1
|
He YQ, Xu HM, Zhang JD, Zheng D, Zhang G, Fan XZ, Ou-Yang H, Liu YQ, Lv AC, Zhao JW, Shi CW, Han SK. Molybdenum Disulfide Induced Phase Control Synthesis of Multi-dimensional Co 3S 4-MoS 2 Heteronanostructures via Cation Exchange. Angew Chem Int Ed Engl 2024:e202414720. [PMID: 39166363 DOI: 10.1002/anie.202414720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 08/20/2024] [Indexed: 08/22/2024]
Abstract
Phase control over cation exchange (CE) reactions has emerged as an important approach for the synthesis of nanomaterials (NMs), enabling precise determination of their reactivity and properties. Although factors such as crystal structure and morphology have been studied for the phase engineering of CE reactions in NMs, there remains a lack of systematic investigation to reveal the impact for the factors in heterogeneous materials. Herein, we report a molybdenum disulfide induced phase control method for synthesizing multidimensional Co3S4-MoS2 heteronanostructures (HNs) via cation exchange. MoS2 in parent Cu1.94S-MoS2 HNs are proved to affect the thermodynamics and kinetics of CE reactions, and facilitate the formation of Co3S4-MoS2 HNs with controlled phase. This MoS2 induced phase control method can be extended to other parent HNs with multiple dimensions, which shows its diversity. Further, theoretical calculations demonstrate that Co3S4 (111)/MoS2 (001) exhibits a higher adhesion work, providing further evidence that MoS2 enables phase control in the HNs CE reactions, inducing the generation of novel Co3S4-MoS2 HNs. As a proof-of-concept application for crystal phase- and dimensionality-dependent of cobalt sulfide based HNs, the obtained Co3S4-MoS2 heteronanoplates (HNPls) show remarkable performance in hydrogen evolution reactions (HER) under alkaline media. This synthetic methodology provides a unique design strategy to control the crystal structure and fills the gap in the study of heterogeneous materials on CE reaction over phase engineering that are otherwise inaccessible.
Collapse
Affiliation(s)
- Yu-Qing He
- Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of, Technology, Hefei 230009, China
| | - Hou-Ming Xu
- Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of, Technology, Hefei 230009, China
| | - Jian-Ding Zhang
- Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of, Technology, Hefei 230009, China
| | - Dong Zheng
- Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of, Technology, Hefei 230009, China
| | - Gang Zhang
- Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of, Technology, Hefei 230009, China
| | - Xu-Zhuo Fan
- Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of, Technology, Hefei 230009, China
| | - He Ou-Yang
- Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of, Technology, Hefei 230009, China
| | - Yu-Qing Liu
- Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of, Technology, Hefei 230009, China
| | - An-Chen Lv
- Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of, Technology, Hefei 230009, China
| | - Jia-Wei Zhao
- Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of, Technology, Hefei 230009, China
| | - Cheng-Wu Shi
- Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of, Technology, Hefei 230009, China
| | - Shi-Kui Han
- Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of, Technology, Hefei 230009, China
| |
Collapse
|
2
|
Krishnamurthi M, Gottapu S, Velpuri VR. Single-step synthesis of ternary metal chalcogenides (sf-CuInS2 and sf-CuInSe2) stripped off the organic cover and their use as a catalyst for symmetric Glaser-Hay coupling reactions. Dalton Trans 2024; 53:8593-8603. [PMID: 38690592 DOI: 10.1039/d4dt00442f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Generally, inorganic nano/microparticles produced by chemical routes are covered by organic surfactants or polymers to control their agglomeration during their synthesis. However, these surfactants and polymers negatively affect their catalytic activity because these molecules mask the surface. This work presents the synthesis of surfactant-free CuInS2 and CuInSe2 (sf-CuInS2 and sf-CuInSe2) nano/microparticles through simple reactions without surfactant or polymer coatings using LiBH4 under a thermodynamically favourable condition. These reactions are rare observations of a single-step process to produce ternary metal chalcogenides without any template assistance. We have also demonstrated efficient catalysis by sf-CuInS2 nanoparticles in the coupling reaction of substituted phenylacetylenes. We tested it as catalysts in dimerizing 1,3-diyne derivatives while using 8-diazabicyclo[5.4.0]undec-7-ene (DBU) as the base. These Glassar-Hay coupling reactions are conducted at room temperature in acetonitrile (4-7 h, depending on the substrate) using 10 mg of sf-CuInS2. The maximum yield obtained in these reactions is 97%, while the catalyst is reusable for five cycles with little difference in its ability to catalyse. The effectiveness of the catalyst is credited to the availability of a free catalytic surface.
Collapse
Affiliation(s)
| | - Sanyasinaidu Gottapu
- School of Chemistry, Univeristy of Hyderabad, Gachibowli, Hyderabad 500046, Telangana, India.
| | | |
Collapse
|
3
|
Wang X, Chen A, Wu X, Zhang J, Dong J, Zhang L. Synthesis and Modulation of Low-Dimensional Transition Metal Chalcogenide Materials via Atomic Substitution. NANO-MICRO LETTERS 2024; 16:163. [PMID: 38546814 PMCID: PMC10978568 DOI: 10.1007/s40820-024-01378-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/17/2024] [Indexed: 04/01/2024]
Abstract
In recent years, low-dimensional transition metal chalcogenide (TMC) materials have garnered growing research attention due to their superior electronic, optical, and catalytic properties compared to their bulk counterparts. The controllable synthesis and manipulation of these materials are crucial for tailoring their properties and unlocking their full potential in various applications. In this context, the atomic substitution method has emerged as a favorable approach. It involves the replacement of specific atoms within TMC structures with other elements and possesses the capability to regulate the compositions finely, crystal structures, and inherent properties of the resulting materials. In this review, we present a comprehensive overview on various strategies of atomic substitution employed in the synthesis of zero-dimensional, one-dimensional and two-dimensional TMC materials. The effects of substituting elements, substitution ratios, and substitution positions on the structures and morphologies of resulting material are discussed. The enhanced electrocatalytic performance and photovoltaic properties of the obtained materials are also provided, emphasizing the role of atomic substitution in achieving these advancements. Finally, challenges and future prospects in the field of atomic substitution for fabricating low-dimensional TMC materials are summarized.
Collapse
Affiliation(s)
- Xuan Wang
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic and Electrophonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Akang Chen
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic and Electrophonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - XinLei Wu
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic and Electrophonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Jiatao Zhang
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic and Electrophonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China.
| | - Jichen Dong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, People's Republic of China.
| | - Leining Zhang
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic and Electrophonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China.
| |
Collapse
|
4
|
Zhang Y, He S, Zhang Q, Zhang H, Zhou J, Yang X, Wei Q, Chen L. Pre-phase transition of a Cu 2-xS template enables polymorph selective synthesis of MS (M = Zn, Cd, Mn) nanocrystals via cation exchange reactions. NANOSCALE 2024; 16:1260-1271. [PMID: 38126257 DOI: 10.1039/d3nr05253b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Utilization of copper-deficient Cu2-xS nanocrystals (NCs) with diverse crystal phases and stoichiometries as cation exchange (CE) templates is a potential route to overcome the current limitations in the polymorph selective synthesis of desired nanomaterials. Among the Cu2-xS NCs, covellite CuS is emerging as an attractive CE template to produce complicated and metastable metal sulfide NCs. The presence of a reducing agent is essential to induce a phase transition of CuS into other Cu2-xS phases prior to the CE reactions. Nevertheless, the effect of the reducing agent on the phase transition of CuS, especially into the hexagonal close packing (hcp) phase and the cubic close packing (ccp) phase, has been scarcely exploited, but it is highly important for the polymorphic production of metal sulfides with the wurtzite phase and zinc blende phase. Herein, we report a reducing agent dependent pre-phase transition of CuS nanodisks (NDs) into hcp and ccp Cu2-xS NCs. 1-Dodecanethiol molecules and oleylamine molecules selectively reduced CuS NDs into hcp djurleite Cu1.94S NDs and ccp digenite Cu1.8S NCs. Afterward, the hcp Cu1.94S NDs and ccp Cu1.8S NCs were exchanged by Zn2+/Cd2+/Mn2+, and the wurtzite phase and the zinc blende phase of ZnS, CdS, and MnS NCs were produced. Without the pre-phase transition, direct CE reactions of CuS NDs are incapable of synthesizing the above wurtzite and zinc blende metal sulfide NCs. Therefore, our findings suggest the importance of the pre-phase transition of the CE template in polymorphic syntheses, holding great promise in the fabrication of other polymorphic nanomaterials with novel physical and chemical properties.
Collapse
Affiliation(s)
- Yan Zhang
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, No.1, Haida South Road, Lincheng Changzhi Island, Zhoushan 316022, China.
- School of Naval Architecture and Maritime, Zhejiang Ocean University, No.1, Haida South Road, Lincheng Changzhi Island, Zhoushan 316022, China
| | - Shaobo He
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, No.1, Haida South Road, Lincheng Changzhi Island, Zhoushan 316022, China.
| | - Qingxia Zhang
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, No.1, Haida South Road, Lincheng Changzhi Island, Zhoushan 316022, China.
| | - Hongtao Zhang
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, No.1, Haida South Road, Lincheng Changzhi Island, Zhoushan 316022, China.
| | - Jinchen Zhou
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, No.1, Haida South Road, Lincheng Changzhi Island, Zhoushan 316022, China.
| | - Xing Yang
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, No.1, Haida South Road, Lincheng Changzhi Island, Zhoushan 316022, China.
| | - Qinhong Wei
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, No.1, Haida South Road, Lincheng Changzhi Island, Zhoushan 316022, China.
| | - Lihui Chen
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, No.1, Haida South Road, Lincheng Changzhi Island, Zhoushan 316022, China.
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan 316022, China
- National & Local Joint Engineering Research Center of Harbor Oil & Gas Storage and Transportation Technology, Zhoushan 316022, China
| |
Collapse
|
5
|
Hole B, Luo Q, Garcia R, Xie W, Rudman E, Nguyen CLT, Dhakal D, Young HL, Thompson KL, Butterfield AG, Schaak RE, Plass KE. Temperature-Dependent Selection of Reaction Pathways, Reactive Species, and Products during Postsynthetic Selenization of Copper Sulfide Nanoparticles. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:9073-9085. [PMID: 38027539 PMCID: PMC10653086 DOI: 10.1021/acs.chemmater.3c01772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023]
Abstract
Rational design of elaborate, multicomponent nanomaterials is important for the development of many technologies such as optoelectronic devices, photocatalysts, and ion batteries. Combination of metal chalcogenides with different anions, such as in CdS/CdSe structures, is particularly effective for creating heterojunctions with valence band offsets. Seeded growth, often coupled with cation exchange, is commonly used to create various core/shell, dot-in-rod, or multipod geometries. To augment this library of multichalcogenide structures with new geometries, we have developed a method for postsynthetic transformation of copper sulfide nanorods into several different classes of nanoheterostructures containing both copper sulfide and copper selenide. Two distinct temperature-dependent pathways allow us to select from several outcomes-rectangular, faceted Cu2-xS/Cu2-xSe core/shell structures, nanorhombuses with a Cu2-xS core, and triangular deposits of Cu2-xSe or Cu2-x(S,Se) solid solutions. These different outcomes arise due to the evolution of the molecular components in solution. At lower temperatures, slow Cu2-xS dissolution leads to concerted morphology change and Cu2-xSe deposition, while Se-anion exchange dominates at higher temperatures. We present detailed characterization of these Cu2-xS-Cu2-xSe nanoheterostructures by transmission electron microscopy (TEM), powder X-ray diffraction, energy-dispersive X-ray spectroscopy, and scanning TEM-energy-dispersive spectroscopy. Furthermore, we correlate the selenium species present in solution with the roles they play in the temperature dependence of nanoheterostructure formation by comparing the outcomes of the established reaction conditions to use of didecyl diselenide as a transformation precursor.
Collapse
Affiliation(s)
- Brandon Hole
- Department
of Chemistry, Franklin & Marshall College, Lancaster, Pennsylvania 17604, United States
| | - Qi Luo
- Department
of Chemistry, Franklin & Marshall College, Lancaster, Pennsylvania 17604, United States
| | - Ronald Garcia
- Department
of Chemistry, Franklin & Marshall College, Lancaster, Pennsylvania 17604, United States
| | - Wanrui Xie
- Department
of Chemistry, Franklin & Marshall College, Lancaster, Pennsylvania 17604, United States
| | - Eli Rudman
- Department
of Chemistry, Franklin & Marshall College, Lancaster, Pennsylvania 17604, United States
| | - Chi Loi Thanh Nguyen
- Department
of Chemistry, Franklin & Marshall College, Lancaster, Pennsylvania 17604, United States
| | - Diya Dhakal
- Department
of Chemistry, Franklin & Marshall College, Lancaster, Pennsylvania 17604, United States
| | - Haley L. Young
- Department
of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Katherine L. Thompson
- Department
of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Auston G. Butterfield
- Department
of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Raymond E. Schaak
- Department
of Chemistry, Department of Chemical Engineering, Materials Research
Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Katherine E. Plass
- Department
of Chemistry, Franklin & Marshall College, Lancaster, Pennsylvania 17604, United States
| |
Collapse
|
6
|
Yoon SE, Kim Y, Kim H, Kwon HG, Kim U, Lee SY, Park JH, Seo H, Kwak SK, Kim SW, Kim JH. Remarkable Electrical Conductivity Increase and Pure Metallic Properties from Semiconducting Colloidal Nanocrystals by Cation Exchange for Solution-Processable Optoelectronic Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207511. [PMID: 36916693 DOI: 10.1002/smll.202207511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/16/2023] [Indexed: 06/08/2023]
Abstract
The authors report a strategic approach to achieve metallic properties from semiconducting CuFeS colloidal nanocrystal (NC) solids through cation exchange method. An unprecedentedly high electrical conductivity is realized by the efficient generation of charge carriers onto a semiconducting CuS NC template via minimal Fe exchange. An electrical conductivity exceeding 10 500 S cm-1 (13 400 S cm-1 at 2 K) and a sheet resistance of 17 Ω/sq at room temperature, which are among the highest values for solution-processable semiconducting NCs, are achieved successfully from bornite-phase CuFeS NC films possessing 10% Fe atom. The temperature dependence of the corresponding films exhibits pure metallic characteristics. Highly conducting NCs are demonstrated for a thermoelectric layer exhibiting a high power factor over 1.2 mW m-1 K-2 at room temperature, electrical wires for switching on light emitting diods (LEDs), and source-drain electrodes for p- and n-type organic field-effect transistors. Ambient stability, eco-friendly composition, and solution-processability further validate their sustainable and practical applicability. The present study provides a simple but very effective method for significantly increasing charge carrier concentrations in semiconducting colloidal NCs to achieve metallic properties, which is applicable to various optoelectronic devices.
Collapse
Affiliation(s)
- Sang Eun Yoon
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, South Korea
| | - Yongjin Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, South Korea
| | - Hyeongjun Kim
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Hyo-Geun Kwon
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, South Korea
| | - Unjeong Kim
- Department of Materials Science and Engineering, Department of Energy Systems Research, Ajou University, Suwon, 16499, South Korea
| | - Sang Yeon Lee
- Department of Materials Science and Engineering, Department of Energy Systems Research, Ajou University, Suwon, 16499, South Korea
| | - Ju Hyun Park
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Hyungtak Seo
- Department of Materials Science and Engineering, Department of Energy Systems Research, Ajou University, Suwon, 16499, South Korea
| | - Sang Kyu Kwak
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, South Korea
| | - Sang-Wook Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, South Korea
| | - Jong H Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, South Korea
| |
Collapse
|
7
|
Liu L, Bai B, Yang X, Du Z, Jia G. Anisotropic Heavy-Metal-Free Semiconductor Nanocrystals: Synthesis, Properties, and Applications. Chem Rev 2023; 123:3625-3692. [PMID: 36946890 DOI: 10.1021/acs.chemrev.2c00688] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Heavy-metal (Cd, Hg, and Pb)-containing semiconductor nanocrystals (NCs) have been explored widely due to their unique optical and electrical properties. However, the toxicity risks of heavy metals can be a drawback of heavy-metal-containing NCs in some applications. Anisotropic heavy-metal-free semiconductor NCs are desirable replacements and can be realized following the establishment of anisotropic growth mechanisms. These anisotropic heavy-metal-free semiconductor NCs can possess lower toxicity risks, while still exhibiting unique optical and electrical properties originating from both the morphological and compositional anisotropy. As a result, they are promising light-emitting materials in use various applications. In this review, we provide an overview on the syntheses, properties, and applications of anisotropic heavy-metal-free semiconductor NCs. In the first section, we discuss hazards of heavy metals and introduce the typical heavy-metal-containing and heavy-metal-free NCs. In the next section, we discuss anisotropic growth mechanisms, including solution-liquid-solid (SLS), oriented attachment, ripening, templated-assisted growth, and others. We discuss mechanisms leading both to morphological anisotropy and to compositional anisotropy. Examples of morphological anisotropy include growth of nanorods (NRs)/nanowires (NWs), nanotubes, nanoplatelets (NPLs)/nanosheets, nanocubes, and branched structures. Examples of compositional anisotropy, including heterostructures and core/shell structures, are summarized. Third, we provide insights into the properties of anisotropic heavy-metal-free NCs including optical polarization, fast electron transfer, localized surface plasmon resonances (LSPR), and so on, which originate from the NCs' anisotropic morphologies and compositions. Finally, we summarize some applications of anisotropic heavy-metal-free NCs including catalysis, solar cells, photodetectors, lighting-emitting diodes (LEDs), and biological applications. Despite the huge progress on the syntheses and applications of anisotropic heavy-metal-free NCs, some issues still exist in the novel anisotropic heavy-metal-free NCs and the corresponding energy conversion applications. Therefore, we also discuss the challenges of this field and provide possible solutions to tackle these challenges in the future.
Collapse
Affiliation(s)
- Long Liu
- Key Lab for Special Functional Materials, Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Bing Bai
- Key Lab for Special Functional Materials, Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Xuyong Yang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, 149 Yanchang Road, Shanghai 200072, P. R. China
| | - Zuliang Du
- Key Lab for Special Functional Materials, Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Guohua Jia
- School of Molecular and Life Sciences, Curtin University, Perth, WA 6102, Australia
| |
Collapse
|
8
|
Diroll BT, Guzelturk B, Po H, Dabard C, Fu N, Makke L, Lhuillier E, Ithurria S. 2D II-VI Semiconductor Nanoplatelets: From Material Synthesis to Optoelectronic Integration. Chem Rev 2023; 123:3543-3624. [PMID: 36724544 DOI: 10.1021/acs.chemrev.2c00436] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The field of colloidal synthesis of semiconductors emerged 40 years ago and has reached a certain level of maturity thanks to the use of nanocrystals as phosphors in commercial displays. In particular, II-VI semiconductors based on cadmium, zinc, or mercury chalcogenides can now be synthesized with tailored shapes, composition by alloying, and even as nanocrystal heterostructures. Fifteen years ago, II-VI semiconductor nanoplatelets injected new ideas into this field. Indeed, despite the emergence of other promising semiconductors such as halide perovskites or 2D transition metal dichalcogenides, colloidal II-VI semiconductor nanoplatelets remain among the narrowest room-temperature emitters that can be synthesized over a wide spectral range, and they exhibit good material stability over time. Such nanoplatelets are scientifically and technologically interesting because they exhibit optical features and production advantages at the intersection of those expected from colloidal quantum dots and epitaxial quantum wells. In organic solvents, gram-scale syntheses can produce nanoparticles with the same thicknesses and optical properties without inhomogeneous broadening. In such nanoplatelets, quantum confinement is limited to one dimension, defined at the atomic scale, which allows them to be treated as quantum wells. In this review, we discuss the synthetic developments, spectroscopic properties, and applications of such nanoplatelets. Covering growth mechanisms, we explain how a thorough understanding of nanoplatelet growth has enabled the development of nanoplatelets and heterostructured nanoplatelets with multiple emission colors, spatially localized excitations, narrow emission, and high quantum yields over a wide spectral range. Moreover, nanoplatelets, with their large lateral extension and their thin short axis and low dielectric surroundings, can support one or several electron-hole pairs with large exciton binding energies. Thus, we also discuss how the relaxation processes and lifetime of the carriers and excitons are modified in nanoplatelets compared to both spherical quantum dots and epitaxial quantum wells. Finally, we explore how nanoplatelets, with their strong and narrow emission, can be considered as ideal candidates for pure-color light emitting diodes (LEDs), strong gain media for lasers, or for use in luminescent light concentrators.
Collapse
Affiliation(s)
- Benjamin T Diroll
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, United States
| | - Burak Guzelturk
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, United States
| | - Hong Po
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI-Paris, PSL Research University, Sorbonne Université Univ Paris 06, CNRS UMR 8213, 10 rue Vauquelin 75005 Paris, France
| | - Corentin Dabard
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI-Paris, PSL Research University, Sorbonne Université Univ Paris 06, CNRS UMR 8213, 10 rue Vauquelin 75005 Paris, France
| | - Ningyuan Fu
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI-Paris, PSL Research University, Sorbonne Université Univ Paris 06, CNRS UMR 8213, 10 rue Vauquelin 75005 Paris, France
| | - Lina Makke
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI-Paris, PSL Research University, Sorbonne Université Univ Paris 06, CNRS UMR 8213, 10 rue Vauquelin 75005 Paris, France
| | - Emmanuel Lhuillier
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, INSP, 75005 Paris, France
| | - Sandrine Ithurria
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI-Paris, PSL Research University, Sorbonne Université Univ Paris 06, CNRS UMR 8213, 10 rue Vauquelin 75005 Paris, France
| |
Collapse
|
9
|
Busatto S, Spallacci C, Meeldijk JD, Howes S, de Mello Donega C. Room-Temperature Interconversion Between Ultrathin CdTe Magic-Size Nanowires Induced by Ligand Shell Dynamics. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:15280-15297. [PMID: 36147520 PMCID: PMC9483966 DOI: 10.1021/acs.jpcc.2c04113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/10/2022] [Indexed: 06/16/2023]
Abstract
The formation mechanisms of colloidal magic-size semiconductor nanostructures have remained obscure. Herein, we report the room temperature synthesis of three species of ultrathin CdTe magic-size nanowires (MSNWs) with diameters of 0.7 ± 0.1 nm, 0.9 ± 0.2 nm, and 1.1 ± 0.2 nm, and lowest energy exciton transitions at 373, 418, and 450 nm, respectively. The MSNWs are obtained from Cd(oleate)2 and TOP-Te, provided diphenylphosphine and a primary alkylamine (RNH2) are present at sufficiently high concentrations, and exhibit sequential, discontinuous growth. The population of each MSNW species is entirely determined by the RNH2 concentration [RNH2] so that single species are only obtained at specific concentrations, while mixtures are obtained at concentrations intermediate between the specific ones. Moreover, the MSNWs remain responsive to [RNH2], interconverting from thinner to thicker upon [RNH2] decrease and from thicker to thinner upon [RNH2] increase. Our results allow us to propose a mechanism for the formation and interconversion of CdTe MSNWs and demonstrate that primary alkylamines play crucial roles in all four elementary kinetic steps (viz., monomer formation, nucleation, growth in length, and interconversion between species), thus being the decisive element in the creation of a reaction pathway that leads exclusively to CdTe MSNWs. The insights provided by our work thus contribute toward unravelling the mechanisms behind the formation of shape-controlled and atomically precise magic-size semiconductor nanostructures.
Collapse
Affiliation(s)
- Serena Busatto
- Condensed
Matter and Interfaces, Debye Institute for Nanomaterials Science, Utrecht University, 3508 TA Utrecht, The Netherlands
| | - Claudia Spallacci
- Condensed
Matter and Interfaces, Debye Institute for Nanomaterials Science, Utrecht University, 3508 TA Utrecht, The Netherlands
| | - Johannes D. Meeldijk
- Materials
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, 3508 TA Utrecht, The Netherlands
| | - Stuart Howes
- Structural
Biochemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Celso de Mello Donega
- Condensed
Matter and Interfaces, Debye Institute for Nanomaterials Science, Utrecht University, 3508 TA Utrecht, The Netherlands
| |
Collapse
|
10
|
Zhang L, Wang H, Zhang Q, Wang W, Yang C, Du T, Yue T, Zhu M, Wang J. Demand-oriented construction of Mo 3S 13-LDH: A versatile scavenger for highly selective and efficient removal of toxic Ag(I), Hg(II), As(III), and Cr(VI) from water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153334. [PMID: 35074376 DOI: 10.1016/j.scitotenv.2022.153334] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/18/2022] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Inspired by the classic ion-exchange reaction, a single phase material of Mg0.66Al0.34(OH)2(Mo3S13)0.03(NO3)0.14(CO3)0.07·H2O (Mo3S13-LDH) was masterly constructed by intercalating Mo3S132- into the MgAl-LDH gallery. Prepared Mo3S13-LDH displays excellent binding affinity and high selectivity for Ag(I) and Hg(II) in a mixed solution, in which an apparent selectivity order of Hg(II) > Ag(I) ≫ Pb(II), Cu(II), Ni(II), Co(II), Cd(II), and Mn(II) is observed. Enormous capture capacities (qmAg = 446.4 mg/g, qmHg = 354.6 mg/g) and fast equilibration time (within 60 min) place Mo3S13-LDH in the upper ranks of materials for such removal. For oxoanions, As(III) (HAsO32-) and Cr(VI) (CrO42-) can be specifically trapped by Mo3S13-LDH with comparable loading ability (qmAs = 61.8 mg/g, qmCr = 90.6 mg/g) in the coexistence of multiple interfering anions. Notably, high Hg(II) and Cr(VI) concentrations are finally reduced below the safe limit of drinking water. The excellent capture capacity of Mo3S13-LDH benefits from the rational design by following two aspects: (i) the multiple sulfur ligands in Mo3S132- groups give place to various capture modes and different affinity orders for target ions, and (ii) large-sized Mo3S132- groups widen the interlayer spacing of LDH, thereby accelerating the mass transfer process. Furthermore, the satisfactory structural stability of Mo3S13-LDH is also reflected through the unchanged hexagonal prismatic shape after adsorption. All of these highlight the great potential of Mo3S13-LDH for the application in water remediation.
Collapse
Affiliation(s)
- Liang Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Huiting Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Qingzhe Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Wenze Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Chengyuan Yang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Ting Du
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Mingqiang Zhu
- College of Mechanical and Electronic Engineering, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China.
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China.
| |
Collapse
|
11
|
Kapuria N, Patil NN, Ryan KM, Singh S. Two-dimensional copper based colloidal nanocrystals: synthesis and applications. NANOSCALE 2022; 14:2885-2914. [PMID: 35156983 DOI: 10.1039/d1nr06990j] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Two-dimensional (2D) semiconductor nanocrystals display unconventional physical and opto-electronic properties due to their ultrathin and unique electronic structures. Since the success of Cd-based photoemissive nanocrystals, the development of sustainable and low-cost nanocrystals with enhanced electronic and physical properties has become a central research theme. In this context, copper-based semiconductor 2D nanocrystals, the cost-effective and eco-friendly alternative, exhibit unique plasmonic resonance, transport properties, and high ionic conductivity beneficial for sensing, energy storage, conversion, and catalytic applications. This review summarizes recent progress in the colloidal synthesis, growth mechanisms, properties, and applications of 2D copper-based nanostructures with tunable compositions, dimensions, and crystal phases. We highlight the growth mechanisms concerning their shape evolution in two dimensions. We analyse the effectiveness of cation exchange as a tool to synthesize multinary nanocrystals. Based on the preparation of Cu-based chalcogenide and non-chalcogenide compositions, we discuss synthesis control achieved via colloidal approaches to allow dimension tunability, phase engineering, and plasmonic and thermoelectric property optimization. Furthermore, their potential in various applications of catalysis, energy storage, and sensing is reviewed. Finally, we address the current challenges associated with 2D Cu-based nanocrystal development and provide an outlook pertaining to unexplored research areas.
Collapse
Affiliation(s)
- Nilotpal Kapuria
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick, Ireland.
| | - Niraj Nitish Patil
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick, Ireland.
| | - Kevin M Ryan
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick, Ireland.
| | - Shalini Singh
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick, Ireland.
| |
Collapse
|
12
|
Ho EA, Peng AR, Macdonald JE. Alkyl selenol reactivity with common solvents and ligands: influences on phase control in nanocrystal synthesis. NANOSCALE 2021; 14:76-85. [PMID: 34897362 DOI: 10.1039/d1nr06282d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This study develops mechanistic understanding of the factors which control the phase in syntheses of copper selenide nanocrystals by investigating how the chemistry of the dodecylselenol reactant is altered by the ligand and solvent environment. 1H NMR and 77Se NMR were used to study how commonly used solvents (octadecene and dioctylether) and ligands (oleylamine, oleic acid, stearylamine, stearic acid and trioctyl phosphine) change the nature of the dodecylselenol reactant at 25 °C, 155 °C and 220 °C. Unsaturations were prone to selenol additons, carboxylates underwent selenoesterification, amines caused the release of H2Se gas, and the phosphine formed phosphine selenide. Adventitious water caused oxidation to didodecyldiselenide. NMR studies were correlated with the phases that resulted in syntheses of nanocrystalline copper selenides, in which berzalianite, umangite or a metastable hexagonal phase were produced as identified by X-ray diffraction, depending on the ligand and solvent environemnts. Formation of the rare hexagonal Cu2-xSe phase could be assigned to cases that included DD2Se2 as a reactive intermediate, or strong L-type ligation of amines which was dependant on alkyl chain length.
Collapse
Affiliation(s)
- Eric A Ho
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, USA.
| | - Antony R Peng
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, USA.
| | - Janet E Macdonald
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, USA.
| |
Collapse
|
13
|
Li Z, Saruyama M, Asaka T, Tatetsu Y, Teranishi T. Determinants of crystal structure transformation of ionic nanocrystals in cation exchange reactions. Science 2021; 373:332-337. [PMID: 34437152 DOI: 10.1126/science.abh2741] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/04/2021] [Indexed: 01/03/2023]
Abstract
Changes in the crystal system of an ionic nanocrystal during a cation exchange reaction are unusual yet remain to be systematically investigated. In this study, chemical synthesis and computational modeling demonstrated that the height of hexagonal-prism roxbyite (Cu1.8S) nanocrystals with a distorted hexagonal close-packed sulfide anion (S2-) sublattice determines the final crystal phase of the cation-exchanged products with Co2+ [wurtzite cobalt sulfide (CoS) with hexagonal close-packed S2- and/or cobalt pentlandite (Co9S8) with cubic close-packed S2-]. Thermodynamic instability of exposed planes drives reconstruction of anion frameworks under mild reaction conditions. Other incoming cations (Mn2+, Zn2+, and Ni2+) modulate crystal structure transformation during cation exchange reactions by various means, such as volume, thermodynamic stability, and coordination environment.
Collapse
Affiliation(s)
- Zhanzhao Li
- Department of Chemistry, Graduate School of Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Masaki Saruyama
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
| | - Toru Asaka
- Division of Advanced Ceramics and Frontier Research Institute for Materials Science, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan
| | - Yasutomi Tatetsu
- University Center for Liberal Arts Education, Meio University, Nago 905-8585, Japan
| | - Toshiharu Teranishi
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
| |
Collapse
|
14
|
Chen L, Hu H, Chen Y, Gao J, Li G. Metal Cation Valency Dependence in Morphology Evolution of Cu 2-x S Nanodisk Seeds and Their Pseudomorphic Cation Exchanges. Chemistry 2021; 27:7444-7452. [PMID: 33686735 DOI: 10.1002/chem.202100006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/02/2021] [Indexed: 12/18/2022]
Abstract
A crucial parameter in the design of semiconductor nanoparticles (NPs) with controllable optical, magnetic, electronic, and catalytic properties is the morphology. Herein, we demonstrate the potential of additive metal cations with variable valency to direct the morphology evolution of copper-deficient Cu2-x S nanoparticles in the process of seed-mediated growth. In particular, the djurleite Cu1.94 S seed could evolve from disk into tetradecahedron in the presence of tin(IV) cations, whereas they merely formed sharp hexagonal nanodisks with tin(II) cations. In addition to djurleite Cu1.94 S, the tin(IV) cations could be generalized to direct the growth of roxbyite Cu1.8 S and covellite CuS nanodisk seeds into tetradecahedra. We further perform pseudomorphic cation exchanges of Cu1.94 S tetradecahedra with Zn2+ and Cd2+ to produce polyhedral zinc sulfide (ZnS) and cadmium sulfide (CdS) NPs. Moreover, we achieve Cu1.8 S/ZnS and Cu1.94 S/CdS tetradecahedral heterostructures via partial cation exchange, which are otherwise inaccessible by traditional synthetic approaches.
Collapse
Affiliation(s)
- Lihui Chen
- College of Chemical Engineering, Zhejiang University of Technology, 18, Chaowang Road, Hangzhou, 310014, P. R. China
| | - Haifeng Hu
- College of Chemical Engineering, Zhejiang University of Technology, 18, Chaowang Road, Hangzhou, 310014, P. R. China
| | - Yuzhou Chen
- College of Chemical Engineering, Zhejiang University of Technology, 18, Chaowang Road, Hangzhou, 310014, P. R. China
| | - Jing Gao
- College of Chemical Engineering, Zhejiang University of Technology, 18, Chaowang Road, Hangzhou, 310014, P. R. China
| | - Guohua Li
- College of Chemical Engineering, Zhejiang University of Technology, 18, Chaowang Road, Hangzhou, 310014, P. R. China
- State Key Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, 18, Chaowang Road, Hangzhou, 310032, P. R. China
| |
Collapse
|
15
|
Feng W, Zhao Y, Zhao D, Wang W, Xia Z, Zheng X, Wang X, Wang W, Wang W. Controllable synthesis of non-layered two-dimensional plate-like CuGaSe 2 materials for optoelectronic devices. RSC Adv 2021; 11:3673-3680. [PMID: 35424285 PMCID: PMC8694233 DOI: 10.1039/d0ra08662b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 01/11/2021] [Indexed: 01/12/2023] Open
Abstract
CuGaSe2 semiconductor materials, as an important member of the I-III-VI2 family, have sparked tremendous attention due to their fascinating structure-related properties and promising applications in solar energy storage and conversion. Nevertheless, the controllable preparation of two-dimensional (2D) CuGaSe2 structures is still a daunting challenge owing to the intrinsic non-layered crystal structure and inaccessible reactivity-matching of multiple reaction precursors, which will seriously impede the much deeper research progress on their properties and applications. Herein, non-layered 2D CuGaSe2 plates possessing high crystallinity, and uniform size and morphology have been first synthesized by a feasible cation exchange strategy. Because the fabrication of 2D CuGaSe2 crystals is rarely reported, a particular highlight is laid on the compositional analysis, structural characterization, and formation mechanism. Furthermore, the optical absorption and optoelectronic measurements reveal that the as-synthesized CuGaSe2 plates exhibit high light harvesting capacity and excellent photoelectric performance. This study opens up a new avenue for the feasible fabrication of non-layered CuGaSe2 plates possessing a high-quality crystalline structure and provides a promising candidate for the development of novel solar energy conversion and storage devices.
Collapse
Affiliation(s)
- Wenling Feng
- School of Chemistry and Chemical Engineering, Qufu Normal University Qufu 273165 Shandong P. R. China +86-1565-023-5536
| | - Yutong Zhao
- School of Chemistry and Chemical Engineering, Qufu Normal University Qufu 273165 Shandong P. R. China +86-1565-023-5536
| | - Di Zhao
- School of Chemistry and Chemical Engineering, Qufu Normal University Qufu 273165 Shandong P. R. China +86-1565-023-5536
| | - Wenjian Wang
- School of Chemistry and Chemical Engineering, Qufu Normal University Qufu 273165 Shandong P. R. China +86-1565-023-5536
| | - Zenghao Xia
- School of Chemistry and Chemical Engineering, Qufu Normal University Qufu 273165 Shandong P. R. China +86-1565-023-5536
| | - Xiaoxia Zheng
- School of Chemistry and Chemical Engineering, Qufu Normal University Qufu 273165 Shandong P. R. China +86-1565-023-5536
| | - Xu Wang
- School of Chemistry and Chemical Engineering, Qufu Normal University Qufu 273165 Shandong P. R. China +86-1565-023-5536
| | - Weihua Wang
- School of Chemistry and Chemical Engineering, Qufu Normal University Qufu 273165 Shandong P. R. China +86-1565-023-5536
| | - Wenliang Wang
- School of Chemistry and Chemical Engineering, Qufu Normal University Qufu 273165 Shandong P. R. China +86-1565-023-5536
| |
Collapse
|
16
|
Palchoudhury S, Ramasamy K, Gupta A. Multinary copper-based chalcogenide nanocrystal systems from the perspective of device applications. NANOSCALE ADVANCES 2020; 2:3069-3082. [PMID: 36134292 PMCID: PMC9418475 DOI: 10.1039/d0na00399a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 06/18/2020] [Indexed: 05/17/2023]
Abstract
Multinary chalcogenide semiconductor nanocrystals are a unique class of materials as they offer flexibility in composition, structure, and morphology for controlled band gap and optical properties. They offer a vast selection of materials for energy conversion, storage, and harvesting applications. Among the multinary chalcogenides, Cu-based compounds are the most attractive in terms of sustainability as many of them consist of earth-abundant elements. There has been immense progress in the field of Cu-based chalcogenides for device applications in the recent years. This paper reviews the state of the art synthetic strategies and application of multinary Cu-chalcogenide nanocrystals in photovoltaics, photocatalysis, light emitting diodes, supercapacitors, and luminescent solar concentrators. This includes the synthesis of ternary, quaternary, and quinary Cu-chalcogenide nanocrystals. The review also highlights some emerging experimental and computational characterization approaches for multinary Cu-chalcogenide semiconductor nanocrystals. It discusses the use of different multinary Cu-chalcogenide compounds, achievements in device performance, and the recent progress made with multinary Cu-chalcogenide nanocrystals in various energy conversion and energy storage devices. The review concludes with an outlook on some emerging and future device applications for multinary Cu-chalcogenides, such as scalable luminescent solar concentrators and wearable biomedical electronics.
Collapse
Affiliation(s)
| | | | - Arunava Gupta
- Department of Chemistry and Biochemistry, The University of Alabama AL USA
| |
Collapse
|
17
|
Elshikh MS, Al-Hemaid FMA, Chen TW, Chinnapaiyan S, Ajmal Ali M, Chen SM. Sonochemical synthesis of graphitic carbon nitrides-wrapped bimetal oxide nanoparticles hybrid materials and their electrocatalytic activity for xanthine electro-oxidation. ULTRASONICS SONOCHEMISTRY 2020; 64:105006. [PMID: 32146332 DOI: 10.1016/j.ultsonch.2020.105006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/03/2020] [Accepted: 02/06/2020] [Indexed: 05/27/2023]
Abstract
A novel network-like magnetic nanoparticle was fabricated on a graphitic carbon nitride through a facile sonochemical route at frequency 20 kHz and power 70 W. To enhance the electrocatalytic activity of the modified materials, the graphitic carbon nitrides (g-C3N4) was prepared from melamine. Monitoring of xanthine concentration level in biological fluids is more important for clinical diagnosis and medical applications. As modified CuFe2O4/g-C3N4 nanocomposite exhibits better electrochemical activity towards the oxidation of xanthine with higher anodic current compared to other modified and unmodified electrode for the detection of xanthine with larger linear range (0.03-695 µM) and lower limit of detection (13.2 nM). To compare with these methods, the electrochemical techniques may be an alternative high sensitive method due to their simplicity and rapid detection time. In addition, the practical feasibility of the sensor was inspected with biological samples, reveals the acceptable recovery of the sensor in real samples.
Collapse
Affiliation(s)
- Mohamed S Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fahad M A Al-Hemaid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Tse-Wei Chen
- Department of Materials, Imperial College London, London SW7 2AZ, United Kingdom
| | - Sathishkumar Chinnapaiyan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| | - M Ajmal Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan.
| |
Collapse
|
18
|
Kim S, Mizuno H, Saruyama M, Sakamoto M, Haruta M, Kurata H, Yamada T, Domen K, Teranishi T. Phase segregated Cu 2-x Se/Ni 3Se 4 bimetallic selenide nanocrystals formed through the cation exchange reaction for active water oxidation precatalysts. Chem Sci 2019; 11:1523-1530. [PMID: 34084382 PMCID: PMC8148079 DOI: 10.1039/c9sc04371c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Control over the composition and nanostructure of solid electrocatalysts is quite important for drastic improvement of their performance. The cation exchange reaction of nanocrystals (NCs) has been reported as the way to provide metastable crystal structures and complicated functional nanostructures that are not accessible by conventional synthetic methods. Herein we demonstrate the cation exchange-derived formation of metastable spinel Ni3Se4 NCs (sp-Ni3Se4) and phase segregated berzelianite Cu2−xSe (ber-Cu2−xSe)/sp-Ni3Se4 heterostructured NCs as active oxygen evolution reaction (OER) catalysts. A rare sp-Ni3Se4 phase was formed by cation exchange of ber-Cu2−xSe NCs with Ni2+ ions, because both phases have the face-centered cubic (fcc) Se anion sublattice. Tuning the Ni : Cu molar ratio leads to the formation of Janus-type ber-Cu2−xSe/sp-Ni3Se4 heterostructured NCs. The NCs of sp-Ni3Se4 and ber-Cu2−xSe/sp-Ni3Se4 heterostructures exhibited high catalytic activities in the OER with small overpotentials of 250 and 230 mV at 10 mA cm−2 in 0.1 M KOH, respectively. They were electrochemically oxidized during the OER to give hydroxides as the real active species. We anticipate that the cation exchange reaction could have enormous potential for the creation of novel heterostructured NCs showing superior catalytic performance. Bimetallic selenide nanocrystals formed by cation exchange reaction work as a precursor of efficient water oxidation electrocatalyst.![]()
Collapse
Affiliation(s)
- Sungwon Kim
- Department of Chemistry, Graduate School of Science, Kyoto University Gokasho, Uji Kyoto 611-0011 Japan
| | - Hiroki Mizuno
- Department of Chemistry, Graduate School of Science, Kyoto University Gokasho, Uji Kyoto 611-0011 Japan
| | - Masaki Saruyama
- Institute for Chemical Research, Kyoto University Gokasho, Uji Kyoto 611-0011 Japan
| | - Masanori Sakamoto
- Institute for Chemical Research, Kyoto University Gokasho, Uji Kyoto 611-0011 Japan
| | - Mitsutaka Haruta
- Institute for Chemical Research, Kyoto University Gokasho, Uji Kyoto 611-0011 Japan
| | - Hiroki Kurata
- Institute for Chemical Research, Kyoto University Gokasho, Uji Kyoto 611-0011 Japan
| | - Taro Yamada
- Department of Chemical System Engineering, The University of Tokyo 7-3-1, Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Kazunari Domen
- Department of Chemical System Engineering, The University of Tokyo 7-3-1, Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Toshiharu Teranishi
- Institute for Chemical Research, Kyoto University Gokasho, Uji Kyoto 611-0011 Japan
| |
Collapse
|
19
|
Hinterding SOM, Berends AC, Kurttepeli M, Moret ME, Meeldijk JD, Bals S, van der Stam W, de Mello Donega C. Tailoring Cu + for Ga 3+ Cation Exchange in Cu 2-xS and CuInS 2 Nanocrystals by Controlling the Ga Precursor Chemistry. ACS NANO 2019; 13:12880-12893. [PMID: 31617701 PMCID: PMC6890264 DOI: 10.1021/acsnano.9b05337] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 10/16/2019] [Indexed: 05/22/2023]
Abstract
Nanoscale cation exchange (CE) has resulted in colloidal nanomaterials that are unattainable by direct synthesis methods. Aliovalent CE is complex and synthetically challenging because the exchange of an unequal number of host and guest cations is required to maintain charge balance. An approach to control aliovalent CE reactions is the use of a single reactant to both supply the guest cation and extract the host cation. Here, we study the application of GaCl3-L complexes [L = trioctylphosphine (TOP), triphenylphosphite (TPP), diphenylphosphine (DPP)] as reactants in the exchange of Cu+ for Ga3+ in Cu2-xS nanocrystals. We find that noncomplexed GaCl3 etches the nanocrystals by S2- extraction, whereas GaCl3-TOP is unreactive. Successful exchange of Cu+ for Ga3+ is only possible when GaCl3 is complexed with either TPP or DPP. This is attributed to the pivotal role of the Cu2-xS-GaCl3-L activated complex that forms at the surface of the nanocrystal at the onset of the CE reaction, which must be such that simultaneous Ga3+ insertion and Cu+ extraction can occur. This requisite is only met if GaCl3 is bound to a phosphine ligand, with a moderate bond strength, to allow facile dissociation of the complex at the nanocrystal surface. The general validity of this mechanism is demonstrated by using GaCl3-DPP to convert CuInS2 into (Cu,Ga,In)S2 nanocrystals, which increases the photoluminescence quantum yield 10-fold, while blue-shifting the photoluminescence into the NIR biological window. This highlights the general applicability of the mechanistic insights provided by our work.
Collapse
Affiliation(s)
- Stijn O. M. Hinterding
- Condensed Matter and Interfaces, Debye Institute for
Nanomaterials Science, Utrecht University, P.O. Box 80000, 3508
TA Utrecht, The Netherlands
| | - Anne C. Berends
- Condensed Matter and Interfaces, Debye Institute for
Nanomaterials Science, Utrecht University, P.O. Box 80000, 3508
TA Utrecht, The Netherlands
| | - Mert Kurttepeli
- Electron Microscopy for Materials Science (EMAT),
University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp,
Belgium
| | - Marc-Etienne Moret
- Organic Chemistry and Catalysis, Debye Institute for
Nanomaterials Science, Utrecht University, Universiteitsweg 99,
3584 CG Utrecht, The Netherlands
| | - Johannes D. Meeldijk
- Electron Microscopy Utrecht, Debye Institute for
Nanomaterials Science, Utrecht University, 3584 CH Utrecht,
The Netherlands
| | - Sara Bals
- Electron Microscopy for Materials Science (EMAT),
University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp,
Belgium
| | - Ward van der Stam
- Condensed Matter and Interfaces, Debye Institute for
Nanomaterials Science, Utrecht University, P.O. Box 80000, 3508
TA Utrecht, The Netherlands
| | - Celso de Mello Donega
- Condensed Matter and Interfaces, Debye Institute for
Nanomaterials Science, Utrecht University, P.O. Box 80000, 3508
TA Utrecht, The Netherlands
- E-mail:
| |
Collapse
|