1
|
Kostyuk AI, Rapota DD, Morozova KI, Fedotova AA, Jappy D, Semyanov AV, Belousov VV, Brazhe NA, Bilan DS. Modern optical approaches in redox biology: Genetically encoded sensors and Raman spectroscopy. Free Radic Biol Med 2024; 217:68-115. [PMID: 38508405 DOI: 10.1016/j.freeradbiomed.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/10/2024] [Accepted: 03/13/2024] [Indexed: 03/22/2024]
Abstract
The objective of the current review is to summarize the current state of optical methods in redox biology. It consists of two parts, the first is dedicated to genetically encoded fluorescent indicators and the second to Raman spectroscopy. In the first part, we provide a detailed classification of the currently available redox biosensors based on their target analytes. We thoroughly discuss the main architecture types of these proteins, the underlying engineering strategies for their development, the biochemical properties of existing tools and their advantages and disadvantages from a practical point of view. Particular attention is paid to fluorescence lifetime imaging microscopy as a possible readout technique, since it is less prone to certain artifacts than traditional intensiometric measurements. In the second part, the characteristic Raman peaks of the most important redox intermediates are listed, and examples of how this knowledge can be implemented in biological studies are given. This part covers such fields as estimation of the redox states and concentrations of Fe-S clusters, cytochromes, other heme-containing proteins, oxidative derivatives of thiols, lipids, and nucleotides. Finally, we touch on the issue of multiparameter imaging, in which biosensors are combined with other visualization methods for simultaneous assessment of several cellular parameters.
Collapse
Affiliation(s)
- Alexander I Kostyuk
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia; Pirogov Russian National Research Medical University, 117997, Moscow, Russia
| | - Diana D Rapota
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Kseniia I Morozova
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Anna A Fedotova
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia; Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, 119234, Russia
| | - David Jappy
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow, 117997, Russia
| | - Alexey V Semyanov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia; Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, 119234, Russia; Sechenov First Moscow State Medical University, Moscow, 119435, Russia; College of Medicine, Jiaxing University, Jiaxing, Zhejiang Province, 314001, China
| | - Vsevolod V Belousov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia; Pirogov Russian National Research Medical University, 117997, Moscow, Russia; Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow, 117997, Russia; Life Improvement by Future Technologies (LIFT) Center, Skolkovo, Moscow, 143025, Russia
| | - Nadezda A Brazhe
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia; Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, 119234, Russia.
| | - Dmitry S Bilan
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia; Pirogov Russian National Research Medical University, 117997, Moscow, Russia.
| |
Collapse
|
2
|
Marchetti M, Ronda L, Cozzi M, Bettati S, Bruno S. Genetically Encoded Biosensors for the Fluorescence Detection of O 2 and Reactive O 2 Species. SENSORS (BASEL, SWITZERLAND) 2023; 23:8517. [PMID: 37896609 PMCID: PMC10611200 DOI: 10.3390/s23208517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/07/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023]
Abstract
The intracellular concentrations of oxygen and reactive oxygen species (ROS) in living cells represent critical information for investigating physiological and pathological conditions. Real-time measurement often relies on genetically encoded proteins that are responsive to fluctuations in either oxygen or ROS concentrations. The direct binding or chemical reactions that occur in their presence either directly alter the fluorescence properties of the binding protein or alter the fluorescence properties of fusion partners, mostly consisting of variants of the green fluorescent protein. Oxygen sensing takes advantage of several mechanisms, including (i) the oxygen-dependent hydroxylation of a domain of the hypoxia-inducible factor-1, which, in turn, promotes its cellular degradation along with fluorescent fusion partners; (ii) the naturally oxygen-dependent maturation of the fluorophore of green fluorescent protein variants; and (iii) direct oxygen binding by proteins, including heme proteins, expressed in fusion with fluorescent partners, resulting in changes in fluorescence due to conformational alterations or fluorescence resonance energy transfer. ROS encompass a group of highly reactive chemicals that can interconvert through various chemical reactions within biological systems, posing challenges for their selective detection through genetically encoded sensors. However, their general reactivity, and particularly that of the relatively stable oxygen peroxide, can be exploited for ROS sensing through different mechanisms, including (i) the ROS-induced formation of disulfide bonds in engineered fluorescent proteins or fusion partners of fluorescent proteins, ultimately leading to fluorescence changes; and (ii) conformational changes of naturally occurring ROS-sensing domains, affecting the fluorescence properties of fusion partners. In this review, we will offer an overview of these genetically encoded biosensors.
Collapse
Affiliation(s)
- Marialaura Marchetti
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (M.M.); (L.R.); (M.C.)
| | - Luca Ronda
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (M.M.); (L.R.); (M.C.)
- Institute of Biophysics, Italian National Research Council (CNR), 56124 Pisa, Italy
| | - Monica Cozzi
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (M.M.); (L.R.); (M.C.)
| | - Stefano Bettati
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (M.M.); (L.R.); (M.C.)
- Institute of Biophysics, Italian National Research Council (CNR), 56124 Pisa, Italy
| | - Stefano Bruno
- Department of Food and Drug, University of Parma, 43124 Parma, Italy;
| |
Collapse
|
3
|
Real-time monitoring of subcellular states with genetically encoded redox biosensor system (RBS) in yeast cell factories. Biosens Bioelectron 2023; 222:114988. [PMID: 36521204 DOI: 10.1016/j.bios.2022.114988] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/22/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022]
Abstract
During industrial fermentation, microbial cell factories are usually confronted with environmental or metabolic stresses, leading to the imbalance of intracellular redox and the reduction of cell metabolic capacity. Here, we constructed the genetically encoded redox biosensor system (RBS) based on redox-sensitive fluorescent proteins to detect redox metabolites, including reactive oxygen species (ROS), oxidized glutathione, NADH, and NADPH in Saccharomyces cerevisiae. The functional biosensors were quantitatively characterized and the orthogonal redox biosensor system (oRBS) was designed for detecting multiple redox metabolites. Furthermore, the compartment targeted redox biosensor system (ctRBS) was constructed to detect ROS and NADPH, revealing the distribution and spatiotemporal dynamics of ROS in yeast under various stress conditions. As a proof-of-concept, RBS was applied to evaluate the redox states of engineered yeast with stress resistance and heterogenous triterpene synthesis in vivo, elucidating the redox balance significantly affecting the growth and production phenotypes. The RBS in this study allowed the exploration of the diversity of compartmental redox state and real-time monitoring of the production process of yeast, providing a reliable and effective approach for accurate and in-depth profiling of bottlenecks of yeast cell factories.
Collapse
|
4
|
Simonyan TR, Protasova EA, Mamontova AV, Shakhov AM, Lukyanov KA, Maksimov EG, Bogdanov AM. A Single Fluorescent Protein-Based Indicator with a Time-Resolved Fluorescence Readout for Precise pH Measurements in the Alkaline Range. Int J Mol Sci 2022; 23:12907. [PMID: 36361706 PMCID: PMC9658282 DOI: 10.3390/ijms232112907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/22/2022] [Accepted: 10/23/2022] [Indexed: 09/19/2023] Open
Abstract
The real-time monitoring of the intracellular pH in live cells with high precision represents an important methodological challenge. Although genetically encoded fluorescent indicators can be considered as a probe of choice for such measurements, they are hindered mostly by the inability to determine an absolute pH value and/or a narrow dynamic range of the signal, making them inefficient for recording the small pH changes that typically occur within cellular organelles. Here, we study the pH sensitivity of a green-fluorescence-protein (GFP)-based emitter (EGFP-Y145L/S205V) with the alkaline-shifted chromophore's pKa and demonstrate that, in the pH range of 7.5-9.0, its fluorescence lifetime changes by a factor of ~3.5 in a quasi-linear manner in mammalian cells. Considering the relatively strong lifetime response in a narrow pH range, we proposed the mitochondria, which are known to have a weakly alkaline milieu, as a target for live-cell pH measurements. Using fluorescence lifetime imaging microscopy (FLIM) to visualize the HEK293T cells expressing mitochondrially targeted EGFP-Y145L/S205V, we succeeded in determining the absolute pH value of the mitochondria and recorded the ETC-uncoupler-stimulated pH shift with a precision of 0.1 unit. We thus show that a single GFP with alkaline-shifted pKa can act as a high-precision indicator that can be used in a specific pH range.
Collapse
Affiliation(s)
- Tatiana R. Simonyan
- Center of Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
| | - Elena A. Protasova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Anastasia V. Mamontova
- Center of Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
| | - Aleksander M. Shakhov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
- Semenov Federal Research Center for Chemical Physics, 119991 Moscow, Russia
| | | | - Eugene G. Maksimov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Alexey M. Bogdanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
| |
Collapse
|
5
|
Abstract
Oxidative stress is important for the etiology and pathogenesis of Alzheimer's disease (AD). Research tools that can conveniently evaluate oxidative stress in AD models are expected to catalyze and accelerate research on AD. This study explored the use of genetically encoded fluorescent indicators (GEFIs) to detect mitochondrial oxidative stress in organotypic brain slices and AD mouse models. To enable ratiometric normalization and avoid tissue autofluorescence, we genetically fused a green fluorescent hydrogen peroxide (H2O2) indicator, HyPer7, with each of two selected, bright red fluorescent proteins (RFPs), mScarlet-I and tdTomato. The resultant indicators, namely, HyPerGRS and HyPerGRT, were tagged with mitochondrial targeting sequences and examined for localization and function in cultured HeLa cells and primary mouse neurons. We further utilized HyPerGRT, which is a genetic fusion of HyPer7 with tdTomato, to monitor mitochondrial H2O2 in response to the human β-amyloid 1-42 isoform (Aβ42) in cultured brain slices and an AD mouse model. Owing to the high sensitivity and low autofluorescence interference resulting from HyPerGRT, we successfully detected Aβ42-mediated mitochondrial H2O2 in these AD models. The results suggest that HyPerGRT is a valuable tool for studying mitochondrial oxidative stress in tissues and animals.
Collapse
Affiliation(s)
- Xinyu Li
- Department of Molecular Physiology and Biological Physics, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
- Center for Membrane and Cell Physiology, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Yiyu Zhang
- Department of Molecular Physiology and Biological Physics, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
- Center for Membrane and Cell Physiology, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Hui-wang Ai
- Department of Molecular Physiology and Biological Physics, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
- Center for Membrane and Cell Physiology, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
- The UVA Cancer Center, University of Virginia, Charlottesville, VA, 22908, USA
- Corresponding Author.
| |
Collapse
|
6
|
Pang Y, Zhang H, Ai HW. Improved Red Fluorescent Redox Indicators for Monitoring Cytosolic and Mitochondrial Thioredoxin Redox Dynamics. Biochemistry 2022; 61:377-384. [PMID: 35133140 PMCID: PMC8906223 DOI: 10.1021/acs.biochem.1c00634] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Thioredoxin (Trx) is one of the major thiol-dependent antioxidants in living systems. The study of Trx functions in redox biology was impeded by the lack of practical tools to track Trx redox dynamics in live cells. Our previous work developed TrxRFP1, the first genetically encoded fluorescent indicator for Trx redox. In this work, we report an improved fluorescent indicator, TrxRFP2, for tracking the redox of Trx1, which is primarily cytosolic and nuclear. Furthermore, because mitochondria specifically express Trx2, we have created a new genetically encoded fluorescent indicator, MtrxRFP2, for the redox of mitochondrial Trx. We characterized MtrxRFP2 as a purified protein and used subcellularly localized MtrxRFP2 to image mitochondrial redox changes in live cells.
Collapse
Affiliation(s)
- Yu Pang
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia 22908, USA
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Hao Zhang
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia 22908, USA
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Hui-wang Ai
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia 22908, USA
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908, USA
- The UVA Cancer Center, University of Virginia, Charlottesville, Virginia 22908, USA
| |
Collapse
|
7
|
Wu T, Pang Y, Ai HW. Circularly Permuted Far-Red Fluorescent Proteins. BIOSENSORS 2021; 11:438. [PMID: 34821654 PMCID: PMC8615523 DOI: 10.3390/bios11110438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 12/22/2022]
Abstract
The color palette of genetically encoded fluorescent protein indicators (GEFPIs) has expanded rapidly in recent years. GEFPIs with excitation and emission within the "optical window" above 600 nm are expected to be superior in many aspects, such as enhanced tissue penetration, reduced autofluorescence and scattering, and lower phototoxicity. Circular permutation of fluorescent proteins (FPs) is often the first step in the process of developing single-FP-based GEFPIs. This study explored the tolerance of two far-red FPs, mMaroon1 and mCarmine, towards circular permutation. Several initial constructs were built according to previously reported circularly permuted topologies for other FP analogs. Mutagenesis was then performed on these constructs and screened for fluorescent variants. As a result, five circularly permuted far-red FPs (cpFrFPs) with excitation and emission maxima longer than 600 nm were identified. Some displayed appreciable brightness and efficient chromophore maturation. These cpFrFPs variants could be intriguing starting points to further engineer far-red GEFPIs for in vivo tissue imaging.
Collapse
Affiliation(s)
- Tianchen Wu
- Department of Molecular Physiology and Biological Physics, and Center for Membrane and Cell Physiology, University of Virginia School of Medicine, 1340 Jefferson Park Avenue, Charlottesville, VA 22908, USA; (T.W.); (Y.P.)
| | - Yu Pang
- Department of Molecular Physiology and Biological Physics, and Center for Membrane and Cell Physiology, University of Virginia School of Medicine, 1340 Jefferson Park Avenue, Charlottesville, VA 22908, USA; (T.W.); (Y.P.)
- Department of Chemistry, University of Virginia, Charlottesville, VA 22908, USA
| | - Hui-wang Ai
- Department of Molecular Physiology and Biological Physics, and Center for Membrane and Cell Physiology, University of Virginia School of Medicine, 1340 Jefferson Park Avenue, Charlottesville, VA 22908, USA; (T.W.); (Y.P.)
- Department of Chemistry, University of Virginia, Charlottesville, VA 22908, USA
- The UVA Cancer Center, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|