1
|
Bailey S, Fraser K. Advancing our understanding of the influence of drug induced changes in the gut microbiome on bone health. Front Endocrinol (Lausanne) 2023; 14:1229796. [PMID: 37867525 PMCID: PMC10588641 DOI: 10.3389/fendo.2023.1229796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/07/2023] [Indexed: 10/24/2023] Open
Abstract
The gut microbiome has been implicated in a multitude of human diseases, with emerging evidence linking its microbial diversity to osteoporosis. This review article will explore the molecular mechanisms underlying perturbations in the gut microbiome and their influence on osteoporosis incidence in individuals with chronic diseases. The relationship between gut microbiome diversity and bone density is primarily mediated by microbiome-derived metabolites and signaling molecules. Perturbations in the gut microbiome, induced by chronic diseases can alter bacterial diversity and metabolic profiles, leading to changes in gut permeability and systemic release of metabolites. This cascade of events impacts bone mineralization and consequently bone mineral density through immune cell activation. In addition, we will discuss how orally administered medications, including antimicrobial and non-antimicrobial drugs, can exacerbate or, in some cases, treat osteoporosis. Specifically, we will review the mechanisms by which non-antimicrobial drugs disrupt the gut microbiome's diversity, physiology, and signaling, and how these events influence bone density and osteoporosis incidence. This review aims to provide a comprehensive understanding of the complex interplay between orally administered drugs, the gut microbiome, and osteoporosis, offering new insights into potential therapeutic strategies for preserving bone health.
Collapse
Affiliation(s)
- Stacyann Bailey
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA, United States
- Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| | - Keith Fraser
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| |
Collapse
|
2
|
Woo AYM, Aguilar Ramos MA, Narayan R, Richards-Corke KC, Wang ML, Sandoval-Espinola WJ, Balskus EP. Targeting the human gut microbiome with small-molecule inhibitors. NATURE REVIEWS. CHEMISTRY 2023; 7:319-339. [PMID: 37117817 DOI: 10.1038/s41570-023-00471-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/20/2023] [Indexed: 04/30/2023]
Abstract
The human gut microbiome is a complex microbial community that is strongly linked to both host health and disease. However, the detailed molecular mechanisms underlying the effects of these microorganisms on host biology remain largely uncharacterized. The development of non-lethal, small-molecule inhibitors that target specific gut microbial activities enables a powerful but underutilized approach to studying the gut microbiome and a promising therapeutic strategy. In this Review, we will discuss the challenges of studying this microbial community, the historic use of small-molecule inhibitors in microbial ecology, and recent applications of this strategy. We also discuss the evidence suggesting that host-targeted drugs can affect the growth and metabolism of gut microbes. Finally, we address the issues of developing and implementing microbiome-targeted small-molecule inhibitors and define important future directions for this research.
Collapse
Affiliation(s)
- Amelia Y M Woo
- Harvard University, Department of Chemistry and Chemical Biology, Cambridge, MA, USA
| | | | - Rohan Narayan
- Harvard University, Department of Chemistry and Chemical Biology, Cambridge, MA, USA
| | | | - Michelle L Wang
- Harvard University, Department of Chemistry and Chemical Biology, Cambridge, MA, USA
| | - Walter J Sandoval-Espinola
- Harvard University, Department of Chemistry and Chemical Biology, Cambridge, MA, USA
- Universidad Nacional de Asunción, Facultad de Ciencias Exactas y Naturales, Departamento de Biotecnología, Laboratorio de Biotecnología Microbiana, San Lorenzo, Paraguay
| | - Emily P Balskus
- Harvard University, Department of Chemistry and Chemical Biology, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
3
|
Shen X, Zhang Q, Shao W, Shi J, Liu B. Medication reconciliation role and value in Alzheimer's disease treatment. ARQUIVOS DE NEURO-PSIQUIATRIA 2022; 80:233-239. [PMID: 35239819 DOI: 10.1590/0004-282x-anp-2021-0147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 07/01/2021] [Indexed: 11/22/2022]
Abstract
ABSTRACT Background: With the continuous increase of Alzheimer's disease (AD), it is also imminent to treat patients with AD for medication reconciliation. Objective: To explore the role and value of medication reconciliation in AD treatment. Methods: 100 patients over 65 years of age diagnosed with AD were randomly separated into two groups: conventional treatment and medication reforming. The list of medical orders of all subjects was obtained within 24 hours after admission with Beers criteria, STOPP/START criteria, and Chinese Pharmacopoeia used as the MED intervention criteria. Medication reconciliation was performed at 2 weeks, 1 month, and 2 months after hospital admission. The number of medications prescribed, the quantity of the medication, medication error rate, therapeutic effect, adverse drug reactions, and satisfaction levels of family members and main caregivers were compared between the two groups. Results: After the intervention, the types and amount of medication in the MED group were less compared to the CON group along with a reduced medication deviation rate. The Mini-mental state examination (MMSE) score and the proportion of well-nourished patients in the MED group were higher than those in the CON group. It was also observed that the physical self-care ability score and the proportion of patients with abnormal swallowing were lower when in comparison with the CON group. The incidence of adverse drug reactions in the MED group was lower than that in the CON group. However, the satisfaction rate was higher than that in the CON group. Conclusion: Medication reconciliation can reduce the medication deviation in AD patients.
Collapse
Affiliation(s)
| | - Qun Zhang
- The Second Hospital of Jinhua, China
| | | | | | - Bing Liu
- The Second Hospital of Jinhua, China
| |
Collapse
|
4
|
Allwardt V, Ainscough AJ, Viswanathan P, Sherrod SD, McLean JA, Haddrick M, Pensabene V. Translational Roadmap for the Organs-on-a-Chip Industry toward Broad Adoption. Bioengineering (Basel) 2020; 7:E112. [PMID: 32947816 PMCID: PMC7552662 DOI: 10.3390/bioengineering7030112] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/09/2020] [Accepted: 09/14/2020] [Indexed: 12/11/2022] Open
Abstract
Organs-on-a-Chip (OOAC) is a disruptive technology with widely recognized potential to change the efficiency, effectiveness, and costs of the drug discovery process; to advance insights into human biology; to enable clinical research where human trials are not feasible. However, further development is needed for the successful adoption and acceptance of this technology. Areas for improvement include technological maturity, more robust validation of translational and predictive in vivo-like biology, and requirements of tighter quality standards for commercial viability. In this review, we reported on the consensus around existing challenges and necessary performance benchmarks that are required toward the broader adoption of OOACs in the next five years, and we defined a potential roadmap for future translational development of OOAC technology. We provided a clear snapshot of the current developmental stage of OOAC commercialization, including existing platforms, ancillary technologies, and tools required for the use of OOAC devices, and analyze their technology readiness levels. Using data gathered from OOAC developers and end-users, we identified prevalent challenges faced by the community, strategic trends and requirements driving OOAC technology development, and existing technological bottlenecks that could be outsourced or leveraged by active collaborations with academia.
Collapse
Affiliation(s)
- Vanessa Allwardt
- Center for Innovative Technology, Department of Chemistry, Vanderbilt University, Nashville, TN 37212, USA; (V.A.); (S.D.S.); (J.A.M.)
| | | | - Priyalakshmi Viswanathan
- Medicines Discovery Catapult, Alderley Park, Alderley Edge, Macclesfield SK10 4TG, UK; (P.V.); (M.H.)
| | - Stacy D. Sherrod
- Center for Innovative Technology, Department of Chemistry, Vanderbilt University, Nashville, TN 37212, USA; (V.A.); (S.D.S.); (J.A.M.)
| | - John A. McLean
- Center for Innovative Technology, Department of Chemistry, Vanderbilt University, Nashville, TN 37212, USA; (V.A.); (S.D.S.); (J.A.M.)
- Vanderbilt Institute of Chemical Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN 37235, USA
| | - Malcolm Haddrick
- Medicines Discovery Catapult, Alderley Park, Alderley Edge, Macclesfield SK10 4TG, UK; (P.V.); (M.H.)
| | - Virginia Pensabene
- School of Electronic and Electrical Engineering, School of Medicine, Leeds Institute of Medical Research at St. James’s, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|