1
|
Ma XY, Yang TT, Liu L, Peng XC, Qian F, Tang FR. Ependyma in Neurodegenerative Diseases, Radiation-Induced Brain Injury and as a Therapeutic Target for Neurotrophic Factors. Biomolecules 2023; 13:754. [PMID: 37238624 PMCID: PMC10216700 DOI: 10.3390/biom13050754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/03/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
The neuron loss caused by the progressive damage to the nervous system is proposed to be the main pathogenesis of neurodegenerative diseases. Ependyma is a layer of ciliated ependymal cells that participates in the formation of the brain-cerebrospinal fluid barrier (BCB). It functions to promotes the circulation of cerebrospinal fluid (CSF) and the material exchange between CSF and brain interstitial fluid. Radiation-induced brain injury (RIBI) shows obvious impairments of the blood-brain barrier (BBB). In the neuroinflammatory processes after acute brain injury, a large amount of complement proteins and infiltrated immune cells are circulated in the CSF to resist brain damage and promote substance exchange through the BCB. However, as the protective barrier lining the brain ventricles, the ependyma is extremely vulnerable to cytotoxic and cytolytic immune responses. When the ependyma is damaged, the integrity of BCB is destroyed, and the CSF flow and material exchange is affected, leading to brain microenvironment imbalance, which plays a vital role in the pathogenesis of neurodegenerative diseases. Epidermal growth factor (EGF) and other neurotrophic factors promote the differentiation and maturation of ependymal cells to maintain the integrity of the ependyma and the activity of ependymal cilia, and may have therapeutic potential in restoring the homeostasis of the brain microenvironment after RIBI or during the pathogenesis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Xin-Yu Ma
- Department of Physiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Ting-Ting Yang
- Department of Physiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Lian Liu
- Department of Pharmacology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Xiao-Chun Peng
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Feng Qian
- Department of Physiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Feng-Ru Tang
- Radiation Physiology Laboratory, Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore 138602, Singapore
| |
Collapse
|
2
|
Wang N, Liu Y, Jia C, Gao C, Zheng T, Wu M, Zhang Q, Zhao X, Li Z, Chen J, Wu C. Machine learning enables discovery of Gentianine targeting TLR4/NF-κB pathway to repair ischemic stroke injury. Pharmacol Res 2021; 173:105913. [PMID: 34563661 DOI: 10.1016/j.phrs.2021.105913] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/14/2021] [Accepted: 09/21/2021] [Indexed: 02/07/2023]
Abstract
Inflammatory response is believed to accelerate the development of stroke injury. Gentianine, an alkaloid isolated from Gentiana Scabra Bunge, shows effectiveness in anti-inflammation. In this study, the effect of Gentianine on transient middle cerebral artery occlusion (tMCAO) induced mouse model in vivo and further related mechanism in LPS-injuried microglia BV-2 cells in vitro were explored. Effect of Gentianine on tMCAO mouse demonstrated that Gentianine significantly ameliorated tMCAO induced ischemic injury by decreasing brain infarct volume and increasing the neurological score and upper limb muscle strength. Meanwhile, Gentianine significantly decreased the release of serum inflammatory cytokines. Machine learning enables that Gentianine might had anti-ischemic stroke effect through the TLR4/NF-κB signaling pathway. This was verified in vivo and in vitro. Gentianine significantly decrease the TLR4 and Iba-1 expression in vivo. These results also verified in BV-2 cells. Gentianine significantly decreased TLR4, MyD88 and NF-κB expression, as well as NO production and inflammatory cytokines release. Gentianine co-treatment with TLR4 inhibitor, further decreased TLR4, MyD88 and NF-κB expression, NO production, as well as the inflammatory cytokines. Taken together, Gentianine could be used as a potential anti-ischemic stroke agent by suppressing inflammatory responses via TLR4/NF-κB signaling pathway. This study is expected to provide an integrated traditional Chinese and western medicine solution to find potential anti-ischemic stroke compounds based on machine learning.
Collapse
Affiliation(s)
- Na Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yao Liu
- The Affiliated Hospital of Qingdao University and Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China
| | - Caixia Jia
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Chengwen Gao
- The Affiliated Hospital of Qingdao University and Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China
| | | | - Mingxuan Wu
- The Affiliated Hospital of Qingdao University and Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China
| | - Qian Zhang
- The Affiliated Hospital of Qingdao University and Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China
| | - Xiangzhong Zhao
- The Affiliated Hospital of Qingdao University and Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China
| | - Zhiqiang Li
- The Affiliated Hospital of Qingdao University and Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China.
| | - Jianxin Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| | - Chuanhong Wu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China; The Affiliated Hospital of Qingdao University and Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China.
| |
Collapse
|