1
|
Nicol B, Vandenbossche-Goddard E, Thorpe C, Newman R, Patel H, Yates D. A workflow to practically apply true dose considerations to in vitro testing for next generation risk assessment. Toxicology 2024; 505:153826. [PMID: 38719068 DOI: 10.1016/j.tox.2024.153826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/22/2024] [Accepted: 05/01/2024] [Indexed: 05/14/2024]
Abstract
With the move away from safety testing assessment based on data generated in experimental animals the concept of Next Generation Risk Assessment (NGRA) has arisen which instead uses data from in silico and in vitro models. A key uncertainty in risk assessment is the actual dose of test chemical at the target site, and therefore surrogate dose metrics, such as nominal concentration in test media are used to describe in vitro effect (or no-effect) doses. The reliability and accuracy of the risk assessment therefore depends largely on our ability to understand and characterise the relationship between the dose metrics used and the actual biologically effective dose at the target site. The objective of this publication is to use 40 case study chemicals to illustrate how in vitro dose considerations can be applied to characterise the "true dose" and build confidence in the understanding of the biologically effective dose in in vitro test systems for the determination e.g. points of departure (PoDs) for NGRA. We propose a workflow that can be applied to assess whether the nominal test concentration can be considered a conservative dose metric for use in NGRA. The workflow examines the implications of volatility, stability, hydrophobicity, binding to plastic and serum, solubility, and the potential use of in silico models for some of these parameters. For the majority of the case study chemicals we found that the use of nominal concentrations in risk assessment would result in conservative decision making. However, for serval chemicals a potential for underestimation of the risk in humans in vivo based on in vitro nominal effect concentrations was identified, and approaches for refinement by characterisation of the actual effect concentration are proposed.
Collapse
Affiliation(s)
- Beate Nicol
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedford, Bedfordshire MK44 1LQ, UK
| | - Evita Vandenbossche-Goddard
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedford, Bedfordshire MK44 1LQ, UK.
| | - Charlotte Thorpe
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedford, Bedfordshire MK44 1LQ, UK
| | | | - Hiral Patel
- Charles River Laboratories, Cambridgeshire CB10 1XL, UK
| | - Dawn Yates
- Charles River Laboratories, Cambridgeshire CB10 1XL, UK
| |
Collapse
|
2
|
Huchthausen J, Braasch J, Escher BI, König M, Henneberger L. Effects of Chemicals in Reporter Gene Bioassays with Different Metabolic Activities Compared to Baseline Toxicity. Chem Res Toxicol 2024; 37:744-756. [PMID: 38652132 PMCID: PMC11110108 DOI: 10.1021/acs.chemrestox.4c00017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024]
Abstract
High-throughput cell-based bioassays are used for chemical screening and risk assessment. Chemical transformation processes caused by abiotic degradation or metabolization can reduce the chemical concentration or, in some cases, lead to the formation of more toxic transformation products. Unaccounted loss processes may falsify the bioassay results. Capturing the formation and effects of transformation products is important for relating the in vitro effects to in vivo. Reporter gene cell lines are believed to have low metabolic activity, but inducibility of cytochrome P450 (CYP) enzymes has been reported. Baseline toxicity is the minimal toxicity a chemical can have and is caused by the incorporation of the chemical into cell membranes. In the present study, we improved an existing baseline toxicity model based on a newly defined critical membrane burden derived from freely dissolved effect concentrations, which are directly related to the membrane concentration. Experimental effect concentrations of 94 chemicals in three bioassays (AREc32, ARE-bla and GR-bla) were compared with baseline toxicity by calculating the toxic ratio (TR). CYP activities of all cell lines were determined by using fluorescence-based assays. Only ARE-bla showed a low basal CYP activity and inducibility and AREc32 showed a low inducibility. Overall cytotoxicity was similar in all three assays despite the different metabolic activities indicating that chemical metabolism is not relevant for the cytotoxicity of the tested chemicals in these assays. Up to 28 chemicals showed specific cytotoxicity with TR > 10 in the bioassays, but baseline toxicity could explain the effects of the majority of the remaining chemicals. Seven chemicals showed TR < 0.1 indicating inaccurate physicochemical properties or experimental artifacts like chemical precipitation, volatilization, degradation, or other loss processes during the in vitro bioassay. The new baseline model can be used not only to identify specific cytotoxicity mechanisms but also to identify potential problems in the experimental performance or evaluation of the bioassay and thus improve the quality of the bioassay data.
Collapse
Affiliation(s)
- Julia Huchthausen
- Department
of Cell Toxicology, Helmholtz Centre for
Environmental Research − UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Jenny Braasch
- Department
of Cell Toxicology, Helmholtz Centre for
Environmental Research − UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Beate I. Escher
- Department
of Cell Toxicology, Helmholtz Centre for
Environmental Research − UFZ, Permoserstr. 15, 04318 Leipzig, Germany
- Environmental
Toxicology, Department of Geosciences, Eberhard
Karls University Tübingen, 72076 Tübingen, Germany
| | - Maria König
- Department
of Cell Toxicology, Helmholtz Centre for
Environmental Research − UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Luise Henneberger
- Department
of Cell Toxicology, Helmholtz Centre for
Environmental Research − UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| |
Collapse
|
3
|
Huchthausen J, Escher BI, Grasse N, König M, Beil S, Henneberger L. Reactivity of Acrylamides Causes Cytotoxicity and Activates Oxidative Stress Response. Chem Res Toxicol 2023; 36:1374-1385. [PMID: 37531411 PMCID: PMC10445285 DOI: 10.1021/acs.chemrestox.3c00115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Indexed: 08/04/2023]
Abstract
Acrylamides are widely used industrial chemicals that cause adverse effects in humans or animals, such as carcinogenicity or neurotoxicity. The excess toxicity of these reactive electrophilic chemicals is especially interesting, as it is mostly triggered by covalent reactions with biological nucleophiles, such as DNA bases, proteins, or peptides. The cytotoxicity and activation of oxidative stress response of 10 (meth)acrylamides measured in three reporter gene cell lines occurred at similar concentrations. Most acrylamides exhibited high excess toxicity, while methacrylamides acted as baseline toxicants. The (meth)acrylamides showed no reactivity toward the hard biological nucleophile 2-deoxyguanosine (2DG) within 24 h, and only acrylamides reacted with the soft nucleophile glutathione (GSH). Second-order degradation rate constants (kGSH) were measured for all acrylamides with N,N'-methylenebis(acrylamide) (NMBA) showing the highest kGSH (134.800 M-1 h-1) and N,N-diethylacrylamide (NDA) the lowest kGSH (2.574 M-1 h-1). Liquid chromatography coupled to high-resolution mass spectrometry was used to confirm the GSH conjugates of the acrylamides with a double conjugate formed for NMBA. The differences in reactivity between acrylamides and methacrylamides could be explained by the charge density of the carbon atoms because the electron-donating inductive effect of the methyl group of the methacrylamides lowered their electrophilicity and thus their reactivity. The differences in reactivity within the group of acrylamides could be explained by the energy of the lowest unoccupied molecular orbital and steric hindrance. Cytotoxicity and activation of oxidative stress response were linearly correlated with the second-order reaction rate constants of the acrylamides with GSH. The reaction of the acrylamides with GSH is hence not only a detoxification mechanism but also leads to disturbances of the redox balance, making the cells more vulnerable to reactive oxygen species. The reactivity of acrylamides explained the oxidative stress response and cytotoxicity in the cells, and the lack of reactivity of the methacrylamides led to baseline toxicity.
Collapse
Affiliation(s)
- Julia Huchthausen
- Department
of Cell Toxicology, Helmholtz Centre for
Environmental Research − UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Beate I. Escher
- Department
of Cell Toxicology, Helmholtz Centre for
Environmental Research − UFZ, Permoserstr. 15, 04318 Leipzig, Germany
- Department
of Geosciences, Eberhard Karls University
Tübingen, Environmental Toxicology, 72076 Tübingen, Germany
| | - Nico Grasse
- Department
of Analytical Chemistry, Helmholtz Centre
for Environmental Research − UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Maria König
- Department
of Cell Toxicology, Helmholtz Centre for
Environmental Research − UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Stephan Beil
- Institute
of Water Chemistry, Technische Universität
Dresden, 01069 Dresden, Germany
| | - Luise Henneberger
- Department
of Cell Toxicology, Helmholtz Centre for
Environmental Research − UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| |
Collapse
|
4
|
Huchthausen J, König M, Escher BI, Henneberger L. Experimental exposure assessment for in vitro cell-based bioassays in 96- and 384-well plates. FRONTIERS IN TOXICOLOGY 2023; 5:1221625. [PMID: 37564394 PMCID: PMC10411540 DOI: 10.3389/ftox.2023.1221625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/06/2023] [Indexed: 08/12/2023] Open
Abstract
In vitro cell-based bioassays have great potential for applications in the human health risk assessment of chemicals. The quantification of freely dissolved concentrations (C free) in in vitro assays is essential to generate reliable data for in vitro-to-in vivo extrapolation. Existing methods for the quantification of C free are limited to low-throughput microtiter plates. The present study is a proof of principle for the applicability of a solid-phase microextraction (SPME) method for the determination of C free in the peroxisome proliferator-activated receptor gamma (PPARγ) bioassay run in 384-well plates with 80 µL medium per well. The effect concentrations obtained from 384-well plates were compared with those obtained from 96-well plates in a previous study. Nominal effect concentrations obtained using 96- and 384-well plates agreed with each other within a factor of three, and freely dissolved effect concentrations agreed within a factor of 6.5. The good degree of agreement in the results from both plate formats proves the general applicability of the SPME method for the determination of C free for bioassays in 384-well plates, making the present study a first step toward exposure assessment in high-throughput bioassays.
Collapse
Affiliation(s)
- Julia Huchthausen
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
| | - Maria König
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
| | - Beate I. Escher
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
- Department of Geosciences, Environmental Toxicology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Luise Henneberger
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
| |
Collapse
|
5
|
Escher BI, Altenburger R, Blüher M, Colbourne JK, Ebinghaus R, Fantke P, Hein M, Köck W, Kümmerer K, Leipold S, Li X, Scheringer M, Scholz S, Schloter M, Schweizer PJ, Tal T, Tetko I, Traidl-Hoffmann C, Wick LY, Fenner K. Modernizing persistence-bioaccumulation-toxicity (PBT) assessment with high throughput animal-free methods. Arch Toxicol 2023; 97:1267-1283. [PMID: 36952002 PMCID: PMC10110678 DOI: 10.1007/s00204-023-03485-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 03/13/2023] [Indexed: 03/24/2023]
Abstract
The assessment of persistence (P), bioaccumulation (B), and toxicity (T) of a chemical is a crucial first step at ensuring chemical safety and is a cornerstone of the European Union's chemicals regulation REACH (Registration, Evaluation, Authorization, and Restriction of Chemicals). Existing methods for PBT assessment are overly complex and cumbersome, have produced incorrect conclusions, and rely heavily on animal-intensive testing. We explore how new-approach methodologies (NAMs) can overcome the limitations of current PBT assessment. We propose two innovative hazard indicators, termed cumulative toxicity equivalents (CTE) and persistent toxicity equivalents (PTE). Together they are intended to replace existing PBT indicators and can also accommodate the emerging concept of PMT (where M stands for mobility). The proposed "toxicity equivalents" can be measured with high throughput in vitro bioassays. CTE refers to the toxic effects measured directly in any given sample, including single chemicals, substitution products, or mixtures. PTE is the equivalent measure of cumulative toxicity equivalents measured after simulated environmental degradation of the sample. With an appropriate panel of animal-free or alternative in vitro bioassays, CTE and PTE comprise key environmental and human health hazard indicators. CTE and PTE do not require analytical identification of transformation products and mixture components but instead prompt two key questions: is the chemical or mixture toxic, and is this toxicity persistent or can it be attenuated by environmental degradation? Taken together, the proposed hazard indicators CTE and PTE have the potential to integrate P, B/M and T assessment into one high-throughput experimental workflow that sidesteps the need for analytical measurements and will support the Chemicals Strategy for Sustainability of the European Union.
Collapse
Affiliation(s)
- Beate I Escher
- Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, E04318, Leipzig, Germany.
- Environmental Toxicology, Department of Geosciences, Eberhard Karls University Tübingen, Schnarrenbergstr. 94-96, E72076, Tübingen, Germany.
| | - Rolf Altenburger
- Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, E04318, Leipzig, Germany
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Munich-German Research Centre for Environmental Health (GmbH) at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - John K Colbourne
- Environmental Genomics Group, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Ralf Ebinghaus
- Institute of Coastal Environmental Chemistry, Helmholtz Zentrum Hereon, Max-Planck-Straße 1, 21502, Geesthacht, Germany
| | - Peter Fantke
- Quantitative Sustainability Assessment, Department of Environmental and Resource Engineering, Technical University of Denmark, Produktionstorvet 424, 2800, Kgs. Lyngby, Denmark
| | - Michaela Hein
- Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, E04318, Leipzig, Germany
| | - Wolfgang Köck
- Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, E04318, Leipzig, Germany
| | - Klaus Kümmerer
- Institute of Sustainable and Environmental Chemistry, Leuphana University Lüneburg, Universitätsallee 1, 21335, Lüneburg, Germany
- International Sustainable Chemistry Collaboration Centre (ISC3), Friedrich-Ebert-Allee 32 + 36, D-53113, Bonn, Germany
| | - Sina Leipold
- Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, E04318, Leipzig, Germany
- Department for Political Science, Friedrich-Schiller-University Jena, Bachstr. 18k, 07743, Jena, Germany
| | - Xiaojing Li
- Environmental Genomics Group, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Martin Scheringer
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092, Zurich, Switzerland
| | - Stefan Scholz
- Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, E04318, Leipzig, Germany
| | - Michael Schloter
- Comparative Microbiome Analysis, Environmental Health Centre, Helmholtz Munich - German Research Centre for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Pia-Johanna Schweizer
- Research Institute for Sustainability-Helmholtz Centre Potsdam, Berliner Strasse 130, 14467, Potsdam, Germany
| | - Tamara Tal
- Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, E04318, Leipzig, Germany
| | - Igor Tetko
- Institute of Structural Biology, Molecular Targets and Therapeutics Centre, Helmholtz Munich - German Research Centre for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Claudia Traidl-Hoffmann
- Environmental Medicine Faculty of Medicine, University of Augsburg, Stenglinstrasse 2, 86156, Augsburg, Germany
- Institute of Environmental Medicine, Environmental Health Centre, Helmholtz Munich - German Research Centre for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Lukas Y Wick
- Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, E04318, Leipzig, Germany
| | - Kathrin Fenner
- Department of Environmental Chemistry, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600, Dübendorf, Switzerland
- Department of Chemistry, University of Zürich, 8057, Zurich, Switzerland
| |
Collapse
|