1
|
Guengerich FP. Roles of Individual Human Cytochrome P450 Enzymes in Drug Metabolism. Pharmacol Rev 2024; 76:1104-1132. [PMID: 39054072 PMCID: PMC11549934 DOI: 10.1124/pharmrev.124.001173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/28/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024] Open
Abstract
Our knowledge of the roles of individual cytochrome P450 (P450) enzymes in drug metabolism has developed considerably in the past 30 years, and this base has been of considerable use in avoiding serious issues with drug interactions and issues due to variations. Some newer approaches are being considered for "phenotyping" metabolism reactions with new drug candidates. Endogenous biomarkers are being used for noninvasive estimation of levels of individual P450 enzymes. There is also the matter of some remaining "orphan" P450s, which have yet to be assigned reactions. Practical problems that continue in drug development include predicting drug-drug interactions, predicting the effects of polymorphic and other P450 variations, and evaluating interspecies differences in drug metabolism, particularly in the context of "metabolism in safety testing" regulatory issues ["disproportionate (human) metabolites"]. SIGNIFICANCE STATEMENT: Cytochrome P450 enzymes are the major catalysts involved in drug metabolism. The characterization of their individual roles has major implications in drug development and clinical practice.
Collapse
Affiliation(s)
- F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
2
|
Hossam Abdelmonem B, Abdelaal NM, Anwer EKE, Rashwan AA, Hussein MA, Ahmed YF, Khashana R, Hanna MM, Abdelnaser A. Decoding the Role of CYP450 Enzymes in Metabolism and Disease: A Comprehensive Review. Biomedicines 2024; 12:1467. [PMID: 39062040 PMCID: PMC11275228 DOI: 10.3390/biomedicines12071467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 07/28/2024] Open
Abstract
Cytochrome P450 (CYP450) is a group of enzymes that play an essential role in Phase I metabolism, with 57 functional genes classified into 18 families in the human genome, of which the CYP1, CYP2, and CYP3 families are prominent. Beyond drug metabolism, CYP enzymes metabolize endogenous compounds such as lipids, proteins, and hormones to maintain physiological homeostasis. Thus, dysregulation of CYP450 enzymes can lead to different endocrine disorders. Moreover, CYP450 enzymes significantly contribute to fatty acid metabolism, cholesterol synthesis, and bile acid biosynthesis, impacting cellular physiology and disease pathogenesis. Their diverse functions emphasize their therapeutic potential in managing hypercholesterolemia and neurodegenerative diseases. Additionally, CYP450 enzymes are implicated in the onset and development of illnesses such as cancer, influencing chemotherapy outcomes. Assessment of CYP450 enzyme expression and activity aids in evaluating liver health state and differentiating between liver diseases, guiding therapeutic decisions, and optimizing drug efficacy. Understanding the roles of CYP450 enzymes and the clinical effect of their genetic polymorphisms is crucial for developing personalized therapeutic strategies and enhancing drug responses in diverse patient populations.
Collapse
Affiliation(s)
- Basma Hossam Abdelmonem
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (B.H.A.); (M.A.H.); (Y.F.A.); (R.K.); (M.M.H.)
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences & Arts (MSA), Giza 12451, Egypt
| | - Noha M. Abdelaal
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (N.M.A.); (E.K.E.A.); (A.A.R.)
| | - Eman K. E. Anwer
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (N.M.A.); (E.K.E.A.); (A.A.R.)
- Department of Microbiology and Immunology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo 4411601, Egypt
| | - Alaa A. Rashwan
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (N.M.A.); (E.K.E.A.); (A.A.R.)
| | - Mohamed Ali Hussein
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (B.H.A.); (M.A.H.); (Y.F.A.); (R.K.); (M.M.H.)
| | - Yasmin F. Ahmed
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (B.H.A.); (M.A.H.); (Y.F.A.); (R.K.); (M.M.H.)
| | - Rana Khashana
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (B.H.A.); (M.A.H.); (Y.F.A.); (R.K.); (M.M.H.)
| | - Mireille M. Hanna
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (B.H.A.); (M.A.H.); (Y.F.A.); (R.K.); (M.M.H.)
| | - Anwar Abdelnaser
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (B.H.A.); (M.A.H.); (Y.F.A.); (R.K.); (M.M.H.)
| |
Collapse
|
3
|
Gaither KA, Garcia WL, Tyrrell KJ, Wright AT, Smith JN. Activity-Based Protein Profiling to Probe Relationships between Cytochrome P450 Enzymes and Early-Age Metabolism of Two Polycyclic Aromatic Hydrocarbons (PAHs): Phenanthrene and Retene. Chem Res Toxicol 2024; 37:711-722. [PMID: 38602333 DOI: 10.1021/acs.chemrestox.3c00424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
A growing body of literature has linked early-life exposures to polycyclic aromatic hydrocarbons (PAH) with adverse neurodevelopmental effects. Once in the body, metabolism serves as a powerful mediator of PAH toxicity by bioactivating and detoxifying PAH metabolites. Since enzyme expression and activity vary considerably throughout human development, we evaluated infant metabolism of PAHs as a potential contributing factor to PAH susceptibility. We measured and compared rates of phenanthrene and retene (two primary PAH constituents of woodsmoke) metabolism in human hepatic microsomes from individuals ≤21 months of age to a pooled sample (n = 200) consisting primarily of adults. We used activity-based protein profiling (ABPP) to characterize cytochrome P450 enzymes (CYPs) in the same hepatic microsome samples. Once incubated in microsomes, phenanthrene demonstrated rapid depletion. Best-fit models for phenanthrene metabolism demonstrated either 1 or 2 phases, depending on the sample, indicating that multiple enzymes could metabolize phenanthrene. We observed no statistically significant differences in phenanthrene metabolism as a function of age, although samples from the youngest individuals had the slowest phenanthrene metabolism rates. We observed slower rates of retene metabolism compared with phenanthrene also in multiple phases. Rates of retene metabolism increased in an age-dependent manner until adult (pooled) metabolism rates were achieved at ∼12 months. ABPP identified 28 unique CYPs among all samples, and we observed lower amounts of active CYPs in individuals ≤21 months of age compared to the pooled sample. Phenanthrene metabolism correlated to CYPs 1A1, 1A2, 2C8, 4A22, 3A4, and 3A43 and retene metabolism correlated to CYPs 1A1, 1A2, and 2C8 measured by ABPP and vendor-supplied substrate marker activities. These results will aid efforts to determine human health risk and susceptibility to PAHs exposure during early life.
Collapse
Affiliation(s)
- Kari A Gaither
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Whitney L Garcia
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Department of Biology, Baylor University, Waco, Texas 76706, United States
| | - Kimberly J Tyrrell
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Aaron T Wright
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76706, United States
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, United States
| | - Jordan N Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
4
|
Chang J, Fan X, Tian B. DeepP450: Predicting Human P450 Activities of Small Molecules by Integrating Pretrained Protein Language Model and Molecular Representation. J Chem Inf Model 2024; 64:3149-3160. [PMID: 38587937 DOI: 10.1021/acs.jcim.4c00115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Cytochrome P450 enzymes (CYPs) play a crucial role in Phase I drug metabolism in the human body, and CYP activity toward compounds can significantly affect druggability, making early prediction of CYP activity and substrate identification essential for therapeutic development. Here, we established a deep learning model for assessing potential CYP substrates, DeepP450, by fine-tuning protein and molecule pretrained models through feature integration with cross-attention and self-attention layers. This model exhibited high prediction accuracy (0.92) on the test set, with area under the receiver operating characteristic curve (AUROC) values ranging from 0.89 to 0.98 in substrate/nonsubstrate predictions across the nine major human CYPs, surpassing current benchmarks for CYP activity prediction. Notably, DeepP450 uses only one model to predict substrates/nonsubstrates for any of the nine CYPs and exhibits certain generalizability on novel compounds and different categories of human CYPs, which could greatly facilitate early stage drug design by avoiding CYP-reactive compounds.
Collapse
Affiliation(s)
- Jiamin Chang
- MOE Key Laboratory of Bioinformatics, State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaoyu Fan
- MOE Key Laboratory of Bioinformatics, State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Boxue Tian
- MOE Key Laboratory of Bioinformatics, State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
5
|
Raju B, Narendra G, Verma H, Kumar M, Sapra B, Kaur G, Jain SK, Sandeep Chary P, Mehra NK, Silakari O. Scaffold hopping for designing of potent and selective CYP1B1 inhibitors to overcome docetaxel resistance: synthesis and evaluation. J Biomol Struct Dyn 2024:1-19. [PMID: 38356135 DOI: 10.1080/07391102.2024.2310770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 01/20/2024] [Indexed: 02/16/2024]
Abstract
Cytochrome P450 1B1, a tumor-specific overexpressed enzyme, significantly impairs the pharmacokinetics of several commonly used anticancer drugs including docetaxel, paclitaxel and cisplatin, leading to the problem of resistance to these drugs. Currently, there is no CYP1B1 inhibition-based adjuvant therapy available to treat this resistance problem. Hence, in the current study, exhaustive in-silico studies including scaffold hopping followed by molecular docking, three-dimensional quantitative structure-activity relationships (3D-QSAR), molecular dynamics and free energy perturbation studies were carried out to identify potent and selective CYP1B1 inhibitors. Initially, scaffold hopping analysis was performed against a well-reported potent and selective CYP1B1 inhibitor (i.e. compound 3n). A total of 200 scaffolds were identified along with their shape and field similarity scores. The top three scaffolds were further selected on the basis of these scores and their synthesis feasibility to design some potent and selective CYP1B1 inhibitors using the aforementioned in-silico techniques. Designed molecules were further synthesized to evaluate their CYP1B1 inhibitory activity and docetaxel resistance reversal potential against CYP1B1 overexpressed drug resistance MCF-7 cell line. In-vitro results indicated that compounds 2a, 2c and 2d manifested IC50 values for CYP1B1 ranging from 0.075, 0.092 to 0.088 μM with at least 10-fold selectivity. At low micromolar concentrations, compounds 1e, 1f, 2a and 2d exhibited promising cytotoxic effects in the docetaxel-resistant CYP1B1 overexpressed MCF-7 cell line. In particular, compound 2a is most effective in reversing the resistance with IC50 of 29.0 ± 3.6 μM. All of these discoveries could pave the way for the development of adjuvant therapy capable of overcoming CYP1B1-mediated resistance.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Baddipadige Raju
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Gera Narendra
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Himanshu Verma
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Manoj Kumar
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Bharti Sapra
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Gurleen Kaur
- Center for Basic and Translational Research in Health Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Subheet Kumar Jain
- Center for Basic and Translational Research in Health Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Padakanti Sandeep Chary
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutical, National Institute of Pharmaceutical Science and Drug Research, Hyderabad, Telangana, India
| | - Neelesh Kumar Mehra
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutical, National Institute of Pharmaceutical Science and Drug Research, Hyderabad, Telangana, India
| | - Om Silakari
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| |
Collapse
|
6
|
Wenzel C, Lapczuk-Romanska J, Malinowski D, Ostrowski M, Drozdzik M, Oswald S. Comparative Intra-Subject Analysis of Gene Expression and Protein Abundance of Major and Minor Drug Metabolizing Enzymes in Healthy Human Jejunum and Liver. Clin Pharmacol Ther 2024; 115:221-230. [PMID: 37739780 DOI: 10.1002/cpt.3055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/10/2023] [Indexed: 09/24/2023]
Abstract
First pass metabolism by phase I and phase II enzymes in the intestines and liver is a major determinant of the oral bioavailability of many drugs. Several studies analyzed expressions of major drug-metabolizing enzymes (DMEs), such as CYP3A4 and UGT1A1 in the human gut and liver. However, there is still a lack of knowledge regarding other DMEs (i.e., "minor" DMEs), although several clinically relevant drugs are affected by those enzymes. Moreover, there is very limited intra-subject data on hepatic and intestinal expression levels of minor DMEs. To fill this gap of knowledge, we analyzed gene expression (quantitative real-time polymerase chain reaction) and protein abundance (targeted proteomics) of 24 clinically relevant DMEs, that is, carboxylesterases (CES), UDP-glucuronosyltransferases (UGT), and cytochrome P450 (CYP)-enzymes. We performed our analysis using jejunum and liver tissue specimens from the same 11 healthy organ donors (8 men and 3 women, aged 19-60 years). Protein amounts of all investigated DMEs, with the exception of CYP4A11, were detected in human liver samples. CES2, CYP2C18, CYP3A4, and UGT2B17 protein abundance was similar or even higher in the jejunum, and all other DMEs were found in higher amounts in the liver. Significant correlations between gene expression and protein levels were observed only for 2 of 15 jejunal, but 13 of 23 hepatic DMEs. Intestinal and hepatic protein amounts only significantly correlated for CYP3A4 and UGT1A3. Our results demonstrated a notable variability between the individuals, which was even higher in the intestines than in the liver. Our intrasubject analysis of DMEs in the jejunum and liver from healthy donors, may be useful for physiologically-based pharmacokinetic-based modeling and prediction in order to improve efficacy and safety of oral drug therapy.
Collapse
Affiliation(s)
- Christoph Wenzel
- Department of Pharmacology, University Medicine Greifswald, Greifswald, Germany
| | - Joanna Lapczuk-Romanska
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, Szczecin, Poland
| | - Damian Malinowski
- Department of Pharmacokinetics and Therapeutic Drug Monitoring, Pomeranian Medical University, Szczecin, Poland
| | - Marek Ostrowski
- Department of Pharmacokinetics and Therapeutic Drug Monitoring, Pomeranian Medical University, Szczecin, Poland
- Department of General and Transplantation Surgery, Pomeranian Medical University, Szczecin, Poland
| | - Marek Drozdzik
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, Szczecin, Poland
| | - Stefan Oswald
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
7
|
Dai Z, Wu Y, Xiong Y, Wu J, Wang M, Sun X, Ding X, Yang L, Sun X, Ge G. CYP1A inhibitors: Recent progress, current challenges, and future perspectives. Med Res Rev 2024; 44:169-234. [PMID: 37337403 DOI: 10.1002/med.21982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/28/2023] [Accepted: 05/23/2023] [Indexed: 06/21/2023]
Abstract
Mammalian cytochrome P450 1A (CYP1A) are key phase I xenobiotic-metabolizing enzymes that play a distinctive role in metabolic activation or metabolic clearance of a variety of procarcinogens, drugs, and endogenous substances. Human CYP1A subfamily contains two members (hCYP1A1 and hCYP1A2), which are known to catalyze the oxidative activation of some environmental procarcinogens into carcinogenic species. Increasing evidence has demonstrated that CYP1A inhibitor therapies are promising strategies for cancer chemoprevention or overcoming CYP1A-associated drug toxicity and resistance. Herein, we reviewed recent advances in the discovery and characterization of hCYP1A inhibitors, from the discovery approaches to structural features and biomedical applications of hCYP1A inhibitors. The inhibition potentials, inhibition modes, and inhibition constants of all reported hCYP1A inhibitors are comprehensively summarized. Meanwhile, the structural features and structure-activity relationships of different classes of hCYP1A1 and hCYP1A2 inhibitors are analyzed and discussed in depth. Furthermore, the major challenges and future directions for this field are presented and highlighted. Collectively, the information and knowledge presented here will strongly facilitate the researchers to discover and develop more efficacious CYP1A inhibitors for specific purposes, such as chemo-preventive agents or as tool molecules in hCYP1A-related fundamental studies.
Collapse
Affiliation(s)
- Ziru Dai
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yue Wu
- Shanghai Frontiers Science Center for TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuan Xiong
- Shanghai Frontiers Science Center for TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jingjing Wu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Min Wang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiao Sun
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xinxin Ding
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, America
| | - Ling Yang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Xiaobo Sun
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Guangbo Ge
- Shanghai Frontiers Science Center for TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
8
|
DeVito M, Bokkers B, van Duursen MBM, van Ede K, Feeley M, Antunes Fernandes Gáspár E, Haws L, Kennedy S, Peterson RE, Hoogenboom R, Nohara K, Petersen K, Rider C, Rose M, Safe S, Schrenk D, Wheeler MW, Wikoff DS, Zhao B, van den Berg M. The 2022 world health organization reevaluation of human and mammalian toxic equivalency factors for polychlorinated dioxins, dibenzofurans and biphenyls. Regul Toxicol Pharmacol 2024; 146:105525. [PMID: 37972849 PMCID: PMC10870838 DOI: 10.1016/j.yrtph.2023.105525] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/21/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023]
Abstract
In October 2022, the World Health Organization (WHO) convened an expert panel in Lisbon, Portugal in which the 2005 WHO TEFs for chlorinated dioxin-like compounds were reevaluated. In contrast to earlier panels that employed expert judgement and consensus-based assignment of TEF values, the present effort employed an update to the 2006 REP database, a consensus-based weighting scheme, a Bayesian dose response modeling and meta-analysis to derive "Best-Estimate" TEFs. The updated database contains almost double the number of datasets from the earlier version and includes metadata that informs the weighting scheme. The Bayesian analysis of this dataset results in an unbiased quantitative assessment of the congener-specific potencies with uncertainty estimates. The "Best-Estimate" TEF derived from the model was used to assign 2022 WHO-TEFs for almost all congeners and these values were not rounded to half-logs as was done previously. The exception was for the mono-ortho PCBs, for which the panel agreed to retain their 2005 WHO-TEFs due to limited and heterogenous data available for these compounds. Applying these new TEFs to a limited set of dioxin-like chemical concentrations measured in human milk and seafood indicates that the total toxic equivalents will tend to be lower than when using the 2005 TEFs.
Collapse
Affiliation(s)
- Michael DeVito
- Center for Computational Toxicology and Exposure, United States Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Bas Bokkers
- Centre for Safety of Substances and Products, National Institute for Public Health, And the Environment (RIVM), Bilthoven, the Netherlands
| | - Majorie B M van Duursen
- Amsterdam Institute for Life and Environment, Environmental Health & Toxicology, Vrije Universiteit, Amsterdam, the Netherlands
| | | | | | | | | | - Sean Kennedy
- Department of Biology, University of Ottawa, Canada
| | | | - Ron Hoogenboom
- Wageningen Food Safety Research (WFSR), Wageningen, the Netherlands
| | - Keiko Nohara
- Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba, 305-8506, Japan
| | - Kim Petersen
- Department of Nutrition and Food Safety, Standards and Scientific Advice on Food and Nutrition, World Health Organization, Geneva Switzerland.
| | - Cynthia Rider
- National Institute of Environmental Health Science, Division of the Translational Toxicology, Durham, USA
| | - Martin Rose
- FERA Science Ltd, Sand Hutton, York, YO41 1LZ, UK; Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | - Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, 77843, USA
| | - Dieter Schrenk
- Food Chemistry and Toxicology Department, University of Kaiserslautern, D-67663, Kaiserslautern, Germany
| | - Matthew W Wheeler
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, RTP, NC, USA
| | | | - Bin Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Martin van den Berg
- Institute for Risk Assessment Sciences, Utrecht University, Yalelaan 104, 3584 CM, Utrecht, the Netherlands
| |
Collapse
|
9
|
Raju B, Sapra B, Silakari O. 3D-QSAR assisted identification of selective CYP1B1 inhibitors: an effective bioisosteric replacement/molecular docking/electrostatic complementarity analysis. Mol Divers 2023; 27:2673-2693. [PMID: 36441444 DOI: 10.1007/s11030-022-10574-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/20/2022] [Indexed: 11/29/2022]
Abstract
Cytochrome P450-1B1 is a majorly overexpressed drug-metabolizing enzyme in tumors and is responsible for inactivation and subsequent resistance to a variety of anti-cancer drugs, i.e., docetaxel, tamoxifen, and cisplatin. In the present study, a 3D quantitative structure-activity relationship (3D-QSAR) model has been constructed for the identification, design, and optimization of novel CYP1B1 inhibitors. The model has been built using a set of 148 selective CYP1B1 inhibitors. The developed model was evaluated based on certain statistical parameters including q2 and r2 which showed the acceptable predictive and descriptive capability of the generated model. The developed 3D-QSAR model assisted in understanding the key molecular fields which were firmly related to the selective CYP1B1 inhibition. A theoretic approach for the generation of new lead compounds with optimized CYP1B1 receptor affinity has been performed utilizing bioisosteric replacement analysis. These generated molecules were subjected to a developed 3D-QSAR model to predict the inhibitory activity potentials. Furthermore, these compounds were scrutinized through the activity atlas model, molecular docking, electrostatic complementarity, molecular dynamics, and waterswap analysis. The final hits might act as selective CYP1B1 inhibitors which could address the issue of resistance. This 3D-QSAR includes several chemically diverse selective CYP1B1 receptor ligands and well accounts for the individual ligand's inhibition affinities. These features of the developed 3D-QSAR model will ensure future prospective applications of the model to speed up the identification of new potent and selective CYP1B1 receptor ligands.
Collapse
Affiliation(s)
- Baddipadige Raju
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Bharti Sapra
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Om Silakari
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India.
| |
Collapse
|
10
|
Di L. Quantitative Translation of Substrate Intrinsic Clearance from Recombinant CYP1A1 to Humans. AAPS J 2023; 25:98. [PMID: 37798423 DOI: 10.1208/s12248-023-00863-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/15/2023] [Indexed: 10/07/2023] Open
Abstract
CYP1A1 is a cytochrome P450 family 1 enzyme that is mostly expressed in the extrahepatic tissues. To understand the CYP1A1 contribution to drug clearance in humans, we examined the in vitro-in vivo extrapolation (IVIVE) of intrinsic clearance (CLint) for a set of drugs that are in vitro CYP1A1 substrates. Despite being strong in vitro CYP1A1 substrates, 82% of drugs gave good IVIVE with predicted CLint within 2-3-fold of the observed values using human liver microsomes and hepatocytes, suggesting they were not in vivo CYP1A1 substrates due to the lack of extrahepatic contribution to CLint. Only three drugs (riluzole, melatonin and ramelteon) that are CYP1A2 substrates yielded significant underprediction of in vivo CLint up to 11-fold. The fold of CLint underprediction was linearly proportional to human recombinant CYP1A1 (rCYP1A1) CLint, indicating they were likely to be in vivo CYP1A1 substrates. Using these three substrates, a calibration curve can be developed to enable direct translation from in vitro rCYP1A1 CLint to in vivo extrahepatic contributions in humans. In vivo CYP1A1 substrates are planar and small, which is consistent with the structure of the active site. This is in contrast to the in vitro substrates, which include large and nonplanar molecules, suggesting rCYP1A1 is more accessible than what is in vivo. The impact of CYP1A1 on first-pass intestinal metabolism was also evaluated and shown to be minimal. This is the first study providing new insights on in vivo translation of CYP1A1 contributions to human clearance using in vitro rCYP1A1 data.
Collapse
Affiliation(s)
- Li Di
- Pharmacokinetic, Dynamics and Drug Metabolism, Pfizer Worldwide Research and Development, Groton, Connecticut, 06543, USA.
| |
Collapse
|
11
|
Paudel S, Jo H, Lee T, Lee S. Selective inhibitory effects of suberosin on CYP1A2 in human liver microsomes. Biopharm Drug Dispos 2023; 44:365-371. [PMID: 37448189 DOI: 10.1002/bdd.2370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/15/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023]
Abstract
Suberosin is a natural phytoconstituent isolated from Citropsis articulata, especially employed for its anticoagulant properties. Although metabolic studies assessing suberosin have been conducted, it is possible interactions with drugs and food have not yet been investigated. In the present study, we analyzed the selective inhibitory effects of suberosin on cytochrome P450 (CYP) enzymes using a cocktail probe assay. Various concentrations of suberosin (0-50 μM) were incubated with isoform-specific CYP probes in human liver microsomes (HLMs). We found that suberosin significantly inhibited CYP1A2-catalyzed phenacetin O-deethylation, exhibiting IC50 values of 9.39 ± 2.05 and 3.07 ± 0.45 μM with and without preincubation in the presence of β-NADPH, respectively. Moreover, suberosin showed concentration-dependent, but not time-dependent, CYP1A2 inhibition in HLMs, indicating that suberosin acts as a substrate and reversible CYP1A2 inhibitor. Using a Lineweaver-Burk plot, we found that suberosin competitively inhibited CYP1A2-catalyzed phenacetin O-deethylation. Furthermore, suberosin showed similar inhibitory effects on recombinant human CYP1A1 and 1A2. In conclusion, suberosin may elicit herb-drug interactions by selectively inhibiting CYP1A2 during the concurrent administration of drugs that act as CYP1A2 substrates.
Collapse
Affiliation(s)
- Sanjita Paudel
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea
| | - Hyoje Jo
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea
| | - Taeho Lee
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea
| | - Sangkyu Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
12
|
Connick JP, Reed JR, Cawley GF, Saha A, Backes WL. Functional characterization of CYP1 enzymes: Complex formation, membrane localization and function. J Inorg Biochem 2023; 247:112325. [PMID: 37479567 PMCID: PMC10529082 DOI: 10.1016/j.jinorgbio.2023.112325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/19/2023] [Accepted: 07/09/2023] [Indexed: 07/23/2023]
Abstract
CYP1A1, CYP1A2, and CYP1B1 have a high degree of sequence similarity, similar substrate selectivities and induction characteristics. However, experiments suggest that there are significant differences in their quaternary structures and function. The goal of this study was to characterize the CYP1 proteins regarding their ability to form protein-protein complexes, lipid microdomain localization, and ultimately function. This was accomplished by examining (1) substrate metabolism of the CYP1s as a function of NADPH-cytochrome P450 reductase (POR) concentration, and (2) quaternary structure, using bioluminescence resonance energy transfer (BRET). Both CYP1As were able to form BRET-detectable homomeric complexes, which was not observed with CYP1B1. When activities were measured as a function of [POR], CYP1A1 and CYP1B1 showed a hyperbolic response, consistent with mass-action binding; however, CYP1A2 produced a sigmoidal response, suggesting that the homomeric complex affected its function. Differences were observed in their ability to form heteromeric complexes. Whereas CYP1B1 and CYP1A1 formed a complex, neither the CYP1A1/CYP1A2 nor the CYP1B1/CYP1A2 pair formed BRET-detectable complexes. These proteins also differed in their lipid microdomain localization, with CYP1A2 and CYP1B1 residing in ordered membranes, and CYP1A1 in the disordered lipid regions. Taken together, despite their sequence similarities, there are substantial differences in quaternary structures and microdomain localization that can influence enzymatic activities. As these proteins exist in the endoplasmic reticulum with other ER-resident proteins, the P450s need to be considered as part of multi-enzyme systems rather than simply monomeric proteins interacting with their redox partners.
Collapse
Affiliation(s)
- J Patrick Connick
- Department of Pharmacology and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center -, New Orleans, LA 70112, USA
| | - James R Reed
- Department of Pharmacology and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center -, New Orleans, LA 70112, USA
| | - George F Cawley
- Department of Pharmacology and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center -, New Orleans, LA 70112, USA
| | - Aratrika Saha
- Department of Pharmacology and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center -, New Orleans, LA 70112, USA
| | - Wayne L Backes
- Department of Pharmacology and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center -, New Orleans, LA 70112, USA.
| |
Collapse
|
13
|
Yamazoe Y, Murayama N, Kawamura T, Yamada T. Application of fused-grid-based CYP-Template systems for genotoxic substances to understand the metabolisms. Genes Environ 2023; 45:22. [PMID: 37544994 PMCID: PMC10405451 DOI: 10.1186/s41021-023-00275-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/22/2023] [Indexed: 08/08/2023] Open
Abstract
Understanding of metabolic processes is a key factor to evaluate biological effects of carcinogen and mutagens. Applicability of fused-grid Template* systems of CYP enzymes (Drug Metab Pharmacokinet 2019, 2020, 2021, and 2022) was tested for three phenomena. (1) Possible causal relationships between CYP-mediated metabolisms of β-naphthoflavone and 3-methylcholanthrene and the high inducibility of CYP enzymes were examined. Selective involvement of non-constitutive CYP1A1, but not constitutive CYP1A2, was suggested on the oxidative metabolisms of efficient inducers, β-naphthoflavone and 3-methylcholanthrene. These results supported the view of the causal link of their high inducibility with their inefficient metabolisms due to the lack of CYP1A1 in livers at early periods after the administration of both inducers. (2) Clear differences exist between human and rodent CYP1A1 enzymes on their catalyses with heterocyclic amines, dioxins and polyaromatic hydrocarbons (PAHs). Reciprocal comparison of simulation results with experimental data suggested the rodent specific site and distinct sitting-preferences of ligands on Template for human and rodent CYP1A1 enzymes. (3) Enhancement of metabolic activation and co-mutagenicity have been known as phenomena associated with Salmonella mutagenesis assay. Both the phenomena were examined on CYP-Templates in ways of simultaneous bi-molecule bindings of distinct ligands as trigger and pro-metabolized molecules. α-Naphthoflavone and norharman served consistently as trigger-molecules to support the oxidations of PAHs and arylamines sitting simultaneously as pro-metabolized molecules on Templates of CYP1A1, CYP1A2 and CYP3A4. These CYP-Template simulation systems with deciphering capabilities are promising tools to understand the mechanism basis of metabolic activations and to support confident judgements in safety assessments.
Collapse
Affiliation(s)
- Yasushi Yamazoe
- Division of Drug Metabolism and Molecular Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, 980-8578, Japan.
- Division of Risk Assessment, Center for Biological Safety and Research, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, 210-9501, Japan.
| | - Norie Murayama
- Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan
| | - Tomoko Kawamura
- Division of Risk Assessment, Center for Biological Safety and Research, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, 210-9501, Japan
| | - Takashi Yamada
- Division of Risk Assessment, Center for Biological Safety and Research, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, 210-9501, Japan
| |
Collapse
|
14
|
Pedroni L, Louisse J, Dorne JLCM, Dall'Asta C, Dellafiora L. A computational study on the biotransformation of alkenylbenzenes by a selection of CYPs: Reflections on their possible bioactivation. Toxicology 2023; 488:153471. [PMID: 36863505 DOI: 10.1016/j.tox.2023.153471] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/03/2023]
Abstract
Alkenylbenzenes are aromatic compounds found in several vegetable foods that can cause genotoxicity upon bioactivation by members of the cytochrome P450 (CYP) family, forming 1'-hydroxy metabolites. These intermediates act as proximate carcinogens and can be further converted into reactive 1'-sulfooxy metabolites, which are the ultimate carcinogens responsible for genotoxicity. Safrole, a member of this class, has been banned as a food or feed additive in many countries based on its genotoxicity and carcinogenicity. However, it can still enter the food and feed chain. There is limited information about the toxicity of other alkenylbenzenes that may be present in safrole-containing foods, such as myristicin, apiole, and dillapiole. In vitro studies showed safrole as mainly bioactivated by CYP2A6 to form its proximate carcinogen, while for myristicin this is mainly done by CYP1A1. However, it is not known whether CYP1A1 and CYP2A6 can activate apiole and dillapiole. The present study uses an in silico pipeline to investigate this knowledge gap and determine whether CYP1A1 and CYP2A6 may play a role in the bioactivation of these alkenylbenzenes. The study found that the bioactivation of apiole and dillapiole by CYP1A1 and CYP2A6 is limited, possibly indicating that these compounds may have limited toxicity, while describing a possible role of CYP1A1 in the bioactivation of safrole. The study expands the current understanding of safrole toxicity and bioactivation and helps understand the mechanisms of CYPs involved in the bioactivation of alkenylbenzenes. This information is essential for a more informed analysis of alkenylbenzenes toxicity and risk assessment.
Collapse
Affiliation(s)
- Lorenzo Pedroni
- Department of Food and Drug, University of Parma, Parma 43124, Italy
| | - Jochem Louisse
- Wageningen Food Safety Research, P.O. Box 230, 6700 AE Wageningen, the Netherlands
| | | | - Chiara Dall'Asta
- Department of Food and Drug, University of Parma, Parma 43124, Italy
| | - Luca Dellafiora
- Department of Food and Drug, University of Parma, Parma 43124, Italy.
| |
Collapse
|
15
|
Wang X, Hu L, Jin C, Qian M, Jin Y. Effects of maternal exposure to procymidone on hepatic metabolism in the offspring of mice. ENVIRONMENTAL TOXICOLOGY 2023; 38:833-843. [PMID: 36594664 DOI: 10.1002/tox.23729] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/08/2022] [Accepted: 12/25/2022] [Indexed: 06/17/2023]
Abstract
As an effective fungicide widely used in agricultural production, the excessive procymidone (PRO) residue has been detected in the environment and food. Our previous study demonstrated that PRO could destroy the intestinal barrier in mice and has a joint toxic effect. To explore the cross-generational impact of maternal exposure, 10-week-old C57BL/6 female mice were orally administrated to 10 and 100 mg/kg body weight/day of PRO during pregnancy and lactation. The offspring obtained nutrients from the maternal through the placenta and breast milk, and PRO residues were detected in the liver, intestine, and feces of F1 generation. Fecal examination found that the residual PRO had been completely metabolized when the offspring mice grew to 35 days. The drug residue of F1 generation male mice was higher than that of female mice. We attributed this result to the difference in cytochrome P450 (CYP450) enzyme expression between male and female mice. The transcriptional levels of CYP1A1, CYP1A2, CYP2D9, and CYP3A4, and CYP450 protein expression levels, were higher in female mice. Furthermore, targeted MS of plasma revealed abnormal amino acid levels. In addition, PRO-induced hepatic metabolite changes in F0 and F1-7w mice. KEGG pathway analysis further showed that PRO jointly changed the amino acid biosynthesis pathway of the maternal and offspring. In summary, these results indicated that maternal exposure to PRO during a special period would interfere with self metabolism, and offspring will also have metabolic disorders.
Collapse
Affiliation(s)
- Xiaofang Wang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, People's Republic of China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Lingyu Hu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, People's Republic of China
| | - Cuiyuan Jin
- Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, People's Republic of China
| | - Mingrong Qian
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, People's Republic of China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| |
Collapse
|
16
|
Sharma H, Raju B, Narendra G, Kumar M, Verma H, Sharma B, Tung GK, Kumar Jain S, Brás NF, Silakari O. In silico guided designing of optimized benzochalcones derivatives as potent CYP1B1 inhibitors: An integrated in vitro and ONIOM study. J Mol Graph Model 2023; 119:108390. [PMID: 36502606 DOI: 10.1016/j.jmgm.2022.108390] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022]
Abstract
Cytochrome P4501B1 (CYP1B1) is reported to be overexpressed in various malignancies including ovarian, lung, lymph, and breast cancers. The overexpression of this enzyme is accountable for the biotransformation-based inactivation of some anti-cancer drugs i.e. Docetaxel, Paclitaxel, and Cisplatin. To circumvent solutions to this issue, the current study reports some optimized derivatives of benzochalcone as selective CYP1B1 inhibitors. The optimized derivatives were screened using some structure-based drug-designing approaches including molecular docking and molecular dynamics. The implemented approaches revealed that all the designed molecules demonstrated not only essential interactions with key amino acid residues but also maintained stability within the active site of CYP1B1. Furthermore, to validate the in-silico results and develop a SAR, the designed molecules were subsequently synthesized and tested for their ability to selectively inhibit CYP1B1 over CYP1A1 using well established EROD assay. This assay results suggested that compounds 1(c), 1(d), and 1(e) are eightfold more selective CYP1B1 inhibitors over CYP1A1 with IC50 values ranging from 0.06 to 0.09 μM respectively. Among these, compound 1(d) manifested potent inhibitory activity i.e. IC50 of 0.06 μM with 24 folds selectivity over 1A1. To have a better insight into the binding pattern of 1(d) within CYP1B1 and precisely compute binding affinity for 1(d)-CYP1B1 complex, one of the advanced QM/MM approaches i.e. ONIOM has been implemented. Where 1(d)-CYP1B1 complex conferred comparable binding affinity in terms of ΔG (kcal/mol) with that of ANF-CYP1B1 complex. This research could provide a suitable starting point for the development of more potent multi-functional compounds with CYP1B1 inhibitory activity.
Collapse
Affiliation(s)
- Himani Sharma
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Baddipadige Raju
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Gera Narendra
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Manoj Kumar
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Himanshu Verma
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Bhavna Sharma
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Gurleen Kaur Tung
- Center for Basic and Translational Research in Health Sciences, Guru Nanak Dev University, Amritsar, India
| | - Subheet Kumar Jain
- Center for Basic and Translational Research in Health Sciences, Guru Nanak Dev University, Amritsar, India
| | - Natércia F Brás
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Om Silakari
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India.
| |
Collapse
|
17
|
Murayama N, Yamada T, Yamazoe Y. Application of CYP1A2-Template System to Understand Metabolic Processes in the Safety Assessment. Food Saf (Tokyo) 2022; 10:129-139. [PMID: 36619007 PMCID: PMC9789917 DOI: 10.14252/foodsafetyfscj.d-22-00008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/04/2022] [Indexed: 12/24/2022] Open
Abstract
Cytochrome P450 (CYP)-mediated metabolisms of four chemicals have been investigated to understand their unresolved phenomena of their metabolisms using human CYP-Template systems developed in our previous studies (Drug Metab Pharmacokinet 2019, 2021, 2022). Simulation experiments of a topoisomerase-targeting agent, amonafide, offered a possible new inhibitory-mechanism as Trigger-residue inactivation on human CYP1A2 Template. N-Acetylamonafide as well as amonafide would inactivate CYP1A2 through the interference of Trigger-residue movement with their dimethylaminoethyl parts. The mechanism was also supported on the inhibition/inactivation of two other drugs, DSP-1053 and binimetinib. Both the drugs, after other CYP-mediated slight structural alterations, were expected to interact with Trigger-residue for the intense inhibition on CYP1A2 Template. Possible formation of reactive intermediates of amonafide and 3-methylindole was also examined on CYP1A2 Template. Placements of amonafide suggested the scare N-oxidation of the arylamine part due to the Trigger-residue interaction. Placements of 3-methylindole suggested the formation of a reactive intermediate, 3-methyleneindolenine, rather selectively on rodent CYP1A2 than on human CYP1A2, in consistent with the experimental data. These results suggest that CYP Template systems developed are effective tools to warn an appearance of unstable reactive intermediates. Our CYP-Template systems would support confident judgements in safety assessments through offering the mechanistic understandings of the metabolism.
Collapse
Affiliation(s)
- Norie Murayama
- Showa Pharmaceutical University, Machida, Tokyo 194-8543,
Japan
| | - Takashi Yamada
- Division of Risk Assessment, Center for Biological Safety
Research, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki
210-9501, Japan
| | - Yasushi Yamazoe
- Division of Risk Assessment, Center for Biological Safety
Research, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki
210-9501, Japan
- Division of Drug Metabolism and Molecular Toxicology,
Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku,
Sendai 980-8578, Japan
| |
Collapse
|
18
|
Raju B, Narendra G, Verma H, Kumar M, Sapra B, Kaur G, jain SK, Silakari O. Machine Learning Enabled Structure-Based Drug Repurposing Approach to Identify Potential CYP1B1 Inhibitors. ACS OMEGA 2022; 7:31999-32013. [PMID: 36120033 PMCID: PMC9476183 DOI: 10.1021/acsomega.2c02983] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Drug-metabolizing enzyme (DME)-mediated pharmacokinetic resistance of some clinically approved anticancer agents is one of the main reasons for cancer treatment failure. In particular, some commonly used anticancer medicines, including docetaxel, tamoxifen, imatinib, cisplatin, and paclitaxel, are inactivated by CYP1B1. Currently, no approved drugs are available to treat this CYP1B1-mediated inactivation, making the pharmaceutical industries strive to discover new anticancer agents. Because of the extreme complexity and high risk in drug discovery and development, it is worthwhile to come up with a drug repurposing strategy that may solve the resistance problem of existing chemotherapeutics. Therefore, in the current study, a drug repurposing strategy was implemented to find the possible CYP1B1 inhibitors using machine learning (ML) and structure-based virtual screening (SB-VS) approaches. Initially, three different ML models were developed such as support vector machines (SVMs), random forest (RF), and artificial neural network (ANN); subsequently, the best-selected ML model was employed for virtual screening of the selleckchem database to identify potential CYP1B1 inhibitors. The inhibition potency of the obtained hits was judged by analyzing the crucial active site amino acid interactions against CYP1B1. After a thorough assessment of docking scores, binding affinities, as well as binding modes, four compounds were selected and further subjected to in vitro analysis. From the in vitro analysis, it was observed that chlorprothixene, nadifloxacin, and ticagrelor showed promising inhibitory activity toward CYP1B1 in the IC50 range of 0.07-3.00 μM. These new chemical scaffolds can be explored as adjuvant therapies to address CYP1B1-mediated drug-resistance problems.
Collapse
Affiliation(s)
- Baddipadige Raju
- Molecular
Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug
Research, Punjabi University, Patiala, Punjab 147002, India
| | - Gera Narendra
- Molecular
Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug
Research, Punjabi University, Patiala, Punjab 147002, India
| | - Himanshu Verma
- Molecular
Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug
Research, Punjabi University, Patiala, Punjab 147002, India
| | - Manoj Kumar
- Molecular
Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug
Research, Punjabi University, Patiala, Punjab 147002, India
| | - Bharti Sapra
- Molecular
Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug
Research, Punjabi University, Patiala, Punjab 147002, India
| | - Gurleen Kaur
- Center
for Basic and Translational Research in Health Sciences, Guru Nanak Dev University, Amritsar 143005, India
| | - Subheet Kumar jain
- Center
for Basic and Translational Research in Health Sciences, Guru Nanak Dev University, Amritsar 143005, India
| | - Om Silakari
- Molecular
Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug
Research, Punjabi University, Patiala, Punjab 147002, India
| |
Collapse
|
19
|
Kocak OF, Albayrak M, Yaman ME, Atila A, Kadioglu Y, Araz O. Determination and pharmacokinetic study of riociguat by UPLC-MS/MS in human plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1210:123454. [PMID: 36095936 DOI: 10.1016/j.jchromb.2022.123454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/01/2022] [Accepted: 09/04/2022] [Indexed: 10/31/2022]
Abstract
Pulmonary hypertension (PH) is frequent in the general population and is linked to an increased risk of death. Riociguat is a kind of endothelin receptor antagonist that is often used to treat PH. For pharmacokinetic studies and the determination of riociguat in PH patients, a new, quick, easy, and sensitive UPLC-MS/MS approach was designed and validated. Riociguat and irbesartan (IS) were detected using ESI in positive ion and multiple reaction monitoring mode, respectively, by monitoring the mass transitions m/z 423.0 → 391.0 and 429.1 → 206.9. A reverse-phase C18 column (5 μm, 4.6 × 150 mm) was used with an isocratic mobile phase of water containing 0.1 % formic acid-acetonitrile (25:75, v/v) at a flow rate of 1 ml/min for chromatographic separation. In the range of 5-400 ng/ml, the calibration curve was linear and had a good correlation coefficient (0.9972). This is the first UPLC-MS/MS technique that has been developed and validated for determining riociguat from human plasma. The developed analytical method was extensively validated for linearity, selectivity, specificity, accuracy, precision, sensitivity, stability, matrix effect and recovery, according to FDA criteria. The devised approach was successfully used for a pharmacokinetic research and riociguat determination in PH patients.
Collapse
Affiliation(s)
- Omer Faruk Kocak
- Omer Faruk Kocak, Atatürk University, Vocational School of Technical Sciences, Department of Chemical Technology, Erzurum, Turkey
| | - Mevlut Albayrak
- Mevlut Albayrak, Ataturk University, Health Services Vocational Training School, Department of Medical Laboratory Techniques, Erzurum, Turkey.
| | - Mehmet Emrah Yaman
- Mehmet Emrah Yaman, Atatürk University, Faculty of Pharmacy, Department of Analytical Chemistry, Erzurum, Turkey
| | - Alptug Atila
- Alptug Atila, Atatürk University, Faculty of Pharmacy, Department of Analytical Chemistry, Erzurum, Turkey
| | - Yucel Kadioglu
- Yucel Kadioglu, Atatürk University, Faculty of Pharmacy, Department of Analytical Chemistry, Erzurum, Turkey
| | - Omer Araz
- Omer Araz, Atatürk University, Faculty of Medicine, Department of Pulmonary Diseases, Erzurum, Turkey
| |
Collapse
|
20
|
Yoda T, Tochitani T, Usui T, Kouchi M, Inada H, Hosaka T, Kanno Y, Miyawaki I, Yoshinari K. Involvement of the CYP1A1 inhibition-mediated activation of aryl hydrocarbon receptor in drug-induced hepatotoxicity. J Toxicol Sci 2022; 47:359-373. [PMID: 36047110 DOI: 10.2131/jts.47.359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Hepatotoxicity is one of the most common toxicities observed in non-clinical safety studies of drug candidates, and it is important to understand the hepatotoxicity mechanism to assess the risk of drug-induced liver injury in humans. In this study, we investigated the mechanism of hepatotoxicity caused by 2-[2-Methyl-1-(oxan-4-yl)-1H-benzimidazol-5-yl]-1,3-benzoxazole (DSP-0640), a drug candidate that showed hepatotoxicity characterized by centrilobular hypertrophy and vacuolation of hepatocytes in a 4-week oral repeated-dose toxicity study in male rats. In the liver of rats treated with DSP-0640, the expression of aryl hydrocarbon receptor (AHR) target genes, including Cyp1a1, was upregulated. In in vitro reporter assays, however, DSP-0640 showed only minimal AHR-activating potency. Therefore, we investigated the possibility that DSP-0640 indirectly activated AHR by inhibiting the CYP1 enzyme-dependent clearance of endogenous AHR agonists. In in vitro assays, DSP-0640 showed inhibitory effects on both rat and human CYP1A1 and enhanced rat and human AHR-mediated reporter gene expression induced by 6-formylindolo[3,2-b]carbazole, a well-known endogenous AHR agonist. The possible involvement of CYP1A1 inhibition in AHR activation was also demonstrated with other hepatotoxic compounds tacrine and albendazole. These results suggest that CYP1A1 inhibition-mediated AHR activation is involved in the hepatotoxicity caused by DSP-0640 and that DSP-0640 might induce hepatotoxicity in humans as well. We propose that CYP1A1 inhibition-mediated AHR activation is a novel mechanism for drug-induced hepatotoxicity.
Collapse
Affiliation(s)
- Tomomi Yoda
- Preclinical Research Unit, Sumitomo Pharma Co., Ltd.,Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka
| | | | - Toru Usui
- Preclinical Research Unit, Sumitomo Pharma Co., Ltd
| | - Mami Kouchi
- Preclinical Research Unit, Sumitomo Pharma Co., Ltd
| | | | - Takuomi Hosaka
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Yuichiro Kanno
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka
| | | | - Kouichi Yoshinari
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka
| |
Collapse
|
21
|
Abstract
Cytochrome P450 (CYP450) is a major drug-metabolizing enzyme system mainly distributed in liver microsomes and involved in the metabolism of many endogenous substances (such as fatty acids and arachidonic acids), and exogenous compounds (such as drugs, toxicants, carcinogens, and procarcinogens). Due to the similarity in structures and catalytic functions between CYP450 isoforms, the lack of effective selective detection tools greatly limits the understanding and the research of their respective physiological roles in living organisms. Until now, several small-molecular fluorescent probes have been employed for selective detection and monitoring of CYP450s (Cytochrome P450 enzymes) in vitro or in vivo owing to the tailored properties, biodegradability, and high temporal and spatial resolution imaging in situ. In this review, we summarize the recent advances in fluorescent probes for CYP450s (including CYP1, CYP2, and CYP3 families), and we discuss and focus on their identification mechanisms, general probe design strategies, and bioimaging applications. We also highlight the potential challenges and prospects of designing new generations of fluorescent probes in CYP450 studies, which will further enhance the diversity, practicality, and clinical feasibility of research into CYP450.
Collapse
|
22
|
Jackson KD, Argikar UA, Cho S, Crouch RD, Driscoll JP, Heck C, King L, Maw HH, Miller GP, Seneviratne HK, Wang S, Wei C, Zhang D, Khojasteh SC. Bioactivation and Reactivity Research Advances - 2021 year in review. Drug Metab Rev 2022; 54:246-281. [PMID: 35876116 DOI: 10.1080/03602532.2022.2097254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
This year's review on bioactivation and reactivity began as a part of the annual review on biotransformation and bioactivation led by Cyrus Khojasteh (Khojasteh et al., 2021, 2020, 2019, 2018, 2017; Baillie et al., 2016). Increased contributions from experts in the field led to the development of a stand alone edition for the first time this year focused specifically on bioactivation and reactivity. Our objective for this review is to highlight and share articles which we deem influential and significant regarding the development of covalent inhibitors, mechanisms of reactive metabolite formation, enzyme inactivation, and drug safety. Based on the selected articles, we created two sections: (1) reactivity and enzyme inactivation, and (2) bioactivation mechanisms and safety (Table 1). Several biotransformation experts have contributed to this effort from academic and industry settings.
Collapse
Affiliation(s)
- Klarissa D Jackson
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA
| | - Upendra A Argikar
- Non-clinical Development, Bill & Melinda Gates Medical Research Institute, Cambridge, MA, 02139, USA
| | - Sungjoon Cho
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Rachel D Crouch
- Department of Pharmaceutical Sciences, Lipscomb University College of Pharmacy and Health Sciences, Nashville, TN, 37203, USA
| | - James P Driscoll
- Department of Drug Metabolism and Pharmacokinetics. Bristol Myers Squibb, Brisbane, CA, 94005, USA
| | - Carley Heck
- Medicine Design, Pfizer Worldwide Research, Development and Medical, Eastern Point Road, Groton, Connecticut, USA
| | - Lloyd King
- Department of DMPK, UCB Biopharma UK, 216 Bath Road, Slough, SL1 3WE, UK
| | - Hlaing Holly Maw
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, 06877, USA
| | - Grover P Miller
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 W Markham St Slot 516, Little Rock, Arkansas, 72205, USA
| | - Herana Kamal Seneviratne
- Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Shuai Wang
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Cong Wei
- Drug Metabolism & Pharmacokinetics, Biogen Inc., Cambridge, MA, 02142, USA
| | - Donglu Zhang
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - S Cyrus Khojasteh
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, MS412a, South San Francisco, CA, 94080, USA
| |
Collapse
|
23
|
Guengerich FP. Roles of cytochrome P450 enzymes in pharmacology and toxicology: Past, present, and future. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 95:1-47. [PMID: 35953152 PMCID: PMC9869358 DOI: 10.1016/bs.apha.2021.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The development of the cytochrome P450 (P450) field has been remarkable in the areas of pharmacology and toxicology, particularly in drug development. Today it is possible to use the knowledge base and relatively straightforward assays to make intelligent predictions about drug disposition prior to human dosing. Much is known about the structures, regulation, chemistry of catalysis, and the substrate and inhibitor specificity of human P450s. Many aspects of drug-drug interactions and side effects can be understood in terms of P450s. This knowledge has also been useful in pharmacy practice, as well as in the pharmaceutical industry and medical practice. However, there are still basic and practical questions to address regarding P450s and their roles in pharmacology and toxicology. Another aspect is the discovery of drugs that inhibit P450 to treat diseases.
Collapse
Affiliation(s)
- F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, United States.
| |
Collapse
|
24
|
Sheng C, Guo Y, Ma J, Hong EK, Zhang B, Yang Y, Zhang X, Zhang D. Metabolomic Profiling Reveals Protective Effects and Mechanisms of Sea Buckthorn Sterol against Carbon Tetrachloride-Induced Acute Liver Injury in Rats. Molecules 2022; 27:molecules27072224. [PMID: 35408620 PMCID: PMC9000363 DOI: 10.3390/molecules27072224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/18/2022] [Accepted: 03/26/2022] [Indexed: 12/26/2022] Open
Abstract
The present study was designed to examine the efficacy and protection mechanisms of sea buckthorn sterol (SBS) against acute liver injury induced by carbon tetrachloride (CCl4) in rats. Five-week-old male Sprague-Dawley (SD) rats were divided into six groups and fed with saline (Group BG), 50% CCl4 (Group MG), or bifendate 200 mg/kg (Group DDB), or treated with low-dose (Group LD), medium-dose (Group MD), or high-dose (Group HD) SBS. This study, for the first time, observed the protection of SBS against CCl4-induced liver injury in rats and its underlying mechanisms. Investigation of enzyme activities showed that SBS-fed rats exhibited a significant alleviation of inflammatory lesions, as evidenced by the decrease in cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2), and gamma-glutamyl transpeptidase (γ-GT). In addition, compared to the MG group, the increased indices (superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT), total antioxidant capacity (T-AOC), and total protein (TP)) of lipid peroxidation and decreased malondialdehyde (MDA) in liver tissues of SBS-treated groups showed the anti-lipid peroxidation effects of SBS. Using the wide range of targeted technologies and a combination of means (UPLC-MS/MS detection platform, self-built database, and multivariate statistical analysis), the addition of SBS was found to restore the expression of metabolic pathways (e.g., L-malic acid, N-acetyl-aspartic acid, N-acetyl-l-alanine, etc.) in rats, which means that the metabolic damage induced by CCl4 was alleviated. Furthermore, transcriptomics was employed to analyze and compare gene expression levels of different groups. It showed that the expressions of genes (Cyp1a1, Noct, and TUBB6) related to liver injury were regulated by SBS. In conclusion, SBS exhibited protective effects against CCl4-induced liver injury in rats. The liver protection mechanism of SBS is probably related to the regulation of metabolic disorders, anti-lipid peroxidation, and inhibition of the inflammatory response.
Collapse
Affiliation(s)
- Changting Sheng
- College of Medicine, Qinghai University, Xining 810016, China; (C.S.); (Y.G.)
| | - Yang Guo
- College of Medicine, Qinghai University, Xining 810016, China; (C.S.); (Y.G.)
| | - Jing Ma
- College of Ecological and Environmental Engineering, Qinghai University, Xining 810016, China; (J.M.); (B.Z.); (Y.Y.); (X.Z.)
| | - Eun-Kyung Hong
- Medvill Co., Ltd., Medvill Research Institute, Seoul 100744, Korea;
| | - Benyin Zhang
- College of Ecological and Environmental Engineering, Qinghai University, Xining 810016, China; (J.M.); (B.Z.); (Y.Y.); (X.Z.)
| | - Yongjing Yang
- College of Ecological and Environmental Engineering, Qinghai University, Xining 810016, China; (J.M.); (B.Z.); (Y.Y.); (X.Z.)
| | - Xiaofeng Zhang
- College of Ecological and Environmental Engineering, Qinghai University, Xining 810016, China; (J.M.); (B.Z.); (Y.Y.); (X.Z.)
| | - Dejun Zhang
- College of Ecological and Environmental Engineering, Qinghai University, Xining 810016, China; (J.M.); (B.Z.); (Y.Y.); (X.Z.)
- Correspondence:
| |
Collapse
|
25
|
Klammers F, Goetschi A, Ekiciler A, Walter I, Parrott N, Fowler S, Umehara K. Estimation of fraction metabolized by cytochrome P450 (CYP) enzymes using long-term co-cultured human hepatocytes. Drug Metab Dispos 2022; 50:566-575. [PMID: 35246464 DOI: 10.1124/dmd.121.000765] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 02/25/2022] [Indexed: 11/22/2022] Open
Abstract
Estimation of the fraction of a drug metabolized by individual hepatic cytochrome P450 (CYP) enzymes relative to hepatic metabolism (fm,CYP) or total clearance (fCL,CYP) has been challenging for low turnover compounds due to insufficient resolution of the intrinsic clearance (CLint) measurement in vitro and difficulties in quantifying the formation of low abundance metabolites. To overcome this gap, inhibition of drug depletion or selective metabolite formation for 7 marker CYP substrates was investigated using chemical inhibitors and a micro-patterned hepatocyte co-culture system (HepatoPac®). The use of 3 µM itraconazole was successfully validated for estimation of fm,CYP3A4 by demonstration of fm values within a 2-fold of in vivo estimates for 10 out of 13 CYP3A4 substrates in a reference set of marketed drugs. Other CYP3A4 inhibitors (ketoconazole and posaconazole) were not optimal for estimation of fm,CYP3A4 for low turnover compounds due to their high CLint. The current study also demonstrated that selective inhibition sufficient for fm calculation was achieved by inhibitors of CYP1A2 (20 µM furafylline), CYP2C8 (40 µM montelukast), CYP2C9 (40 µM sulfaphenazole), CYP2C19 (3 µM (-)N-3-benzyl-phenobarbital) and CYP2D6 (5 µM quinidine). Good estimation of fm,CYP2B6 was not possible in this study due to the poor selectivity of the tested inhibitor (20 µM ticlopidine). The approach verified in this study can result in an improved fm estimation which is aligned with the regulatory agencies' guidance and can support a victim drug-drug interaction risk assessment strategy for low clearance discovery and development drug candidates. Significance Statement Successful qualification of a chemical inhibition assay for estimation of fraction metabolized requires chemical inhibitors which retain sufficient unbound concentrations over time in the incubates. The current co-cultured hepatocyte assay enabled estimation of fraction metabolized, especially by CYP3A4, during the drug discovery phase where metabolite quantification methods may not be available. The method enables the assessment of PK variability and victim DDI risks due to enzyme polymorphism or inhibition/induction with more confidence, especially for low clearance drug candidates.
Collapse
Affiliation(s)
| | | | - Aynur Ekiciler
- Pharmaceutical Sciences, F. Hoffmann-LaRoche, Switzerland
| | | | | | | | - Kenichi Umehara
- Pharmaceutical Sciences, Roche Pharmaceutical Research and Early Development, Switzerland
| |
Collapse
|
26
|
Cho H, Choi I, Kim SK, Baik S, Ryu CS. LC-MS-based assay of granisetron 7-hydroxylation activity for the evaluation of CYP1A1 induction from diesel particulate matter-exposed hepatic and respiratory cell lines. Food Chem Toxicol 2022; 161:112829. [PMID: 35093429 DOI: 10.1016/j.fct.2022.112829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/23/2021] [Accepted: 01/19/2022] [Indexed: 11/28/2022]
Abstract
Particulate matter (PM) generally consists of aggregated particles containing trace metals and polycyclic aromatic hydrocarbons (PAHs). Cytochrome P450 (CYP) 1A1, one of the extensively investigated biomarkers, is highly inducible when PAHs activate the aryl hydrocarbon receptor (AhR). The present study focused on developing a LC-MS/MS-based assay to evaluate CYP1A1 induction potential following PM exposure. This assay adapted a CYP1A1 selective reaction of granisetron 7-hydroxylation in response to an AhR inducer, 6-formylindolo[3,2-b]carbazole (FICZ), in HepaRG and A549 cell lines. Exposure to FICZ (10 nM) increased the levels of granisetron 7-hydroxylation significantly, whereas no elevation of ethoxyresorufin-O-deethylation (EROD) activity was found in HepaRG cells. In A549 cells, granisetron 7-hydroxylation showed a better dose-response from 0 to 10000 nM FICZ treatment than EROD. EROD Additionally, the application of the assay with diesel PM exposure showed a concentration-dependent induction of CYP1A1 in HepaRG, A549, and human nasal epithelial cells. The granisetron assay has better selectivity for CYP1A1 than the conventional EROD assay, which is overlapped reaction with CYP1A2 and CYP1B1, with high correlations between AhR activation and CYP1A1 mRNA levels. Accompanying the great application potential to different organs and cell culture systems, future studies will implement the granisetron assay for the respiratory toxicity evaluation.
Collapse
Affiliation(s)
- Hyunki Cho
- Environmental Safety Group, Korea Institute of Science and Technology (KIST) Europe, Saarbrücken, 66123, Germany
| | - Ian Choi
- Environmental Safety Group, Korea Institute of Science and Technology (KIST) Europe, Saarbrücken, 66123, Germany
| | - Sang Kyum Kim
- College of Pharmacy, Chungnam National University, Daejeon, 34134, South Korea
| | - Seungyun Baik
- Environmental Safety Group, Korea Institute of Science and Technology (KIST) Europe, Saarbrücken, 66123, Germany.
| | - Chang Seon Ryu
- Environmental Safety Group, Korea Institute of Science and Technology (KIST) Europe, Saarbrücken, 66123, Germany.
| |
Collapse
|
27
|
Bart AG, Morais G, Vangala VR, Loadman PM, Pors K, Scott EE. Cytochrome P450 Binding and Bioactivation of Tumor-Targeted Duocarmycin Agents. Drug Metab Dispos 2022; 50:49-57. [PMID: 34607808 PMCID: PMC8969195 DOI: 10.1124/dmd.121.000642] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/01/2021] [Indexed: 01/03/2023] Open
Abstract
Duocarmycin natural products are promising anticancer cytotoxins but too potent for systemic use. Re-engineering of the duocarmycin scaffold has enabled the discovery of prodrugs designed for bioactivation by tissue-specific cytochrome P450 (P450) enzymes. Lead prodrugs bioactivated by both P450 isoforms CYP1A1 and CYP2W1 have shown promising results in xenograft studies; however, to fully understand the potential of these agents it is desirable to compare dual-targeting compounds with isoform-selective analogs. Such redesign requires insight into the molecular interactions with these P450 enzymes. Herein binding and metabolism of the individual stereoisomers of the indole-based duocarmycin prodrug ICT2700 and a nontoxic benzofuran analog ICT2726 were evaluated with CYP1A1 and CYP2W1, revealing differences exploitable for drug design. Although enantiomers of both compounds bound to and were metabolized by CYP1A1, the stereochemistry of the chloromethyl fragment was critical for CYP2W1 interactions. CYP2W1 differentially binds the S enantiomer of ICT2726, and its metabolite profile could potentially be used as a biomarker to identify CYP2W1 functional activity. In contrast to benzofuran-based ICT2726, CYP2W1 differentially binds the R isomer of the indole-based ICT2700 over the S stereoisomer. Thus the ICT2700 R configuration warrants further investigation as a scaffold to favor CYP2W1-selective bioactivation. Furthermore, structures of both duocarmycin S enantiomers with CYP1A1 reveal orientations correlating with nontoxic metabolites, and further drug design optimization could lead to a decrease of CYP1A1 bioactivation. Overall, distinctive structural features present in the two P450 active sites can be useful for improving P450-and thus tissue-selective-bioactivation. SIGNIFICANCE STATEMENT: Prodrug versions of the natural product duocarmycin can be metabolized by human tissue-specific cytochrome P450 (P450) enzymes 1A1 and 2W1 to form an ultrapotent cytotoxin and/or high affinity 2W1 substrates to potentially probe functional activity in situ. The current work defines the binding and metabolism by both P450 enzymes to support the design of duocarmycins selectively activated by only one human P450 enzyme.
Collapse
Affiliation(s)
- Aaron G Bart
- Program in Biophysics (A.G.B., E.E.S.) and Departments of Medicinal Chemistry and Pharmacology and Biological Chemistry (E.E.S.), University of Michigan, Ann Arbor, Michigan; Institute of Cancer Therapeutics (G.M., P.M.L., K.P.), Centre for Pharmaceutical Engineering Science (V.R.V.), Faculty of Life Sciences, University of Bradford, United Kingdom
| | - Goreti Morais
- Program in Biophysics (A.G.B., E.E.S.) and Departments of Medicinal Chemistry and Pharmacology and Biological Chemistry (E.E.S.), University of Michigan, Ann Arbor, Michigan; Institute of Cancer Therapeutics (G.M., P.M.L., K.P.), Centre for Pharmaceutical Engineering Science (V.R.V.), Faculty of Life Sciences, University of Bradford, United Kingdom
| | - Venu R Vangala
- Program in Biophysics (A.G.B., E.E.S.) and Departments of Medicinal Chemistry and Pharmacology and Biological Chemistry (E.E.S.), University of Michigan, Ann Arbor, Michigan; Institute of Cancer Therapeutics (G.M., P.M.L., K.P.), Centre for Pharmaceutical Engineering Science (V.R.V.), Faculty of Life Sciences, University of Bradford, United Kingdom
| | - Paul M Loadman
- Program in Biophysics (A.G.B., E.E.S.) and Departments of Medicinal Chemistry and Pharmacology and Biological Chemistry (E.E.S.), University of Michigan, Ann Arbor, Michigan; Institute of Cancer Therapeutics (G.M., P.M.L., K.P.), Centre for Pharmaceutical Engineering Science (V.R.V.), Faculty of Life Sciences, University of Bradford, United Kingdom
| | - Klaus Pors
- Program in Biophysics (A.G.B., E.E.S.) and Departments of Medicinal Chemistry and Pharmacology and Biological Chemistry (E.E.S.), University of Michigan, Ann Arbor, Michigan; Institute of Cancer Therapeutics (G.M., P.M.L., K.P.), Centre for Pharmaceutical Engineering Science (V.R.V.), Faculty of Life Sciences, University of Bradford, United Kingdom
| | - Emily E Scott
- Program in Biophysics (A.G.B., E.E.S.) and Departments of Medicinal Chemistry and Pharmacology and Biological Chemistry (E.E.S.), University of Michigan, Ann Arbor, Michigan; Institute of Cancer Therapeutics (G.M., P.M.L., K.P.), Centre for Pharmaceutical Engineering Science (V.R.V.), Faculty of Life Sciences, University of Bradford, United Kingdom
| |
Collapse
|
28
|
Fowler S, Brink A, Cleary Y, Guenther A, Heinig K, Husser C, Kletzl H, Kratochwil NA, Mueller L, Savage M, Stillhart C, Tuerck DW, Ullah M, Umehara K, Poirier A. Addressing today's ADME challenges in the translation of in vitro absorption, distribution, metabolism and excretion characteristics to human: A case study of the SMN2 mRNA splicing modifier risdiplam. Drug Metab Dispos 2021; 50:65-75. [PMID: 34620695 DOI: 10.1124/dmd.121.000563] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/30/2021] [Indexed: 11/22/2022] Open
Abstract
Small molecules that present complex absorption, distribution, metabolism, and elimination (ADME) properties can be challenging to investigate as potential therapeutics. Acquiring data through standard methods can yield results that are insufficient to describe the in vivo situation, which can affect downstream development decisions. Implementing in vitro - in vivo - in silico strategies throughout the drug development process is effective in identifying and mitigating risks while speeding up their development. Risdiplam (EVRYSDI®) - an orally bioavailable, small molecule approved by the U.S. Food and Drug Administration and more recently by the European Medicines Agency for the treatment of patients {greater than or equal to}2 months of age with spinal muscular atrophy (SMA), is presented here as a case study. Risdiplam is a low turnover compound whose metabolism is mediated through a non-cytochrome P450 enzymatic pathway. Four main challenges of risdiplam are discussed: predicting in vivo hepatic clearance, determining in vitro metabolites with regard to metabolites in safety testing guidelines, elucidating enzymes responsible for clearance, and estimating potential drug-drug interactions. A combination of in vitro and in vivo results was successfully extrapolated and used to develop a robust physiologically based pharmacokinetic model of risdiplam. These results were verified through early clinical studies, further strengthening the understanding of the ADME properties of risdiplam in humans. These approaches can be applied to other compounds with similar ADME profiles, which may be difficult to investigate using standard methods. Significance Statement Risdiplam is the first approved, small molecule, survival of motor neuron 2 mRNA splicing modifier for the treatment of spinal muscular atrophy. The approach taken to characterize the absorption, distribution, metabolism and excretion (ADME) properties of risdiplam during clinical development incorporated in vitro-in vivo-in silico techniques, which may be applicable to other small molecules with challenging ADME. These strategies may be useful in improving the speed at which future drug molecules can be developed.
Collapse
Affiliation(s)
| | - Andreas Brink
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, Switzerland
| | - Yumi Cleary
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, Switzerland
| | - Andreas Guenther
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, Switzerland
| | - Katja Heinig
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, Switzerland
| | | | - Heidemarie Kletzl
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, Switzerland
| | | | - Lutz Mueller
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, Switzerland
| | - Mark Savage
- Unilabs York Bioanalytical Solutions, United Kingdom
| | - Cordula Stillhart
- Formulation & Process Sciences, Pharmaceutical R&D, F. Hoffmann-La Roche Ltd, Switzerland
| | | | - Mohammed Ullah
- Pharmaceutical Sciences, Roche Pharmaceutical Research and Early Development, Switzerland
| | - Kenichi Umehara
- Pharmaceutical Sciences, Roche Pharmaceutical Research and Early Development, Switzerland
| | - Agnès Poirier
- Pharmaceutical Sciences, F.Hoffmann-La Roche, Switzerland
| |
Collapse
|
29
|
Rolfes KM, Sondermann NC, Vogeley C, Dairou J, Gilardino V, Wirth R, Meller S, Homey B, Krutmann J, Lang D, Nakamura M, Haarmann-Stemmann T. Inhibition of 6-formylindolo[3,2-b]carbazole metabolism sensitizes keratinocytes to UVA-induced apoptosis: Implications for vemurafenib-induced phototoxicity. Redox Biol 2021; 46:102110. [PMID: 34418602 PMCID: PMC8379514 DOI: 10.1016/j.redox.2021.102110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/16/2021] [Accepted: 08/16/2021] [Indexed: 11/24/2022] Open
Abstract
Ultraviolet (UV) B irradiation of keratinocytes results in the formation of the tryptophan photoproduct 6-formylindolo[3,2-b]carbazole (FICZ) which is a high-affinity ligand for the aryl hydrocarbon receptor (AHR). The resulting activation of AHR signaling induces the expression of cytochrome P450 (CYP) 1A1 which subsequently metabolizes FICZ. Importantly, FICZ is also a nanomolar photosensitizer for UVA radiation. Here, we assess whether a manipulation of the AHR-CYP1A1 axis in human epidermal keratinocytes affects FICZ/UVA-induced phototoxic effects and whether this interaction might be mechanistically relevant for the phototoxicity of the BRAF inhibitor vemurafenib. Treatment of keratinocytes with an AHR agonist enhanced the CYP1A1-catalyzed metabolism of FICZ and thus prevented UVA photosensitization, whereas an inhibition of either AHR signaling or CYP1A1 enzyme activity resulted in an accumulation of FICZ and a sensitization to UVA-induced oxidative stress and apoptosis. Exposure of keratinocytes to vemurafenib resulted in the same outcome. Specifically, CYP phenotyping revealed that vemurafenib is primarily metabolized by CYP1A1 and to a lesser degree by CYP2J2 and CYP3A4. Hence, vemurafenib sensitized keratinocytes to UVA-induced apoptosis by interfering with the CYP1A1-mediated oxidative metabolism of FICZ. In contrast to this pro-apoptotic effect, a treatment of UVB-damaged keratinocytes with vemurafenib suppressed apoptosis, a process which might contribute to the skin carcinogenicity of the drug. Our results provide insight into the mechanisms responsible for the photosensitizing properties of vemurafenib and deliver novel information about its metabolism which might be relevant regarding potential drug-drug interactions. The data emphasize that the AHR-CYP1A1 axis contributes to the pathogenesis of cutaneous adverse drug reactions.
Collapse
Affiliation(s)
- Katharina M Rolfes
- IUF - Leibniz-Research Institute for Environmental Medicine, 40225, Düsseldorf, Germany
| | - Natalie C Sondermann
- IUF - Leibniz-Research Institute for Environmental Medicine, 40225, Düsseldorf, Germany
| | - Christian Vogeley
- IUF - Leibniz-Research Institute for Environmental Medicine, 40225, Düsseldorf, Germany
| | - Julien Dairou
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS, UMR 8601, Université de Paris, F-75006, Paris, France
| | - Viola Gilardino
- IUF - Leibniz-Research Institute for Environmental Medicine, 40225, Düsseldorf, Germany
| | - Ragnhild Wirth
- IUF - Leibniz-Research Institute for Environmental Medicine, 40225, Düsseldorf, Germany
| | - Stephan Meller
- Department of Dermatology, Medical Faculty, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| | - Bernhard Homey
- Department of Dermatology, Medical Faculty, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| | - Jean Krutmann
- IUF - Leibniz-Research Institute for Environmental Medicine, 40225, Düsseldorf, Germany; Medical Faculty, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| | - Dieter Lang
- Bayer AG, Drug Metabolism and Pharmacokinetics, Research Center, 42096, Wuppertal, Germany
| | - Motoki Nakamura
- IUF - Leibniz-Research Institute for Environmental Medicine, 40225, Düsseldorf, Germany; Department of Environmental and Geriatric Dermatology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, 467-8601, Japan
| | | |
Collapse
|
30
|
Wenzel C, Drozdzik M, Oswald S. Mass spectrometry-based targeted proteomics method for the quantification of clinically relevant drug metabolizing enzymes in human specimens. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1180:122891. [PMID: 34390906 DOI: 10.1016/j.jchromb.2021.122891] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 07/06/2021] [Accepted: 07/30/2021] [Indexed: 01/15/2023]
Abstract
Biotransformation by phase I and II metabolizing enzymes represents the major determinant for the oral bioavailability of many drugs. To estimate the pharmacokinetics, data on protein abundance of hepatic and extrahepatic tissues, such as the small intestine, are required. Targeted proteomics assays are nowadays state-of-the-art for absolute protein quantification and several methods for quantification of drug metabolizing enzymes have been published. However, some enzymes remain still uncovered by the analytical spectra of those methods. Therefore, we developed and validated a quantification assay for two carboxylesterases (CES-1, CES-2), 17 cytochrome P450 enzymes (CYP) (CYP1A1, CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C18, CYP2C19, CYP2D6, CYP2E1, CYP2J2, CYP3A4, CYP3A5, CYP3A7, CYP4F2, CYP4F12, CYP4A11) and five UDP-glucuronosyltransferases (UGTs) (UGT1A1, UGT1A3, UGT2B7, UGT2B15, UGT2B17). Protein quantification was performed by analyzing proteospecific surrogate peptides after tryptic digestion with stable isotope-labelled standards. Chromatographic separation was performed on a Kinetex® 2.6 µm C18 100 Å core-shell column (100 × 2.1 mm) with a gradient elution using 0.1% formic acid and acetonitrile containing 0.1% formic acid with a flow rate of 200 µl/min. Three mass transitions were simultaneously monitored with a scheduled multiple reaction monitoring (sMRM) method for each analyte and standard. The method was partly validated according to current bioanalytical guidelines and met the criteria regarding linearity (0.1-25 nmol/L), within-day and between-day accuracy and precision as well as multiple stability criteria. Finally, the developed method was successfully applied to determine the abundance of the aforementioned enzymes in human intestinal und liver microsomes. Our work offers a new fit for purpose method for the absolute quantification of CES, CYPs and UGTs in various human tissues and can be used for the acquisition of data for physiologically based pharmacokinetic modelling.
Collapse
Affiliation(s)
- Christoph Wenzel
- Department of Pharmacology, Center of Drug Absorption and Transport, University Medicine Greifswald, Greifswald, Germany
| | - Marek Drozdzik
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, Szczecin, Poland
| | - Stefan Oswald
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Rostock, Germany.
| |
Collapse
|
31
|
Tomás-Navarro M, Navarro JL, Vallejo F, Tomás-Barberán FA. Novel Urinary Biomarkers of Orange Juice Consumption, Interindividual Variability, and Differences with Processing Methods. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4006-4017. [PMID: 33724826 DOI: 10.1021/acs.jafc.0c08144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Untargeted metabolomics identified urinary biomarkers able to discriminate between the intake of fresh hand-squeezed and industrially processed orange juices. Processing led to an upregulation in the excretion of hydroxy-polymethoxyflavone sulfates, abscisic acid, and sinapic acid 4'-glucuronide. The demethylated polymethoxyflavone metabolites were produced with a significant interindividual variability suggesting that they could originate from gut microbiota metabolism. No correlation between the excretion levels of flavanone and polymethoxyflavone metabolites was observed, showing that gut microbiota metabolism differences could be behind the interindividual variability. Subjects with a high excretion level of hesperetin conjugates could be low or high polymethoxyflavone excretors. Flavanone phase II metabolites were primarily glucuronides, while those of demethylated polymethoxyflavones were mainly sulfates. A comparative study with the available demethylated polymethoxyflavone standards suggested that the metabolites produced in humans could be tentatively 4'-hydroxy- and/or 3'-hydroxy-polymethoxyflavone sulfates. This study is the first to describe the bioavailability and metabolism of citrus juice polymethoxyflavones in humans.
Collapse
Affiliation(s)
- María Tomás-Navarro
- Laboratory of Food & Health, Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, P. O. Box 164, 30100 Campus de Espinardo, Murcia, Spain
| | | | - Fernando Vallejo
- Laboratory of Food & Health, Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, P. O. Box 164, 30100 Campus de Espinardo, Murcia, Spain
| | - Francisco A Tomás-Barberán
- Laboratory of Food & Health, Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, P. O. Box 164, 30100 Campus de Espinardo, Murcia, Spain
| |
Collapse
|
32
|
Kluss JH, Mazza MC, Li Y, Manzoni C, Lewis PA, Cookson MR, Mamais A. Preclinical modeling of chronic inhibition of the Parkinson's disease associated kinase LRRK2 reveals altered function of the endolysosomal system in vivo. Mol Neurodegener 2021; 16:17. [PMID: 33741046 PMCID: PMC7977595 DOI: 10.1186/s13024-021-00441-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 03/04/2021] [Indexed: 12/26/2022] Open
Abstract
The most common mutation in the Leucine-rich repeat kinase 2 gene (LRRK2), G2019S, causes familial Parkinson's Disease (PD) and renders the encoded protein kinase hyperactive. While targeting LRRK2 activity is currently being tested in clinical trials as a therapeutic avenue for PD, to date, the molecular effects of chronic LRRK2 inhibition have not yet been examined in vivo. We evaluated the utility of newly available phospho-antibodies for Rab substrates and LRRK2 autophosphorylation to examine the pharmacodynamic response to treatment with the potent and specific LRRK2 inhibitor, MLi-2, in brain and peripheral tissue in G2019S LRRK2 knock-in mice. We report higher sensitivity of LRRK2 autophosphorylation to MLi-2 treatment and slower recovery in washout conditions compared to Rab GTPases phosphorylation, and we identify pS106 Rab12 as a robust readout of downstream LRRK2 activity across tissues. The downstream effects of long-term chronic LRRK2 inhibition in vivo were evaluated in G2019S LRRK2 knock-in mice by phospho- and total proteomic analyses following an in-diet administration of MLi-2 for 10 weeks. We observed significant alterations in endolysosomal and trafficking pathways in the kidney that were sensitive to MLi-2 treatment and were validated biochemically. Furthermore, a subtle but distinct biochemical signature affecting mitochondrial proteins was observed in brain tissue in the same animals that, again, was reverted by kinase inhibition. Proteomic analysis in the lung did not detect any major pathway of dysregulation that would be indicative of pulmonary impairment. This is the first study to examine the molecular underpinnings of chronic LRRK2 inhibition in a preclinical in vivo PD model and highlights cellular processes that may be influenced by therapeutic strategies aimed at restoring LRRK2 physiological activity in PD patients.
Collapse
Affiliation(s)
- Jillian H Kluss
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.,School of Pharmacy, University of Reading, Whiteknights Campus, Reading, UK
| | - Melissa Conti Mazza
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Yan Li
- Proteomic Core Facility, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Claudia Manzoni
- School of Pharmacy, University of Reading, Whiteknights Campus, Reading, UK.,UCL School of Pharmacy, Brunswick Square, London, UK
| | - Patrick A Lewis
- School of Pharmacy, University of Reading, Whiteknights Campus, Reading, UK.,Royal Veterinary College, Royal College Street, London, UK.,Department of Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Mark R Cookson
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.
| | - Adamantios Mamais
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, Norman Fixel Institute for Neurological Diseases, University of Florida College of Medicine, Gainesville, Florida, USA
| |
Collapse
|
33
|
Wang H, Pan L, Si L, Ji R, Cao Y. Effects of Nrf2-Keap1 signaling pathway on antioxidant defense system and oxidative damage in the clams Ruditapes philippinarum exposure to PAHs. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10.1007/s11356-021-12906-w. [PMID: 33638075 DOI: 10.1007/s11356-021-12906-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
NF-E2-related factor 2 (Nrf2) is a master regulator of antioxidant defense system which can maintain the oxidation balance in the cell. In our previous study, we first cloned the Nrf2 gene in clams and preliminarily explored the role of the Nrf2 at the transcription level. In this study, RNA interference (RNAi) technology was used to interfere with the expression of Nrf2 after being exposed to benzo(a)pyrene (BaP) for 5 days to verify the role of Nrf2 in the antioxidant defense system. Besides, we examined the mRNA expression and enzyme activities of antioxidases and the oxidative damage. The positive correlations between the Nrf2 with the mRNA expression and the enzyme activities of antioxidases indicated that Nrf2 was required for the induction of these antioxidant genes. Additionally, the mRNA expression and the enzyme activities of the glutathione peroxidase (GPx) in the Nrf2-dsRNA group were significantly higher than those in the control groups on the fifth day, indicating that the GPx is more sensitive to oxidative stress. Moreover, the oxidative damage in the RpNrf2-dsRNA group was markedly increased than control groups, indicating that Nrf2 transcriptional regulation may play an essential role in defending against oxidative damage. This study provides a foundation for further research on the mechanism of detoxification and antioxidation of polycyclic aromatic hydrocarbons (PAHs) in the clams at the transcription level and the protein level.
Collapse
Affiliation(s)
- Hongdan Wang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China.
| | - Lingjun Si
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Rongwang Ji
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Yunhao Cao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| |
Collapse
|
34
|
Drug-Drug Interactions Involving Intestinal and Hepatic CYP1A Enzymes. Pharmaceutics 2020; 12:pharmaceutics12121201. [PMID: 33322313 PMCID: PMC7764576 DOI: 10.3390/pharmaceutics12121201] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/02/2020] [Accepted: 12/08/2020] [Indexed: 12/29/2022] Open
Abstract
Cytochrome P450 (CYP) 1A enzymes are considerably expressed in the human intestine and liver and involved in the biotransformation of about 10% of marketed drugs. Despite this doubtless clinical relevance, CYP1A1 and CYP1A2 are still somewhat underestimated in terms of unwanted side effects and drug–drug interactions of their respective substrates. In contrast to this, many frequently prescribed drugs that are subjected to extensive CYP1A-mediated metabolism show a narrow therapeutic index and serious adverse drug reactions. Consequently, those drugs are vulnerable to any kind of inhibition or induction in the expression and function of CYP1A. However, available in vitro data are not necessarily predictive for the occurrence of clinically relevant drug–drug interactions. Thus, this review aims to provide an up-to-date summary on the expression, regulation, function, and drug–drug interactions of CYP1A enzymes in humans.
Collapse
|
35
|
Sathyanarayanan G, Haapala M, Sikanen T. Digital Microfluidics-Enabled Analysis of Individual Variation in Liver Cytochrome P450 Activity. Anal Chem 2020; 92:14693-14701. [PMID: 33099994 DOI: 10.1021/acs.analchem.0c03258] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The superfamily of hepatic cytochrome P450 (CYP) enzymes is responsible for the intrinsic clearance of the majority of therapeutic drugs in humans. However, the kinetics of drug clearance via CYPs varies significantly among individuals due to both genetic and external factors, and the enzyme amount and function are also largely impacted by many liver diseases. In this study, we developed a new methodology, based on digital microfluidics (DMF), for rapid determination of individual alterations in CYP activity from human-derived liver samples in biopsy-scale. The assay employs human liver microsomes (HLMs), immobilized on magnetic beads to facilitate determination of the activity of microsomal CYP enzymes in a parallelized system at physiological temperature. The thermal control is achieved with the help of a custom-designed, inkjet-printed microheater array modularly integrated with the DMF platform. The CYP activities are determined with the help of prefluorescent, enzyme-selective model compounds by quantifying the respective fluorescent metabolites based on optical readout in situ. The selectivity and sensitivity of the assay was established for four different CYP model reactions, and the diagnostic concept was validated by determining the interindividual variation in one of the four model reaction activities, that is, ethoxyresorufin O-deethylation (CYP1A1/2), between five donors. Overall, the developed protocol consumes only about 15 μg microsomal protein per assay. It is thus technically adaptable to screening of individual differences in CYP enzyme function from biopsy-scale liver samples in an automated fashion, so as to support tailoring of medical therapies, for example, in the context of liver disease diagnosis.
Collapse
Affiliation(s)
- Gowtham Sathyanarayanan
- Faculty of Pharmacy, Drug Research Program, Division of Pharmaceutical Chemistry and Technology University of Helsinki, Viikinkaari 5 E 00014, Finland
| | - Markus Haapala
- Faculty of Pharmacy, Drug Research Program, Division of Pharmaceutical Chemistry and Technology University of Helsinki, Viikinkaari 5 E 00014, Finland
| | - Tiina Sikanen
- Faculty of Pharmacy, Drug Research Program, Division of Pharmaceutical Chemistry and Technology University of Helsinki, Viikinkaari 5 E 00014, Finland
| |
Collapse
|
36
|
Sensing cytochrome P450 1A1 activity by a resorufin-based isoform-specific fluorescent probe. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.05.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
37
|
Discovery of heterocycle-containing α-naphthoflavone derivatives as water-soluble, highly potent and selective CYP1B1 inhibitors. Eur J Med Chem 2020; 209:112895. [PMID: 33069055 DOI: 10.1016/j.ejmech.2020.112895] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/02/2020] [Accepted: 09/24/2020] [Indexed: 12/15/2022]
Abstract
Cytochrome P450 1B1 (CYP1B1) has been well validated as an attractive target for cancer prevention and drug resistance reversal. In continuation of our interest in this area, herein, a set of forty-six 6,7,10-trimethoxy-α-naphthoflavone derivatives varying in B ring was synthesized and screened against CYP1 enzymes, leading to the identification of fluorine-containing compound 15i as the most potent and selective CYP1B1 inhibitor (IC50 value of 0.07 nM), being 84-fold more potent than that of the template molecule ANF. Alternatively, the amino-substituted derivative 13h not only possessed a potent inhibitory effect on CYP1B1 (IC50 value of 0.98 nM), but also had a substantially increased water solubility as compared with the lead ANF (311 μg/mL for 13h and <5 μg/mL for ANF). The current study expanded the structural diversity of CYP1B1 inhibitors, and compound 13h could be considered as a promising starting point with great potential for further studies.
Collapse
|
38
|
Jungmann NA, Lang D, Saleh S, Van Der Mey D, Gerisch M. In vitro- in vivo correlation of the drug-drug interaction potential of antiretroviral HIV treatment regimens on CYP1A1 substrate riociguat. Expert Opin Drug Metab Toxicol 2019; 15:975-984. [PMID: 31619082 DOI: 10.1080/17425255.2019.1681968] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Objectives: Riociguat is a soluble guanylate cyclase stimulator licensed for the treatment of pulmonary arterial hypertension (PAH), a potentially fatal complication of human immunodeficiency virus infection. This study investigated the inhibitory potency of selected antiretroviral regimens on the metabolic clearance of riociguat.Methods: The inhibitory potential of the components of six antiretroviral combinations (ATRIPLA® (efavirenz/emtricitabine/tenofovir disoproxil), COMPLERA® (rilpivirine/emtricitabine/tenofovir disoproxil), STRIBILD® (elvitegravir/cobicistat/emtricitabine/tenofovir disoproxil), TRIUMEQ® (abacavir/dolutegravir/lamivudine), and two ritonavir-boosted regimens) on riociguat metabolism were evaluated in recombinant human CYP1A1 and CYP3A4 as well as in human hepatocytes exhibiting both CYP1A1 and CYP3A4 activity. In vitro-in vivo correlation was performed between calculated and observed increases in riociguat exposure in vivo.Results: Using both in vitro systems, the predicted increase in exposure of riociguat was highest with components of TRIUMEQ® followed by COMPLERA®, ATRIPLA®, STRIBILD®, and the ritonavir-boosted regimens. Further experiments in human hepatocytes confirmed CYP1A1 to be the predominant enzyme in the metabolic clearance of riociguat.Conclusion: Antiretroviral treatment containing the potent CYP1A1 inhibitor abacavir had the greatest impact on riociguat metabolic clearance. The impact of comedications containing only strong CYP3A4 inhibitors e.g. ritonavir was less pronounced, suggesting a benefit of riociguat over PAH-targeting medications with contraindications for use with strong CYP3A4 inhibitors.
Collapse
Affiliation(s)
| | - Dieter Lang
- Drug Metabolism and Pharmacokinetics, Bayer AG, Wuppertal, Germany
| | | | | | - Michael Gerisch
- Drug Metabolism and Pharmacokinetics, Bayer AG, Wuppertal, Germany
| |
Collapse
|
39
|
Mescher M, Tigges J, Rolfes KM, Shen AL, Yee JS, Vogeley C, Krutmann J, Bradfield CA, Lang D, Haarmann-Stemmann T. The Toll-like receptor agonist imiquimod is metabolized by aryl hydrocarbon receptor-regulated cytochrome P450 enzymes in human keratinocytes and mouse liver. Arch Toxicol 2019; 93:1917-1926. [PMID: 31111189 PMCID: PMC11088943 DOI: 10.1007/s00204-019-02488-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 05/16/2019] [Indexed: 12/31/2022]
Abstract
The Toll-like receptor 7 agonist imiquimod (IMQ) is an approved drug for the topical treatment of various skin diseases that, in addition, is currently tested in multiple clinical trials for the immunotherapy of various types of cancers. As all of these trials include application of IMQ to the skin and evidence exists that exposure to environmental pollutants, i.e., tobacco smoke, affects its therapeutic efficacy, the current study aims to elucidate the cutaneous metabolism of the drug. Treatment of human keratinocytes with 2.5 µM benzo[a]pyrene (BaP), a tobacco smoke constituent and aryl hydrocarbon receptor (AHR) agonist, for 24 h induced cytochrome P450 (CYP) 1A enzyme activity. The addition of IMQ 30 min prior measurement resulted in a dose-dependent inhibition of CYP1A activity, indicating that IMQ is either a substrate or inhibitor of CYP1A isoforms. Incubation of 21 recombinant human CYP enzymes with 0.5 µM IMQ and subsequent LC-MS analyses, in fact, identified CYP1A1 and CYP1A2 as being predominantly responsible for IMQ metabolism. Accordingly, treatment of keratinocytes with BaP accelerated IMQ clearance and the associated formation of monohydroxylated IMQ metabolites. A co-incubation with 5 µM 7-hydroxyflavone, a potent inhibitor of human CYP1A isoforms, abolished basal as well as BaP-induced IMQ metabolism. Further studies with hepatic microsomes from CD-1 as well as solvent- and β-naphthoflavone-treated CYP1A1/CYP1A2 double knock-out and respective control mice confirmed the critical contribution of CYP1A isoforms to IMQ metabolism. Hence, an exposure to life style-related, dietary, and environmental AHR ligands may affect the pharmacokinetics and, thus, treatment efficacy of IMQ.
Collapse
Affiliation(s)
- Melina Mescher
- IUF - Leibniz Research Institute for Environmental Medicine, 40225, Düsseldorf, Germany
| | - Julia Tigges
- IUF - Leibniz Research Institute for Environmental Medicine, 40225, Düsseldorf, Germany
| | - Katharina M Rolfes
- IUF - Leibniz Research Institute for Environmental Medicine, 40225, Düsseldorf, Germany
| | - Anna L Shen
- The McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Jeremiah S Yee
- The McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Christian Vogeley
- IUF - Leibniz Research Institute for Environmental Medicine, 40225, Düsseldorf, Germany
| | - Jean Krutmann
- IUF - Leibniz Research Institute for Environmental Medicine, 40225, Düsseldorf, Germany
- Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Christopher A Bradfield
- The McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Dieter Lang
- Bayer AG, Pharmaceuticals, DMPK Drug Metabolism, 42096, Wuppertal, Germany
| | | |
Collapse
|