-Gallego S. Fine-Tuning the Amphiphilic Properties of Carbosilane Dendritic Networks towards High-Swelling Thermogels. Pharmaceutics 2024; 16:495. [PMID: 38675156 PMCID: PMC11054174 DOI: 10.3390/pharmaceutics16040495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/25/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
Dendritic hydrogels based on carbosilane crosslinkers are promising drug delivery systems, as their amphiphilic nature improves the compatibility with poorly water-soluble drugs. In this work, we explored the impact of the complementary polymer on the amphiphilic properties of the dendritic network. Different polymers were selected as precursors, from the highly lipophilic propylene glycol (PPG) to the hydrophilic polyethylene glycol (PEG), including amphiphilic Pluronics L31, L35 and L61. The dithiol polymers reacted with carbosilane crosslinkers through UV-initiated thiol-ene coupling (TEC), and the resultant materials were classified as non-swelling networks (for PPG, PLUL31 and PLUL61) and high-swelling hydrogels (for PEG and PLUL35). The hydrogels exhibited thermo-responsive properties, shrinking at higher temperatures, and exhibited an intriguing drug release pattern due to internal nanostructuring. Furthermore, we fine-tuned the dendritic crosslinker, including hydroxyl and azide pendant groups in the focal point, generating functional networks that can be modified through degradable (ester) and non-degradable (triazol) bonds. Overall, this work highlighted the crucial role of the amphiphilic balance in the design of dendritic hydrogels with thermo-responsive behavior and confirmed their potential as functional networks for biomedical applications.
Collapse
Affiliation(s)
- Silvia Muñoz-Sánchez
- University of Alcala, Faculty of Sciences, Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry “Andrés M. Del Río” (IQAR), 28805 Madrid, Spain; (S.M.-S.); (A.B.-G.); (F.J.d.l.M.)
| | - Andrea Barrios-Gumiel
- University of Alcala, Faculty of Sciences, Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry “Andrés M. Del Río” (IQAR), 28805 Madrid, Spain; (S.M.-S.); (A.B.-G.); (F.J.d.l.M.)
| | - Francisco Javier de la Mata
- University of Alcala, Faculty of Sciences, Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry “Andrés M. Del Río” (IQAR), 28805 Madrid, Spain; (S.M.-S.); (A.B.-G.); (F.J.d.l.M.)
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain
| | - Sandra García-Gallego
- University of Alcala, Faculty of Sciences, Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry “Andrés M. Del Río” (IQAR), 28805 Madrid, Spain; (S.M.-S.); (A.B.-G.); (F.J.d.l.M.)
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain
| |
Collapse
|
5
|
Muñoz-Sánchez S, Heredero-Bermejo I, de la Mata FJ, García-Gallego S. Bifunctional Carbosilane Dendrimers for the Design of Multipurpose Hydrogels with Antibacterial Action. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:266-274. [PMID: 38222939 PMCID: PMC10783294 DOI: 10.1021/acs.chemmater.3c02027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 01/16/2024]
Abstract
The emergence of antibiotic resistance is a serious global health problem. There is an incessant demand for new antimicrobial drugs and materials that can address this global issue from different angles. Dendritic hydrogels have appeared as a promising strategy. A family of bifunctional amphiphilic carbosilane dendrimers was designed and employed as nanosized cross-linking points for the synthesis of high-swelling hydrogels using the highly efficient Thiol-Ene click reaction for their preparation. Both stoichiometric and off-stoichiometric conditions were studied, generating hydrogels with pendant hydroxyl or alkene moieties. These hydrogels were found to be tunable antibacterial materials. They can easily be postmodified with relevant antibiotic moieties through covalent attachment on the hydroxyl or alkene pendant groups, generating ammonium-decorated networks with temperature and pH-responsive properties. Additionally, they can efficiently encapsulate drugs with poor solubility in water, like ciprofloxacin, and perform a sustained release over time, as demonstrated in preliminary assays against Staphylococcus aureus.
Collapse
Affiliation(s)
- Silvia Muñoz-Sánchez
- University
of Alcala, Department of Organic and Inorganic
Chemistry and Research Institute in Chemistry “Andrés
M. Del Río” (IQAR), 28805 Madrid, Spain
| | | | - Francisco Javier de la Mata
- University
of Alcala, Department of Organic and Inorganic
Chemistry and Research Institute in Chemistry “Andrés
M. Del Río” (IQAR), 28805 Madrid, Spain
- Networking
Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Institute
Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain
| | - Sandra García-Gallego
- University
of Alcala, Department of Organic and Inorganic
Chemistry and Research Institute in Chemistry “Andrés
M. Del Río” (IQAR), 28805 Madrid, Spain
- Networking
Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Institute
Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain
| |
Collapse
|
6
|
Sun L, Liu H, Ye Y, Lei Y, Islam R, Tan S, Tong R, Miao YB, Cai L. Smart nanoparticles for cancer therapy. Signal Transduct Target Ther 2023; 8:418. [PMID: 37919282 PMCID: PMC10622502 DOI: 10.1038/s41392-023-01642-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/24/2023] [Accepted: 09/05/2023] [Indexed: 11/04/2023] Open
Abstract
Smart nanoparticles, which can respond to biological cues or be guided by them, are emerging as a promising drug delivery platform for precise cancer treatment. The field of oncology, nanotechnology, and biomedicine has witnessed rapid progress, leading to innovative developments in smart nanoparticles for safer and more effective cancer therapy. In this review, we will highlight recent advancements in smart nanoparticles, including polymeric nanoparticles, dendrimers, micelles, liposomes, protein nanoparticles, cell membrane nanoparticles, mesoporous silica nanoparticles, gold nanoparticles, iron oxide nanoparticles, quantum dots, carbon nanotubes, black phosphorus, MOF nanoparticles, and others. We will focus on their classification, structures, synthesis, and intelligent features. These smart nanoparticles possess the ability to respond to various external and internal stimuli, such as enzymes, pH, temperature, optics, and magnetism, making them intelligent systems. Additionally, this review will explore the latest studies on tumor targeting by functionalizing the surfaces of smart nanoparticles with tumor-specific ligands like antibodies, peptides, transferrin, and folic acid. We will also summarize different types of drug delivery options, including small molecules, peptides, proteins, nucleic acids, and even living cells, for their potential use in cancer therapy. While the potential of smart nanoparticles is promising, we will also acknowledge the challenges and clinical prospects associated with their use. Finally, we will propose a blueprint that involves the use of artificial intelligence-powered nanoparticles in cancer treatment applications. By harnessing the potential of smart nanoparticles, this review aims to usher in a new era of precise and personalized cancer therapy, providing patients with individualized treatment options.
Collapse
Affiliation(s)
- Leming Sun
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- School of Life Sciences, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Hongmei Liu
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Yanqi Ye
- Sorrento Therapeutics Inc., 4955 Directors Place, San Diego, CA, 92121, USA
| | - Yang Lei
- School of Life Sciences, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Rehmat Islam
- School of Life Sciences, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Sumin Tan
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Rongsheng Tong
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Yang-Bao Miao
- Department of Haematology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Lulu Cai
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
7
|
Pricl S. The Spicy Science of Dendrimers in the Realm of Cancer Nanomedicine: A Report from the COST Action CA17140 Nano2Clinic. Pharmaceutics 2023; 15:2013. [PMID: 37514199 PMCID: PMC10384593 DOI: 10.3390/pharmaceutics15072013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
COST Action CA17140 Cancer Nanomedicine-from the bench to the bedside (Nano2Clinic,) is the first, pan-European interdisciplinary network of representatives from academic institutions and small and medium enterprises including clinical research organizations (CROs) devoted to the development of nanosystems carrying anticancer drugs from their initial design, preclinical testing of efficacy, pharmacokinetics and toxicity to the preparation of detailed protocols needed for the first phase of their clinical studies. By promoting scientific exchanges, technological implementation, and innovative solutions, the action aims at providing a timely instrument to rationalize and focus research efforts at the European level in dealing with the grand challenge of nanomedicine translation in cancer, one of the major and societal-burdening human pathologies. Within CA17140, dendrimers in all their forms (from covalent to self-assembling dendrons) play a vital role as powerful nanotheranostic agents in oncology; therefore, the purpose of this review work is to gather and summarize the major results in the field stemming from collaborative efforts in the framework of the European Nano2Clinic COST Action.
Collapse
Affiliation(s)
- Sabrina Pricl
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), Department of Engineering and Architecture (DEA), University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, ul. Pomorska 141/143, 90-236 Lodz, Poland
| |
Collapse
|