1
|
Coverdale JPC, Polepalli S, Arruda MAZ, da Silva ABS, Stewart AJ, Blindauer CA. Recent Advances in Metalloproteomics. Biomolecules 2024; 14:104. [PMID: 38254704 PMCID: PMC10813065 DOI: 10.3390/biom14010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/17/2023] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Interactions between proteins and metal ions and their complexes are important in many areas of the life sciences, including physiology, medicine, and toxicology. Despite the involvement of essential elements in all major processes necessary for sustaining life, metalloproteomes remain ill-defined. This is not only owing to the complexity of metalloproteomes, but also to the non-covalent character of the complexes that most essential metals form, which complicates analysis. Similar issues may also be encountered for some toxic metals. The review discusses recently developed approaches and current challenges for the study of interactions involving entire (sub-)proteomes with such labile metal ions. In the second part, transition metals from the fourth and fifth periods are examined, most of which are xenobiotic and also tend to form more stable and/or inert complexes. A large research area in this respect concerns metallodrug-protein interactions. Particular attention is paid to separation approaches, as these need to be adapted to the reactivity of the metal under consideration.
Collapse
Affiliation(s)
- James P. C. Coverdale
- School of Pharmacy, Institute of Clinical Sciences, University of Birmingham, Edgbaston B15 2TT, UK;
| | | | - Marco A. Z. Arruda
- Institute of Chemistry, Department of Analytical Chemistry, Universidade Estadual de Campinas, Campinas 13083-970, Brazil; (M.A.Z.A.); (A.B.S.d.S.)
| | - Ana B. Santos da Silva
- Institute of Chemistry, Department of Analytical Chemistry, Universidade Estadual de Campinas, Campinas 13083-970, Brazil; (M.A.Z.A.); (A.B.S.d.S.)
| | - Alan J. Stewart
- School of Medicine, University of St. Andrews, St Andrews KY16 9TF, UK
| | | |
Collapse
|
2
|
Notova SV, Lebedev SV, Marshinskaia OV, Kazakova TV, Ajsuvakova OP. Speciation analysis of manganese against the background of its different content in the blood serum of dairy cows. Biometals 2023; 36:35-48. [PMID: 36282443 DOI: 10.1007/s10534-022-00456-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 10/06/2022] [Indexed: 11/28/2022]
Abstract
Studies in the field of microelement speciation in the body of farm animals, in particular dairy cattle, are almost completely absent. The average concentration of Mn in the blood serum of all the studied animals (n = 80) was 2.5 μg/L, which corresponds to normal values. Of the total number of animals, 21% were the cows with the low normal values (serum Mn concentration ≤ 2 µg/L, i.e. less than Q25 of the total sample) and 25% were the animals with the high normal values (serum Mn concentration ≥ 2.72 µg/L, i.e. more than Q75 of the total sample). The data obtained in the course of the study indicate that the change in the Mn level, even in the range of normal values, is accompanied by the redistribution of this element over various protein fractions. The six found Mn blood serum forms are presumably represented by α2-macroglobulin (tetramer, dimer, and monomer), transferrin/albumine, manganese citrates, and "free" metal ions. The analyzed fractions of Mn found in the blood serum of cows had the following hierarchy of concentrations: in the group with low-normal values of Mn ("free" Mn >> tetrameric form of α2-macroglobulin >> transferrin/albumine >> dimeric form of α2-macroglobulin >> monomeric form of α2-macroglobulin >> citrate), in the group with high normal manganese values ("free" Mn >> monomeric form of α2-macroglobulin >> transferring/albumine >> citrate >> tetrameric form of α2-macroglobulin >> dimeric form of α2-macroglobulin). In the group with high normal Mn values relative to the group with low normal values, there was a percentage decrease in the tetrameric fraction of a2-macroglobulin from 17.2 to 4.4%, dimeric fraction of a2-macroglobulin from 6.9 to 2.2%, "free" Mn from 54.3 to 44.4% and an increase in monomeric fraction of a2-macroglobulin from 6.7 to 23.1%, transferrin/albumine from 10.1 to 17.7%, citrate from 4.8 to 8.2%. Our data demonstrate the features of Mn redistribution of dairy cows, which can be used for an extended assessment of the microelement status of animals.
Collapse
Affiliation(s)
- S V Notova
- Federal Research Centre for Biological Systems and Agrotechnologies of the Russian Academy of Sciences, St. 9 Yanvarya, 29, Orenburg, Russian Federation, 460000
| | - S V Lebedev
- Federal Research Centre for Biological Systems and Agrotechnologies of the Russian Academy of Sciences, St. 9 Yanvarya, 29, Orenburg, Russian Federation, 460000
| | - O V Marshinskaia
- Federal Research Centre for Biological Systems and Agrotechnologies of the Russian Academy of Sciences, St. 9 Yanvarya, 29, Orenburg, Russian Federation, 460000.
| | - T V Kazakova
- Federal Research Centre for Biological Systems and Agrotechnologies of the Russian Academy of Sciences, St. 9 Yanvarya, 29, Orenburg, Russian Federation, 460000
| | - O P Ajsuvakova
- Federal Research Centre for Biological Systems and Agrotechnologies of the Russian Academy of Sciences, St. 9 Yanvarya, 29, Orenburg, Russian Federation, 460000
| |
Collapse
|
3
|
Michalke B, Berthele A, Venkataramani V. Simultaneous Quantification and Speciation of Trace Metals in Paired Serum and CSF Samples by Size Exclusion Chromatography-Inductively Coupled Plasma-Dynamic Reaction Cell-Mass Spectrometry (SEC-DRC-ICP-MS). Int J Mol Sci 2021; 22:8892. [PMID: 34445607 PMCID: PMC8396360 DOI: 10.3390/ijms22168892] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/12/2021] [Accepted: 08/15/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Transition metals play a crucial role in brain metabolism: since they exist in different oxidation states they are involved in ROS generation, but they are also co-factors of enzymes in cellular energy metabolism or oxidative defense. METHODS Paired serum and cerebrospinal fluid (CSF) samples were analyzed for iron, zinc, copper and manganese as well as for speciation using SEC-ICP-DRC-MS. Brain extracts from Mn-exposed rats were additionally analyzed with SEC-ICP-DRC-MS. RESULTS The concentration patterns of transition metal size fractions were correlated between serum and CSF: Total element concentrations were significantly lower in CSF. Fe-ferritin was decreased in CSF whereas a LMW Fe fraction was relatively increased. The 400-600 kDa Zn fraction and the Cu-ceruloplasmin fraction were decreased in CSF, by contrast the 40-80 kDa fraction, containing Cu- and Zn-albumin, relatively increased. For manganese, the α-2-macroglobulin fraction showed significantly lower concentration in CSF, whereas the citrate Mn fraction was enriched. Results from the rat brain extracts supported the findings from human paired serum and CSF samples. CONCLUSIONS Transition metals are strictly controlled at neural barriers (NB) of neurologic healthy patients. High molecular weight species are down-concentrated along NB, however, the Mn-citrate fraction seems to be less controlled, which may be problematic under environmental load.
Collapse
Affiliation(s)
- Bernhard Michalke
- Research Unit Analytical BioGeoChemistry, Helmholtz Center Munich—German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Achim Berthele
- Department of Neurology, School of Medicine, Technical University of Munich (TUM), Klinikum rechts der Isar, 81675 Munich, Germany;
| | - Vivek Venkataramani
- Department of Medicine II, Hematology/Oncology, University Hospital Frankfurt, 60590 Frankfurt am Main, Germany;
- Institute of Pathology, University Medical Center Göttingen (UMG), 37075 Göttingen, Germany
| |
Collapse
|
4
|
Ajsuvakova OP, Skalnaya MG, Michalke B, Tinkov AA, Serebryansky EP, Karganov MY, Medvedeva YS, Skalny AV. Alteration of iron (Fe), copper (Cu), zinc (Zn), and manganese (Mn) tissue levels and speciation in rats with desferioxamine-induced iron deficiency. Biometals 2021; 34:923-936. [PMID: 34003408 DOI: 10.1007/s10534-021-00318-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 05/08/2021] [Indexed: 11/29/2022]
Abstract
The objective of the present study was to investigate the impact of iron deficiency and iron replenishment on serum iron (Fe), copper (Cu), manganese (Mn), and zinc (Zn) speciation and tissue accumulation in a deferrioxamine-induced model of iron deficiency. A total of 26 male Wistar rats were divided into three groups: control; Fe-deficient; Fe-replenished (with iron (II) gluconate). Serum ferritin and transferrin levels were assessed using immunoturbudimetric method. Liver, spleen, and serum metal levels were assessed using ICP-MS. Speciation analysis was performed using a hyphenated HPLC-ICP-MS technique. Desferrioxamine injections resulted in a significant decrease in tissue iron content that was reversed by Fe supplementation. Iron speciation revealed a significant increase in serum transferrin-bound iron and reduced ferritin-bound Fe levels. Serum but not tissue Cu levels were characterized by a significant decrease in hypoferremic rats, whereas ceruloplasmin-bound fraction tended to increase. At the same time, Zn levels were found to be higher in liver, spleen, and serum of Fe-deficient rats with a predominant increase in low molecular weight fraction.Both iron-deficient and iron-replenished rats were characteirzed by increased transferrin-bound Mn levels and reduced low-molecular weight fraction. Hypothetically, these differences may be associated with impaired Fe metabolism under Fe-deficient conditions predisposing to impairment of essential metal handling. However, further studies aimed at assessment of the impact on Fe deficiency on metal metabolism are highly required.
Collapse
Affiliation(s)
- Olga P Ajsuvakova
- Micronutrients Ltd, Moscow, Russia. .,Odintsovo Distr., All-Russian Research Institute of Phytopathology, Bolshie Vyazemy, Moscow reg, Russia. .,Federal Research Centre of Biological Systems and Agro-technologies of the Russian Academy of Sciences, Orenburg, Russia.
| | | | - Bernhard Michalke
- Helmholtz Zentrum München, Ingolstädter Landstraße 1, Neuherberg, Germany
| | - Alexey A Tinkov
- Federal Research Centre of Biological Systems and Agro-technologies of the Russian Academy of Sciences, Orenburg, Russia.,IM Sechenov First Moscow State Medical University (Sechenov University), 119146, Moscow, Russia.,Orenburg State University, Moscow, Russia.,K.G. Razumovsky Moscow State University of Technologies and Management, Moscow, Russia
| | | | | | - Yulia S Medvedeva
- Institute of General Pathology and Pathophysiology, 125315, Moscow, Russia
| | - Anatoly V Skalny
- Federal Research Centre of Biological Systems and Agro-technologies of the Russian Academy of Sciences, Orenburg, Russia.,IM Sechenov First Moscow State Medical University (Sechenov University), 119146, Moscow, Russia.,Orenburg State University, Moscow, Russia.,K.G. Razumovsky Moscow State University of Technologies and Management, Moscow, Russia
| |
Collapse
|
5
|
Nkpaa KW, Onyeso GI, Kponee KZ. Rutin abrogates manganese-Induced striatal and hippocampal toxicity via inhibition of iron depletion, oxidative stress, inflammation and suppressing the NF-κB signaling pathway. J Trace Elem Med Biol 2019; 53:8-15. [PMID: 30910212 DOI: 10.1016/j.jtemb.2019.01.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/22/2018] [Accepted: 01/23/2019] [Indexed: 12/30/2022]
Abstract
Excess exposure to Manganese (Mn) promotes oxidative stress and neuro-inflammation. Rutin (RUT) has been found to exhibit both anti-oxidative stress and anti-inflammatory properties. This study aimed to investigate the effects of RUT on Mn accumulation, endogenous iron (Fe) depletion, oxidative stress, inflammation and nuclear factor kappa B (NF-κB) signaling pathways in the hippocampus and striatum of Mn - induced rats. Rats were treated with 30 mg/kg Mn body weight alone or orally co-treated by gavage with RUT at 50 and at 100 mg/kg body weight for 35 consecutive days. Thereafter, we investigated Mn and endogenous Fe levels, acetylcholinesterase activity, oxidative stress markers, pro-inflammatory cytokines and nuclear factor kappa B (NF-κB) in the hippocampus and striatum of rats. The results indicate that Mn induced Mn - accumulation, Fe depletion, oxidative stress, inflammation and the activation of acetylcholinesterase activity and NF-κB signaling pathways in the hippocampus and striatum of the rats. However, RUT attenuated Fe depletion, oxidative stress and inflammation and suppressed acetylcholinesterase activity and NF-κB pathway via downstream regulations of tumor necrosis factor alpha, interleukin I beta and interleukin 6. Taken together, our present study demonstrates that RUT abrogates Mn - induced striatal and hippocampal toxicity via inhibition of Fe depletion, oxidative stress, inflammation and suppressing the NF-κB signaling pathways. Our results indicate that RUT may be of use as a neuroprotective agent against Mn - induced neuronal toxicity.
Collapse
Affiliation(s)
- Kpobari W Nkpaa
- Environmental Toxicology Unit, Department of Biochemistry, Faculty of Science, University of Port Harcourt, P.M.B. 5323, Choba, Rivers State, Nigeria.
| | - Godspower I Onyeso
- Department of Physiology, College of Medicine, Rivers State University, Port Harcourt, P.M.B. 5080, Rivers State, Nigeria
| | - Kale Z Kponee
- Departments of Environmental Health and Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
6
|
Schmitt-Kopplin P, Hemmler D, Moritz F, Gougeon RD, Lucio M, Meringer M, Müller C, Harir M, Hertkorn N. Systems chemical analytics: introduction to the challenges of chemical complexity analysis. Faraday Discuss 2019; 218:9-28. [DOI: 10.1039/c9fd00078j] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We present concepts of complexity, and complex chemistry in systems subjected to biotic and abiotic transformations, and introduce analytical possibilities to disentangle chemical complexity into its elementary parts as a global integrated approach termed systems chemical analytics.
Collapse
Affiliation(s)
- Philippe Schmitt-Kopplin
- HelmholtzZentrum Muenchen
- German Research Center for Environmental Health
- Department of Environmental Sciences
- D-85764 Neuherberg
- Germany
| | - Daniel Hemmler
- HelmholtzZentrum Muenchen
- German Research Center for Environmental Health
- Department of Environmental Sciences
- D-85764 Neuherberg
- Germany
| | - Franco Moritz
- HelmholtzZentrum Muenchen
- German Research Center for Environmental Health
- Department of Environmental Sciences
- D-85764 Neuherberg
- Germany
| | - Régis D. Gougeon
- UMR PAM Université de Bourgogne/AgroSup Dijon
- Institut Universitaire de la Vigne et du Vin
- Dijon
- France
| | - Marianna Lucio
- HelmholtzZentrum Muenchen
- German Research Center for Environmental Health
- Department of Environmental Sciences
- D-85764 Neuherberg
- Germany
| | - Markus Meringer
- German Aerospace Center (DLR)
- Earth Observation Center (EOC)
- 82234 Oberpfaffenhofen-Wessling
- Germany
| | - Constanze Müller
- HelmholtzZentrum Muenchen
- German Research Center for Environmental Health
- Department of Environmental Sciences
- D-85764 Neuherberg
- Germany
| | - Mourad Harir
- HelmholtzZentrum Muenchen
- German Research Center for Environmental Health
- Department of Environmental Sciences
- D-85764 Neuherberg
- Germany
| | - Norbert Hertkorn
- HelmholtzZentrum Muenchen
- German Research Center for Environmental Health
- Department of Environmental Sciences
- D-85764 Neuherberg
- Germany
| |
Collapse
|
7
|
Metabolomic investigations in cerebrospinal fluid of Parkinson's disease. PLoS One 2018; 13:e0208752. [PMID: 30532185 PMCID: PMC6287824 DOI: 10.1371/journal.pone.0208752] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/21/2018] [Indexed: 12/31/2022] Open
Abstract
The underlying mechanisms of Parkinson´s disease are not completely revealed. Especially, early diagnostic biomarkers are lacking. To characterize early pathophysiological events, research is focusing on metabolomics. In this case-control study we investigated the metabolic profile of 31 Parkinson´s disease-patients in comparison to 95 neurologically healthy controls. The investigation of metabolites in CSF was performed by a 12 Tesla SolariX Fourier transform-ion cyclotron resonance-mass spectrometer (FT-ICR-MS). Multivariate statistical analysis sorted the most important biomarkers in relation to their ability to differentiate Parkinson versus control. The affected metabolites, their connection and their conversion pathways are described by means of network analysis. The metabolic profiling by FT-ICR-MS in CSF yielded in a good group separation, giving insights into the disease mechanisms. A total number of 243 metabolites showed an affected intensity in Parkinson´s disease, whereas 15 of these metabolites seem to be the main biological contributors. The network analysis showed a connection to the tricarboxylic cycle (TCA cycle) and therefore to mitochondrial dysfunction and increased oxidative stress within mitochondria. The metabolomic analysis of CSF in Parkinson´s disease showed an association to pathways which are involved in lipid/ fatty acid metabolism, energy metabolism, glutathione metabolism and mitochondrial dysfunction.
Collapse
|
8
|
Willkommen D, Lucio M, Schmitt-Kopplin P, Gazzaz M, Schroeter M, Sigaroudi A, Michalke B. Species fractionation in a case-control study concerning Parkinson's disease: Cu-amino acids discriminate CSF of PD from controls. J Trace Elem Med Biol 2018; 49:164-170. [PMID: 29472131 DOI: 10.1016/j.jtemb.2018.01.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/02/2018] [Accepted: 01/17/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Parkinson's disease is affecting about 1% of the population above 65 years. Improvements in medicine support prolonged lifetime which increases the total concentration of humans affected by the disease. It is suggested that occupational and environmental exposure to metals like iron (Fe), manganese (Mn), copper (Cu) and zinc (Zn) can influence the risk for Parkinson's disease. These metals play a key role as cofactors in many enzymes and proteins. METHODS In this case-control study, we investigated the Mn-, Fe-, Cu- and Zn-species in cerebrospinal fluid (CSF) by size-exclusion chromatography hyphenated to inductively coupled plasma mass spectrometry (SEC-ICP-MS) and the total concentration of these metals by inductively coupled plasma sector field mass spectrometry (ICP-sf-MS). RESULTS The investigation of total metal concentration and speciation provided only minor changes, but it produced strong significance for a number of ratios. The analysis revealed a strong change in the ratio between total concentration of Fe and the amino acid-fraction of Cu. This could be observed when analyzing both the respective element concentrations of the fraction (which also depends on individual variation of the total element concentration) as well as when being expressed as percentage of total concentration (normalization) which more clearly shows changes of distribution pattern independent of individual variation of total element concentrations. CONCLUSION Speciation analysis, therefore, is a powerful technique to investigate changes in a case-control study where ratios of different species play an important role.
Collapse
Affiliation(s)
- Desiree Willkommen
- Helmholtz Zentrum München, Analytical Biogeochemistry, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany.
| | - Marianna Lucio
- Helmholtz Zentrum München, Analytical Biogeochemistry, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Philippe Schmitt-Kopplin
- Helmholtz Zentrum München, Analytical Biogeochemistry, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany; TU München, Lehrstuhl für Analytische Lebensmittelchemie, Wissenschaftszentrum Weihenstephan, Alte Akademie 10, 85354 Freising, Germany
| | - Malaz Gazzaz
- Uniklinik Köln, Institut I für Pharmakologie, Zentrum für Pharmakologie, Gleueler Straße 24, 50931 Köln, Germany
| | - Michael Schroeter
- Uniklinik Köln, Klinik und Poliklinik für Neurologie und Psychiatrie, Kerpener Str. 62, 50924 Köln, Germany
| | - Ali Sigaroudi
- Uniklinik Köln, Institut I für Pharmakologie, Zentrum für Pharmakologie, Gleueler Straße 24, 50931 Köln, Germany; Universitätsspital Zürich, Klinik für Klinische Pharmakologie und Toxikologie, Rämistraße 100, 8091 Zürich, Switzerland
| | - Bernhard Michalke
- Helmholtz Zentrum München, Analytical Biogeochemistry, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| |
Collapse
|
9
|
|
10
|
Gil AM, Duarte D, Pinto J, Barros AS. Assessing Exposome Effects on Pregnancy through Urine Metabolomics of a Portuguese (Estarreja) Cohort. J Proteome Res 2018; 17:1278-1289. [DOI: 10.1021/acs.jproteome.7b00878] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Ana M. Gil
- CICECO
- Aveiro Institute of Materials (CICECO/UA), Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Daniela Duarte
- CICECO
- Aveiro Institute of Materials (CICECO/UA), Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Joana Pinto
- CICECO
- Aveiro Institute of Materials (CICECO/UA), Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
- UCIBIO@REQUIMTE/Laboratório
de Toxicologia, Departamento de Ciências Biológicas,
Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - António S. Barros
- CICECO
- Aveiro Institute of Materials (CICECO/UA), Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
- Department
of Cardiothoracic Surgery and Physiology, Faculty of Medicine, Porto 4200-319, Portugal
| |
Collapse
|
11
|
Wang H, Liu Z, Wang S, Cui D, Zhang X, Liu Y, Zhang Y. UHPLC-Q-TOF/MS based plasma metabolomics reveals the metabolic perturbations by manganese exposure in rat models. Metallomics 2017; 9:192-203. [PMID: 28133682 DOI: 10.1039/c7mt00007c] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Although manganese (Mn) is an essential metal ion biological cofactor, high concentrations could potentially induce an accumulation in the brain and lead to manganism. However, there is no "gold standard" for manganism assessment due to a lack of objective biomarkers. We hypothesized that Mn-induced alterations are associated with metabolic responses to manganism. Here we use an untargeted metabolomics approach by performing ultra-high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF/MS) on control and Mn-treated rat plasma, to identify metabolic disruptions under high Mn exposure conditions. Sprague-Dawley rats had access to deionized drinking water that was either Mn-free or contained 200 mg Mn per L for 5 weeks. Mn-exposure significantly increased liver Mn concentration in comparison with the control, and also resulted in extensive necrosis and dissolved nuclei, which suggested liver damage from hepatic histopathology. Principal component analysis readily distinguished the metabolomes between the control group and the Mn-treated group. Using multivariate and univariate analysis, Mn significantly altered the concentrations of 36 metabolites (12 metabolites showed a remarkable increase in number and 24 metabolites reduced significantly in concentration) in the plasma of the Mn-treated group. Major alterations were observed for purine metabolism, amino acid metabolism and fatty acid metabolism. These data provide metabolic evidence and putative biomarkers for the Mn-induced alterations in plasma metabolism. The targets of these metabolites have the potential to improve our understanding of cell-level Mn trafficking and homeostatic mechanisms.
Collapse
Affiliation(s)
- Hui Wang
- College of Veterinary Medicine, Northwest A & F University, Yangling 712100, China. and Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Zhiqi Liu
- Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shengyi Wang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Dongan Cui
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Xinke Zhang
- College of Veterinary Medicine, Northwest A & F University, Yangling 712100, China.
| | - Yongming Liu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Yihua Zhang
- College of Veterinary Medicine, Northwest A & F University, Yangling 712100, China.
| |
Collapse
|
12
|
Filippini T, Michalke B, Grill P, Malagoli C, Malavolti M, Vescovi L, Sieri S, Krogh V, Cherubini A, Maffeis G, Lucchini R, Ferrante M, Vinceti M. Determinants of serum manganese levels in an Italian population. Mol Med Rep 2017; 15:3340-3349. [PMID: 28339021 DOI: 10.3892/mmr.2017.6379] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 02/13/2017] [Indexed: 11/06/2022] Open
Abstract
Manganese (Mn) is both essential and toxic for humans, mainly depending on the total levels and its species. Main sources of exposure include food and air pollution, particularly motorized traffic. We sought to determine the potential influence of these sources on serum total levels of Mn and Mn species. We selected a random sample of municipality residents from an Italian urban municipality, from whom we collected detailed personal information, dietary habits and a blood sample for serum Mn determination. We also assessed outdoor air Mn exposure, by modeling levels of particulate matter ≤10 µm (PM10) from motorized traffic at the residence of geocoded subjects. Serum Mn species generally showed higher levels in males and positive correlation with age, while no such differences were found according to smoking habits or use of dietary supplements. Among nutrients, only iron intake showed a relation with Mn [an inverse correlation with Mn‑ferritin (Mn‑Fer) and a direct one with inorganic‑Mn (Inorg‑Mn)]. Meat consumption directly correlated and fish and seafood inversely correlated with total Mn, Mn‑transferrin (Mn‑Tf) and Mn-citrate (Mn-Cit). Fruits and vegetables, including legumes and nuts, generally showed a positive correlation with all Mn species, especially Mn‑Cit, and an inverse one with Inorg‑Mn. Odds ratios (ORs) of having serum Mn levels above median value increased with increasing PM10 tertiles, with an OR for highest‑to‑lowest tertile of 7.40 (1.36‑40.25) in multivariate analysis. Analyses for Mn species did not highlight a clear comparable pattern. In conclusion, our results seem to demonstrate that PM10 exposure positively influences total Mn serum levels, while single Mn species show conflicting results.
Collapse
Affiliation(s)
- Tommaso Filippini
- CREAGEN, Environmental, Genetic and Nutritional Epidemiology Research Center, Section of Public Health, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, I‑41125 Modena, Italy
| | - Bernhard Michalke
- Helmholtz Zentrum München, Research Center for Environmental Health, Research Unit Analytical BioGeoChemistry, D‑85764 Neuherberg, Germany
| | - Peter Grill
- Helmholtz Zentrum München, Research Center for Environmental Health, Research Unit Analytical BioGeoChemistry, D‑85764 Neuherberg, Germany
| | - Carlotta Malagoli
- CREAGEN, Environmental, Genetic and Nutritional Epidemiology Research Center, Section of Public Health, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, I‑41125 Modena, Italy
| | - Marcella Malavolti
- CREAGEN, Environmental, Genetic and Nutritional Epidemiology Research Center, Section of Public Health, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, I‑41125 Modena, Italy
| | - Luciano Vescovi
- Laboratory of Environmental Chemistry, IREN, I-42123 Reggio Emilia, Italy
| | - Sabina Sieri
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori I‑20133 Milan, Italy
| | - Vittorio Krogh
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori I‑20133 Milan, Italy
| | | | | | - Roberto Lucchini
- Section of Occupational Medicine, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, I‑25125 Brescia, Italy
| | - Margherita Ferrante
- Department of Medical, Surgical Sciences and Advanced Technologies 'G.F. Ingrassia', University of Catania, I‑95123 Catania, Italy
| | - Marco Vinceti
- CREAGEN, Environmental, Genetic and Nutritional Epidemiology Research Center, Section of Public Health, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, I‑41125 Modena, Italy
| |
Collapse
|
13
|
Sonet J, Bulteau AL, Chavatte L, García-Barrera T, Gómez-Ariza JL, Callejón-Leblic B, Nischwitz V, Theiner S, Galvez L, Koellensperger G, Keppler BK, Roman M, Barbante C, Neth K, Bornhorst J, Michalke B. Biomedical and Pharmaceutical Applications. Metallomics 2016. [DOI: 10.1002/9783527694907.ch13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Jordan Sonet
- Centre National de Recherche Scientifique (CNRS)/Université de Pau et des Pays de l'Adour (UPPA), Unité Mixte de Recherche (UMR) 5254; Institut Pluridisciplinaire de Recherche sur l'Environnement et les Matériaux (IPREM), Laboratoire de Chimie Analytique Bio-Inorganique et Environnement (LCABIE); Technopôle Hélioparc Pau Pyrénées, 2 Avenue du Président Pierre Angot 64000 Pau France
| | - Anne-Laure Bulteau
- Centre National de Recherche Scientifique (CNRS)/Université de Pau et des Pays de l'Adour (UPPA), Unité Mixte de Recherche (UMR) 5254; Institut Pluridisciplinaire de Recherche sur l'Environnement et les Matériaux (IPREM), Laboratoire de Chimie Analytique Bio-Inorganique et Environnement (LCABIE); Technopôle Hélioparc Pau Pyrénées, 2 Avenue du Président Pierre Angot 64000 Pau France
| | - Laurent Chavatte
- Centre National de Recherche Scientifique (CNRS)/Université de Pau et des Pays de l'Adour (UPPA), Unité Mixte de Recherche (UMR) 5254; Institut Pluridisciplinaire de Recherche sur l'Environnement et les Matériaux (IPREM), Laboratoire de Chimie Analytique Bio-Inorganique et Environnement (LCABIE); Technopôle Hélioparc Pau Pyrénées, 2 Avenue du Président Pierre Angot 64000 Pau France
| | - Tamara García-Barrera
- University of Huelva; Department of Chemistry, Campus El Carmen; Fuerzas Armadas Ave 21007 Huelva Spain
| | - José Luis Gómez-Ariza
- University of Huelva, Research Center of Health and Environment (CYSMA); Campus El Carmen; Fuerzas Armadas Ave 21007 Huelva Spain
| | - Belén Callejón-Leblic
- University of Huelva; Department of Chemistry, Campus El Carmen; Fuerzas Armadas Ave 21007 Huelva Spain
| | - Volker Nischwitz
- Forschungszentrum Jülich; Central Institute for Engineering, Electronics and Analytics; Analytics (ZEA-3), Wilhelm-Johnen-Straße 52428 Jülich Germany
| | - Sarah Theiner
- University of Vienna; Department of Inorganic Chemistry; Waehringer Strasse 42 1090 Vienna Austria
| | - Luis Galvez
- University of Vienna, Research Platform ‘Translational Cancer Therapy Research’; Waehringer Strasse 42 1090 Vienna Austria
| | - Gunda Koellensperger
- University of Vienna, Department of Analytical Chemistry; Waehringer Strasse 38 1090 Vienna Austria
| | - Bernhard K. Keppler
- University of Vienna; Department of Inorganic Chemistry; Waehringer Strasse 42 1090 Vienna Austria
| | - Marco Roman
- Ca' Foscari University of Venice; Department of Environmental Sciences, Informatics and Statistics (DAIS); Via Torino 155 30172 Venice Italy
| | - Carlo Barbante
- National Research Council; Institute for the Dynamics of Environmental Processes (IDPA-CNR); Via Torino 155 30172 Venice Italy
| | - Katharina Neth
- Helmholtz Center Munich, German Research Center for Environmental Health GmbH; Research Unit: Analytical BioGeoChemistry; Ingolstädter Landstraße 1 85764 Neuherberg Germany
| | - Julia Bornhorst
- University of Potsdam; Department of Food Chemistry, Institute of Nutritional Science; Arthur-Scheunert-Allee 114-116 14558 Nuthetal Germany
| | - Bernhard Michalke
- Helmholtz Center Munich, German Research Center for Environmental Health GmbH; Research Unit: Analytical BioGeoChemistry; Ingolstädter Landstraße 1 85764 Neuherberg Germany
| |
Collapse
|
14
|
Michalke B. Review about the manganese speciation project related to neurodegeneration: An analytical chemistry approach to increase the knowledge about manganese related parkinsonian symptoms. J Trace Elem Med Biol 2016; 37:50-61. [PMID: 27006066 DOI: 10.1016/j.jtemb.2016.03.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/03/2016] [Accepted: 03/06/2016] [Indexed: 12/20/2022]
Abstract
Neurodegenerative diseases get a growing relevance for societies. But yet the complex multi-factorial mechanisms of these diseases are not fully understood, although it is well accepted that metal ions may play a crucial role. Manganese (Mn) is a transition metal which has essential biochemical functions but from occupational exposure scenarios it appeared that Mn can cause severe neurological damage. This "two-faces"-nature of manganese initiated us to start a project on Mn-speciation, since different element species are known to exhibit different impacts on health. A summary about the step-wise developments and findings from our working group was presented during the annual conference of the German trace element society in 2015. This paper summarizes now the contribution to this conference. It is intended to provide a complete picture of the so far evolved puzzle from our studies regarding manganese, manganese speciation and metabolomics as well as Mn-related mechanisms of neural damage. Doing so, the results of the single studies are now summarized in a connected way and thus their interrelationships are demonstrated. In short terms, we found that Mn-exposure leads to an increase of low molecular weight Mn compounds, above all Mn-citrate complex, which gets even enriched across neural barriers (NB). At a Mn serum concentration between 1.5 and 1.9μg/L a carrier switch from Mn-transferrin to Mn-citrate was observed. We concluded that the Mn-citrate complex is that important Mn-carrier to NB which can be found also beyond NB in human cerebrospinal fluid (CSF) or brain of exposed rats. In brain of Mn-exposed rats manganese leads to a decreased iron (Fe) concentration, to a shift from Fe(III) to Fe(II) after long term exposure and thus to a shift toward oxidative stress. This was additionally supported by an increase of markers for oxidative stress, inflammation or lipid peroxidation at increased Mn concentration in brain extracts. Furthermore, glutamate and acetylcholineesterase were elevated and many metabolite concentrations were significantly changed.
Collapse
Affiliation(s)
- Bernhard Michalke
- Helmholtz Zentrum München-Deutsches Forschungszentrum für Gesundheit und Umwelt, Research Unit Analytical BioGeoChemistry, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany.
| |
Collapse
|
15
|
Neth K, Lucio M, Walker A, Zorn J, Schmitt-Kopplin P, Michalke B. Changes in Brain Metallome/Metabolome Pattern due to a Single i.v. Injection of Manganese in Rats. PLoS One 2015; 10:e0138270. [PMID: 26383269 PMCID: PMC4575095 DOI: 10.1371/journal.pone.0138270] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/27/2015] [Indexed: 12/20/2022] Open
Abstract
Exposure to high concentrations of Manganese (Mn) is known to potentially induce an accumulation in the brain, leading to a Parkinson related disease, called manganism. Versatile mechanisms of Mn-induced brain injury are discussed, with inactivation of mitochondrial defense against oxidative stress being a major one. So far, studies indicate that the main Mn-species entering the brain are low molecular mass (LMM) compounds such as Mn-citrate. Applying a single low dose MnCl2 injection in rats, we observed alterations in Mn-species pattern within the brain by analysis of aqueous brain extracts by size-exclusion chromatography—inductively coupled plasma mass spectrometry (SEC-ICP-MS). Additionally, electrospray ionization—ion cyclotron resonance-Fourier transform-mass spectrometry (ESI-ICR/FT-MS) measurement of methanolic brain extracts revealed a comprehensive analysis of changes in brain metabolisms after the single MnCl2 injection. Major alterations were observed for amino acid, fatty acid, glutathione, glucose and purine/pyrimidine metabolism. The power of this metabolomic approach is the broad and detailed overview of affected brain metabolisms. We also correlated results from the metallomic investigations (Mn concentrations and Mn-species in brain) with the findings from metabolomics. This strategy might help to unravel the role of different Mn-species during Mn-induced alterations in brain metabolism.
Collapse
Affiliation(s)
- Katharina Neth
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München—German Research Center for Environment and Health (GmbH), Ingolstädter Landstrasse 1, D-85764, Neuherberg, Germany
- * E-mail:
| | - Marianna Lucio
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München—German Research Center for Environment and Health (GmbH), Ingolstädter Landstrasse 1, D-85764, Neuherberg, Germany
| | - Alesia Walker
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München—German Research Center for Environment and Health (GmbH), Ingolstädter Landstrasse 1, D-85764, Neuherberg, Germany
| | - Julia Zorn
- Research Unit Comparative Medicine, Helmholtz Zentrum München—German Research Center for Environment and Health (GmbH), Ingolstädter Landstrasse 1, D-85764, Neuherberg, Germany
| | - Philippe Schmitt-Kopplin
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München—German Research Center for Environment and Health (GmbH), Ingolstädter Landstrasse 1, D-85764, Neuherberg, Germany
- Chair of Analytical Food Chemistry, Technische Universität München, Alte Akademie 10, D- 85354, Freising-Weihenstephan, Germany
| | - Bernhard Michalke
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München—German Research Center for Environment and Health (GmbH), Ingolstädter Landstrasse 1, D-85764, Neuherberg, Germany
| |
Collapse
|