1
|
Ancheta K, Le Calvez S, Williams J. The digital revolution in veterinary pathology. J Comp Pathol 2024; 214:19-31. [PMID: 39241697 DOI: 10.1016/j.jcpa.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/14/2024] [Accepted: 08/01/2024] [Indexed: 09/09/2024]
Abstract
For the past two centuries, the use of traditional light microscopy to examine tissues to make diagnoses has remained relatively unchanged. While the fundamental concept of tissue slide analysis has stayed the same, our interaction with the microscope is undergoing significant changes. Digital pathology (DP) has gained momentum in veterinary science and is on the verge of becoming a vital tool in diagnostics, research and education. Many diagnostic laboratories have incorporated DP as a critical part of their workflows. Innovations in DP and whole slide image technology have made telediagnosis (the process of transmitting digital clinical data using telecommunication networks for distant diagnosis) more accessible, leading to improved patient care through streamlining of workflows and greater accessibility of second opinions. The integration of machine learning and artificial intelligence and human-in-the-loop protocols for DP workflows will further the development of computer-aided diagnosis and prognostic tools. Despite its present weaknesses, DP will progressively aid veterinary clinicians and pathologists in delivering more accurate and reliable diagnoses. Consistent incorporation of DP frontline advancements into routine veterinary diagnostic pipelines will assist in improving current tools and help prepare pathologists for the progression of digitalization in the field.
Collapse
Affiliation(s)
- Kenneth Ancheta
- The Royal Veterinary College, Hawkshead Campus, Hawkshead Lane, Hatfield, Hertfordshire AL9 7TA, UK
| | - Sophie Le Calvez
- IDEXX Laboratories Ltd, Grange House, Sandbeck Way, Wetherby, Yorkshire LS22 7DN, UK
| | - Jonathan Williams
- The Royal Veterinary College, Hawkshead Campus, Hawkshead Lane, Hatfield, Hertfordshire AL9 7TA, UK.
| |
Collapse
|
2
|
Sun D, Macedonia C, Chen Z, Chandrasekaran S, Najarian K, Zhou S, Cernak T, Ellingrod VL, Jagadish HV, Marini B, Pai M, Violi A, Rech JC, Wang S, Li Y, Athey B, Omenn GS. Can Machine Learning Overcome the 95% Failure Rate and Reality that Only 30% of Approved Cancer Drugs Meaningfully Extend Patient Survival? J Med Chem 2024; 67:16035-16055. [PMID: 39253942 DOI: 10.1021/acs.jmedchem.4c01684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Despite implementing hundreds of strategies, cancer drug development suffers from a 95% failure rate over 30 years, with only 30% of approved cancer drugs extending patient survival beyond 2.5 months. Adding more criteria without eliminating nonessential ones is impractical and may fall into the "survivorship bias" trap. Machine learning (ML) models may enhance efficiency by saving time and cost. Yet, they may not improve success rate without identifying the root causes of failure. We propose a "STAR-guided ML system" (structure-tissue/cell selectivity-activity relationship) to enhance success rate and efficiency by addressing three overlooked interdependent factors: potency/specificity to the on/off-targets determining efficacy in tumors at clinical doses, on/off-target-driven tissue/cell selectivity influencing adverse effects in the normal organs at clinical doses, and optimal clinical doses balancing efficacy/safety as determined by potency/specificity and tissue/cell selectivity. STAR-guided ML models can directly predict clinical dose/efficacy/safety from five features to design/select the best drugs, enhancing success and efficiency of cancer drug development.
Collapse
Affiliation(s)
| | | | - Zhigang Chen
- LabBotics.ai, Palo Alto, California 94303, United States
| | | | | | - Simon Zhou
- Aurinia Pharmaceuticals Inc., Rockville, Maryland 20850, United States
| | | | | | | | | | | | | | | | | | - Yan Li
- Translational Medicine and Clinical Pharmacology, Bristol Myers Squibb, Summit, New Jersey 07901, United States
| | | | | |
Collapse
|
3
|
Dia AK, Ebrahimpour L, Yolchuyeva S, Tonneau M, Lamaze FC, Orain M, Coulombe F, Malo J, Belkaid W, Routy B, Joubert P, Després P, Manem VSK. The Cross-Scale Association between Pathomics and Radiomics Features in Immunotherapy-Treated NSCLC Patients: A Preliminary Study. Cancers (Basel) 2024; 16:348. [PMID: 38254838 PMCID: PMC10813866 DOI: 10.3390/cancers16020348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Recent advances in cancer biomarker development have led to a surge of distinct data modalities, such as medical imaging and histopathology. To develop predictive immunotherapy biomarkers, these modalities are leveraged independently, despite their orthogonality. This study aims to explore the cross-scale association between radiological scans and digitalized pathology images for immunotherapy-treated non-small cell lung cancer (NSCLC) patients. METHODS This study involves 36 NSCLC patients who were treated with immunotherapy and for whom both radiology and pathology images were available. A total of 851 and 260 features were extracted from CT scans and cell density maps of histology images at different resolutions. We investigated the radiopathomics relationship and their association with clinical and biological endpoints. We used the Kolmogorov-Smirnov (KS) method to test the differences between the distributions of correlation coefficients with the two imaging modality features. Unsupervised clustering was done to identify which imaging modality captures poor and good survival patients. RESULTS Our results demonstrated a significant correlation between cell density pathomics and radiomics features. Furthermore, we also found a varying distribution of correlation values between imaging-derived features and clinical endpoints. The KS test revealed that the two imaging feature distributions were different for PFS and CD8 counts, while similar for OS. In addition, clustering analysis resulted in significant differences in the two clusters generated from the radiomics and pathomics features with respect to patient survival and CD8 counts. CONCLUSION The results of this study suggest a cross-scale association between CT scans and pathology H&E slides among ICI-treated patients. These relationships can be further explored to develop multimodal immunotherapy biomarkers to advance personalized lung cancer care.
Collapse
Affiliation(s)
- Abdou Khadir Dia
- Department of Mathematics and Computer Science, Université du Québec à Trois Rivières, Trois-Rivières, QC G8Z 4M3, Canada
| | - Leyla Ebrahimpour
- Quebec Heart & Lung Institute Research Center, Québec City, QC G1V 4G5, Canada (F.C.L.); (M.O.); (P.J.); (P.D.)
- Department of Physics, Laval University, Quebec City, QC G1V 0A6, Canada
- Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Sevinj Yolchuyeva
- Department of Mathematics and Computer Science, Université du Québec à Trois Rivières, Trois-Rivières, QC G8Z 4M3, Canada
- Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC G1V 0A6, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Marion Tonneau
- Lille Faculty of Medicine, University of Lille, 59020 Lille, France
- Centre de Recherche du Centre Hospitalier Universitaire de Montréal, Montréal, QC H2X 0A9, Canada
| | - Fabien C. Lamaze
- Quebec Heart & Lung Institute Research Center, Québec City, QC G1V 4G5, Canada (F.C.L.); (M.O.); (P.J.); (P.D.)
| | - Michèle Orain
- Quebec Heart & Lung Institute Research Center, Québec City, QC G1V 4G5, Canada (F.C.L.); (M.O.); (P.J.); (P.D.)
| | - Francois Coulombe
- Quebec Heart & Lung Institute Research Center, Québec City, QC G1V 4G5, Canada (F.C.L.); (M.O.); (P.J.); (P.D.)
| | - Julie Malo
- Centre de Recherche du Centre Hospitalier Universitaire de Montréal, Montréal, QC H2X 0A9, Canada
| | - Wiam Belkaid
- Centre de Recherche du Centre Hospitalier Universitaire de Montréal, Montréal, QC H2X 0A9, Canada
| | - Bertrand Routy
- Centre de Recherche du Centre Hospitalier Universitaire de Montréal, Montréal, QC H2X 0A9, Canada
| | - Philippe Joubert
- Quebec Heart & Lung Institute Research Center, Québec City, QC G1V 4G5, Canada (F.C.L.); (M.O.); (P.J.); (P.D.)
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Philippe Després
- Quebec Heart & Lung Institute Research Center, Québec City, QC G1V 4G5, Canada (F.C.L.); (M.O.); (P.J.); (P.D.)
- Department of Physics, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Venkata S. K. Manem
- Department of Mathematics and Computer Science, Université du Québec à Trois Rivières, Trois-Rivières, QC G8Z 4M3, Canada
- Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC G1V 0A6, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University, Quebec City, QC G1V 0A6, Canada
| |
Collapse
|
4
|
Klambauer G, Clevert DA, Shah I, Benfenati E, Tetko IV. Introduction to the Special Issue: AI Meets Toxicology. Chem Res Toxicol 2023; 36:1163-1167. [PMID: 37599584 DOI: 10.1021/acs.chemrestox.3c00217] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Affiliation(s)
- Günter Klambauer
- ELLIS Unit Linz, LIT AI Lab & Institute for Machine Learning, Johannes Kepler University Linz, Altenbergerstraße 69, Linz 4040, Austria
| | - Djork-Arné Clevert
- Machine Learning Research, Pfizer Worldwide Research Development and Medical, Linkstr. 10, Berlin 10785, Germany
| | - Imran Shah
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Emilio Benfenati
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano 20156, Italy
| | - Igor V Tetko
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Munich - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), 85764 Neuherberg, Germany
- BIGCHEM GmbH, Valerystr. 49, 85716 Unterschleißheim, Germany
| |
Collapse
|