1
|
Shalamitskiy MY, Tanashchuk TN, Cherviak SN, Vasyagin EA, Ravin NV, Mardanov AV. Ethyl Carbamate in Fermented Food Products: Sources of Appearance, Hazards and Methods for Reducing Its Content. Foods 2023; 12:3816. [PMID: 37893709 PMCID: PMC10606259 DOI: 10.3390/foods12203816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Ethyl carbamate, the ethyl ester of carbamic acid, has been identified in fermented foods and alcoholic beverages. Since ethyl carbamate is a probable human carcinogen, reduction of its content is important for food safety and human health. In alcoholic beverages, ethyl carbamate is mostly formed from the reaction of ethanol with urea, citrulline and carbamyl phosphate during fermentation and storage. These precursors are generated from arginine metabolism by wine yeasts and lactic acid bacteria. This review summarizes the mechanisms of ethyl carbamate formation, its impact on human health and methods used in winemaking to minimize its content. These approaches include genetic modification of Saccharomyces cerevisiae wine strains targeting pathways of arginine transport and metabolism, the use of lactic acid bacteria to consume arginine, direct degradation of ethyl carbamate by enzymes and microorganisms, and different technological methods of grape cultivation, alcoholic fermentation, wine aging, temperature and duration of storage and transportation.
Collapse
Affiliation(s)
- Maksim Yu. Shalamitskiy
- All-Russian National Research Institute of Viticulture and Winemaking “Magarach” of the Russian Academy of Sciences, 298600 Yalta, Russia; (M.Y.S.); (T.N.T.); (S.N.C.)
| | - Tatiana N. Tanashchuk
- All-Russian National Research Institute of Viticulture and Winemaking “Magarach” of the Russian Academy of Sciences, 298600 Yalta, Russia; (M.Y.S.); (T.N.T.); (S.N.C.)
| | - Sofia N. Cherviak
- All-Russian National Research Institute of Viticulture and Winemaking “Magarach” of the Russian Academy of Sciences, 298600 Yalta, Russia; (M.Y.S.); (T.N.T.); (S.N.C.)
| | - Egor A. Vasyagin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (E.A.V.); (N.V.R.)
| | - Nikolai V. Ravin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (E.A.V.); (N.V.R.)
| | - Andrey V. Mardanov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (E.A.V.); (N.V.R.)
| |
Collapse
|
2
|
Abstract
Environmental agents of exposure can damage proteins, affecting protein function and cellular protein homeostasis. Specific residues are inherently chemically susceptible to damage from individual types of exposure. Amino acid content is not completely predictive of protein susceptibility, as secondary, tertiary, and quaternary structures of proteins strongly influence the reactivity of the proteome to individual exposures. Because we cannot readily predict which proteins will be affected by which chemical exposures, mass spectrometry-based proteomic strategies are necessary to determine the protein targets of environmental toxins and toxicants. This review describes the mechanisms by which environmental exposure to toxins and toxicants can damage proteins and affect their function, and emerging omic methodologies that can be used to identify the protein targets of a given agent. These methods include target identification strategies that have recently revolutionized the drug discovery field, such as activity-based protein profiling, protein footprinting, and protein stability profiling technologies. In particular, we highlight the necessity of multiple, complementary approaches to fully interrogate how protein integrity is challenged by individual exposures.
Collapse
Affiliation(s)
- Joseph C Genereux
- Department of Chemistry, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
3
|
Guo W, Guo C, Ma YN, Chen X. Practical Synthesis of B(9)-Halogenated Carboranes with N-Haloamides in Hexafluoroisopropanol. Inorg Chem 2022; 61:5326-5334. [PMID: 35311288 DOI: 10.1021/acs.inorgchem.2c00074] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The B(9)-H halogenation of o-carborane and m-carborane was achieved with excellent selectivities in hexafluoroisopropanol (HFIP) under simple reaction conditions: single reagent [trichloroisocyanuric acid (TCCA), tribromoisocyanuric acid (TBCA) or N-iodosuccinimide (NIS)], catalyst-free, air-/moisture-tolerant, and convenient work-up. With this method, a variety of 9-halogenated o-carboranes and m-carboranes were obtained in good to excellent yields with broad tolerance of functional groups.
Collapse
Affiliation(s)
- Wenjing Guo
- College of Chemistry, and Institute of Green Catalysis, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Chenyang Guo
- Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, The Chinese Academy of Sciences, Shanghai 200032, China
| | - Yan-Na Ma
- College of Chemistry, and Institute of Green Catalysis, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xuenian Chen
- College of Chemistry, and Institute of Green Catalysis, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
4
|
Wang Y, Yang X, Zhang S, Guo TL, Zhao B, Du Q, Chen J. Polarizability and aromaticity index govern AhR-mediated potencies of PAHs: A QSAR with consideration of freely dissolved concentrations. CHEMOSPHERE 2021; 268:129343. [PMID: 33359989 DOI: 10.1016/j.chemosphere.2020.129343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/12/2020] [Accepted: 12/13/2020] [Indexed: 06/12/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants associated with adverse human effects including cancer, and the aryl hydrocarbon receptor (AhR) is a key ligand-activated transcription factor mediating their toxicity. However, there is presently a lack of data on AhR potencies of PAHs. Simple, transparent, interpretable and predictive quantitative structure-activity relationship (QSAR) models are helpful, especially with the consideration of freely dissolved concentrations linked to bioavailability. Here, QSAR models on AhR-mediated luciferase activity of PAHs were developed with nominal median effect concentrations (EC50, nom) and freely dissolved concentration (EC50, free) as endpoints, and quantum chemical and Dragon descriptors as predictor variables. Results indicated that only the EC50, free model met the acceptable criteria of QSAR model (determination coefficient (R2) > 0.600, leave-one-out cross validation (QLOO2) > 0.500, and external validation coefficient (QEXT2) > 0.500), implying that it has good goodness-of-fit, robustness and external predictive power. Molecular polarizability and aromaticity index reflecting the partition behavior and intermolecular interactions can effectively predict AhR-mediated potencies of PAHs. The results highlight the necessity of adoption of the freely dissolved concentration in the QSAR modeling and more in silico models need to be further developed for different animal models (in vivo or in vitro).
Collapse
Affiliation(s)
- Ying Wang
- Key Laboratory for Ecological Environment in Coastal Areas, Ministry of Ecology and Environment, National Marine Environmental Monitoring Center, 42 Linghe Street, Dalian, 116023, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing, 100085, China
| | - Xianhai Yang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Songyan Zhang
- Engineering Laboratory of Shenzhen Natural Small Molecule Innovative Drugs, Health Science Center, Shenzhen University, 3688 Nanhai Avenue, Shenzhen, 518060, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing, 100085, China
| | - Tai L Guo
- Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, 501 D.W. Brooks Drive, Athens, GA, 30602, USA
| | - Bin Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing, 100085, China.
| | - Qiong Du
- Appraisal Center for Environment and Engineering, Ministry of Ecology and Environment, 8 Dayangfang, Anwai Beiyuan, Chaoyang District, Beijing, 100012, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (China Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China.
| |
Collapse
|
5
|
Do Q, Lee DD, Dinh AN, Seguin RP, Zhang R, Xu L. Development and Application of a Peroxyl Radical Clock Approach for Measuring Both Hydrogen-Atom Transfer and Peroxyl Radical Addition Rate Constants. J Org Chem 2020; 86:153-168. [PMID: 33269585 DOI: 10.1021/acs.joc.0c01920] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The rate-determining step in free radical lipid peroxidation is the propagation of the peroxyl radical, where generally two types of reactions occur: (a) hydrogen-atom transfer (HAT) from a donor to the peroxyl radical; (b) peroxyl radical addition (PRA) to a "C═C" double bond. Peroxyl radical clocks have been used to determine the rate constants of HAT reactions (kH), but no radical clock is available to measure the rate constants of PRA reactions (kadd). In this work, we modified the analytical approach on the linoleate-based peroxyl radical clock to enable the simultaneous measurement of both kH and kadd. Compared to the original approach, this new approach involves the use of a strong reducing agent, LiAlH4, to completely reduce both HAT and PRA-derived products and the relative quantitation of total linoleate oxidation products with or without reduction. The new approach was then applied to measuring the kH and kadd values for several series of organic substrates, including para- and meta-substituted styrenes, substituted conjugated dienes, and cyclic alkenes. Furthermore, the kH and kadd values for a variety of biologically important lipids were determined for the first time, including conjugated fatty acids, sterols, coenzyme Q10, and lipophilic vitamins, such as vitamins D3 and A.
Collapse
Affiliation(s)
- Quynh Do
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - David D Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Andrew N Dinh
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Ryan P Seguin
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Rutan Zhang
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Libin Xu
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
6
|
Liu Y, Li Y, Zong L, Zhang J. Comparison of two rhodamine-based polystyrene solid-phase fluorescent sensors for mercury(II) determination. JOURNAL OF CHEMICAL RESEARCH 2020. [DOI: 10.1177/1747519820904854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Two novel rhodamine-based polystyrene solid-phase fluorescent sensors PS-AC-I and PS-AC-II with different coordination atoms (O or S) are synthesized and shown to be able to detect Hg(II) ions. They are characterized by Fourier-transform infrared spectroscopy and by scanning electron microscopy analysis. Their fluorescent properties, including response time, pH effects, fluorescence titrations, metal ion competition and recycling, are investigated and compared. Sensor PS-AC-II displayed higher selectivity and sensitivity to Hg(II), with a lower detection limit of 0.032 µM, which was 15 times better than PS-AC-I. A detection mechanism involving the Hg(II) chelation-induced ring-opening of the rhodamine spirolactam is proposed with the aid of theoretical calculations.
Collapse
Affiliation(s)
- Yuanyuan Liu
- School of Pharmaceutical and Chemical Engineering, Chengxian College, Southeast University, Nanjing, P.R. China
| | - Yi Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, P.R. China
| | - Linghui Zong
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, P.R. China
| | - Jingyi Zhang
- School of Pharmaceutical and Chemical Engineering, Chengxian College, Southeast University, Nanjing, P.R. China
| |
Collapse
|
7
|
LoPachin RM, Geohagen BC, Nordstroem LU. Mechanisms of soft and hard electrophile toxicities. Toxicology 2019; 418:62-69. [PMID: 30826385 PMCID: PMC6494464 DOI: 10.1016/j.tox.2019.02.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/24/2019] [Accepted: 02/10/2019] [Indexed: 12/21/2022]
Abstract
Electron-deficient chemicals (electrophiles) react with compounds that have one or more unshared valence electron pairs (nucleophiles). The resulting covalent reactions between electrophiles and nucleophiles (e.g., Michael addition, SN2 reactions) are important, not only to Organic Chemistry, but also to the fields of Molecular Biology and Toxicology. Specifically, covalent bond formation is the operational basis of many critically important cellular processes; e.g., enzyme function, neurotransmitter release, and membrane-vesicle fusion. Given this context it is understandable that these reactions are also relevant to Toxicology, since a significant number of xenobiotic chemicals are toxic electrophiles that can react with endogenous nucleophilic residues. Therefore, the purpose of this Review is to discuss electrophile-nucleophile chemistry as it pertains to cell injury and resulting organ toxicity. Our discussion will involve an introduction to the Hard and Soft, Acids and Bases (HSAB) theory of Pearson. The HSAB concept provides a framework for calculation of quantum chemical parameters that classify the electrophile and nucleophile covalent components according to their respective electronic nature (softness/hardness) and reactivity (electrophilicity/nucleophilicity). The calculated quantum indices in conjunction with corroborative in vivo, in chemico (cell free) and in vitro research can offer an illuminating approach to mechanistic discovery. Accordingly, we will provide examples that demonstrate how this approach has been used to discern mechanisms and sites of electrophile action.
Collapse
Affiliation(s)
- Richard M LoPachin
- Department of Anesthesiology, Montefiore Medical Center, Albert Einstein College of Medicine, 111 E. 210th St, Bronx NY 10467, United States.
| | - Brian C Geohagen
- Department of Anesthesiology, Montefiore Medical Center, Albert Einstein College of Medicine, 111 E. 210th St, Bronx NY 10467, United States
| | - Lars U Nordstroem
- The Chemical Synthesis & Biology Core Facility, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
8
|
Computational study of the hydrogen peroxide scavenging mechanism of allyl methyl disulfide, an antioxidant compound from garlic. Mol Divers 2019; 23:985-995. [DOI: 10.1007/s11030-019-09927-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/06/2019] [Indexed: 12/18/2022]
|
9
|
Ji L, Wang C, Ji S, Kepp KP, Paneth P. Mechanism of Cobalamin-Mediated Reductive Dehalogenation of Chloroethylenes. ACS Catal 2017. [DOI: 10.1021/acscatal.7b00540] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Li Ji
- College
of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Chenchen Wang
- College
of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Shujing Ji
- College
of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Kasper P. Kepp
- DTU
Chemistry, Technical University of Denmark, Building 206, Kgs. Lyngby DK-2800, Denmark
| | - Piotr Paneth
- Institute
of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| |
Collapse
|
10
|
Diacetyl and related flavorant α-Diketones: Biotransformation, cellular interactions, and respiratory-tract toxicity. Toxicology 2017; 388:21-29. [PMID: 28179188 DOI: 10.1016/j.tox.2017.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 01/30/2017] [Accepted: 02/01/2017] [Indexed: 01/26/2023]
Abstract
Exposure to diacetyl and related α-diketones causes respiratory-tract damage in humans and experimental animals. Chemical toxicity is often associated with covalent modification of cellular nucleophiles by electrophilic chemicals. Electrophilic α-diketones may covalently modify nucleophilic arginine residues in critical proteins and, thereby, produce the observed respiratory-tract pathology. The major pathway for the biotransformation of α-diketones is reduction to α-hydroxyketones (acyloins), which is catalyzed by NAD(P)H-dependent enzymes of the short-chain dehydrogenase/reductase (SDR) and the aldo-keto reductase (AKR) superfamilies. Reduction of α-diketones to the less electrophilic acyloins is a detoxication pathway for α-diketones. The pyruvate dehydrogenase complex may play a significant role in the biotransformation of diacetyl to CO2. The interaction of toxic electrophilic chemicals with cellular nucleophiles can be predicted by the hard and soft, acids and bases (HSAB) principle. Application of the HSAB principle to the interactions of electrophilic α-diketones with cellular nucleophiles shows that α-diketones react preferentially with arginine residues. Furthermore, the respiratory-tract toxicity and the quantum-chemical reactivity parameters of diacetyl and replacement flavorant α-diketones are similar. Hence, the identified replacement flavorant α-diketones may pose a risk of flavorant-induced respiratory-tract toxicity. The calculated indices for the reaction of α-diketones with arginine support the hypothesis that modification of protein-bound arginine residues is a critical event in α-diketone-induced respiratory-tract toxicity.
Collapse
|
11
|
|