1
|
Che C, Lu YN, Fang T, Zhen GJ, Qi X, Wang CJ. Asymmetric Three-Component Radical Cascade Reactions Enabled by Synergistic Photoredox/Brønsted Acid Catalysis: Access to α-Amino Acid Derivatives. ACS CENTRAL SCIENCE 2025; 11:36-45. [PMID: 39866695 PMCID: PMC11758273 DOI: 10.1021/acscentsci.4c00970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 01/28/2025]
Abstract
Multicomponent reactions (MCRs), highly sought-after methods to produce atom-, step-, and energy-economic organic syntheses, have been developed extensively. However, catalytic asymmetric MCRs, especially those involving radical species, remain largely unexplored owing to the difficulty in stereoselectively regulating the extraordinarily high reactivity of open-shell radical species. Herein, we report a conceptually novel catalytic asymmetric three-component radical cascade reaction of readily accessible glycine esters, α-bromo carbonyl compounds and 2-vinylcyclopropyl ketones via synergistic photoredox/Brønsted acid catalysis, in which three sequential C-C (σ/π/σ) bond-forming events occurred through a radical addition/ring-opening/radical-radical coupling protocol, affording an array of valuable enantioenriched unnatural α-amino acid derivatives bearing two contiguous stereogenic centers and an alkene moiety in moderate to good yield with high diastereoselectivity, excellent enantioselectivity and good E-dominated geometry under mild reaction conditions. The radical relay cascade process, especially a unique proton-coupled electron transfer (PCET)-promoted radical-radical coupling, is supported by mechanistic investigations and quantum mechanics calculations and should garner broad interest and further inspire the development of asymmetric multicomponent radical reactions.
Collapse
Affiliation(s)
- Chao Che
- College
of Chemistry and Molecular Sciences, Wuhan
University, Wuhan 430072, China
| | - Yi-Nan Lu
- College
of Chemistry and Molecular Sciences, Wuhan
University, Wuhan 430072, China
| | - Ting Fang
- College
of Chemistry and Molecular Sciences, Wuhan
University, Wuhan 430072, China
| | - Guang-Jin Zhen
- College
of Chemistry and Molecular Sciences, Wuhan
University, Wuhan 430072, China
| | - Xiaotian Qi
- College
of Chemistry and Molecular Sciences, Wuhan
University, Wuhan 430072, China
| | - Chun-Jiang Wang
- College
of Chemistry and Molecular Sciences, Wuhan
University, Wuhan 430072, China
- State
Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
2
|
Cheng SJ, Zhang XL, Yang ZX, Wang AH, Ye ZS. Palladium-Catalyzed N-Allylic Alkylation of Pyrazoles and Unactivated Vinylcyclopropanes. Org Lett 2025; 27:46-50. [PMID: 39704564 DOI: 10.1021/acs.orglett.4c03808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
An efficient palladium-catalyzed N-allylic alkylation of pyrazoles and unactivated vinylcyclopropanes is demonstrated, affording various N-alkyl pyrazoles in ≤99% yield. This protocol displays high atom economy, a broad range of substrates, and excellent regioselectivity and stereoselectivity. Late-stage modification of bioactive molecules, scaled-up reaction, and divergent derivatization documented the practicability of this methodology. The preliminary mechanistic investigation hinted that the Pd-H species promotes the ring opening of cyclopropanes.
Collapse
Affiliation(s)
- Shao-Jie Cheng
- School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Xin-Li Zhang
- School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Zhen-Xu Yang
- School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Ai-Hua Wang
- School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Zhi-Shi Ye
- School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
3
|
Li B, Feng QS, Yuan JL, Xia Y. Access to Vinyl Gem-Difluorinated Cyclopropanes Via Photopromoted Palladium-Catalyzed Heck Reaction. Chem Asian J 2025; 20:e202400775. [PMID: 39419760 DOI: 10.1002/asia.202400775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/18/2024] [Accepted: 10/17/2024] [Indexed: 10/19/2024]
Abstract
A photopromoted Pd-catalyzed Heck reaction of gem-difluorocyclopropyl bromides (DFCBs) with styrenes to deliver vinyl gem-difluorinated cyclopropanes (VDFCs) under mild conditions has been developed. The reaction demonstrates good functional group compatibility while providing high E/Z ratio of the products. Furthermore, the desired VDFCs can be easily transformed into fluorinated cyclic/acyclic architectures, which may broaden its applications in organic synthesis.
Collapse
Affiliation(s)
- Bin Li
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041
| | - Qiu-Shi Feng
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041
| | - Jia-Li Yuan
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041
| | - Ying Xia
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041
| |
Collapse
|
4
|
Long Y, Shen J, Shi M, Wei Y. Theoretical Studies on the Reaction Mechanism for the Cycloaddition of Zwitterionic π-Allenyl Palladium Species: Substrate-Controlled Isomerization. Molecules 2024; 30:103. [PMID: 39795160 PMCID: PMC11722397 DOI: 10.3390/molecules30010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/16/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
Zwitterionic π-allenyl palladium species are newly developed intermediates. A substrate-controlled step existed in the cycloaddition of zwitterionic π-allenyl palladium species with tropsulfimides or tropones. With the assistance of previously experimental studies, zwitterionic allenyl/propargyl palladium species was provenly found by HRMS. Further DFT calculation studies show that zwitterionic π-allenyl palladium species are generated through the oxidative addition of Pd(0), which can be promoted by Lewis acid like Yb(OTf)3, and the cycloaddition more likely undergoes through an outer sphere nucleophilic attack. The isomerization is caused by the difference of dissociation energy between the cycloaddition intermediation of tropsulfimides and tropones, forming the substrate-controlled specificity.
Collapse
Affiliation(s)
| | | | - Min Shi
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yin Wei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
5
|
Shen J, Chen M, Du X. Photoredox-Catalyzed Regioselective 1,3-Alkoxypyridylation of gem-Difluorocyclopropanes. Org Lett 2024; 26:10628-10633. [PMID: 39631167 DOI: 10.1021/acs.orglett.4c04169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Difluoromethylene and pyridine cores are very important structural units in medicinal chemistry. Herein, we report the development of photoredox-catalyzed ring-opening and 1,3-alkoxypyridylation of gem-difluorinated cyclopropanes using 4-cyanopyrines and alcohols, employing cyclopropane radical cations as the key intermediate. The reaction exhibits high regioselectivity under mild conditions and can also be practiced on gram-scale synthesis, telescoped reaction, and late-stage functionalization of biological molecules.
Collapse
Affiliation(s)
- Jiaxuan Shen
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, State Key Laboratory of Antiviral Drugs, School of Chemistry and Chemical Engineering Henan Normal University, Xinxiang, Henan 453007, China
| | - Meijun Chen
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, State Key Laboratory of Antiviral Drugs, School of Chemistry and Chemical Engineering Henan Normal University, Xinxiang, Henan 453007, China
| | - Xiaozheng Du
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, State Key Laboratory of Antiviral Drugs, School of Chemistry and Chemical Engineering Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
6
|
Zhang Z, Xu Y, Peng M, Song S, Wei Y, Hu H, Wang X, Yu F. Pd(II)-catalyzed regioselective ring opening/[3+2] annulation reaction of enaminones with cyclopropenones: divergent synthesis of γ-butenolides and γ-lactams. Chem Commun (Camb) 2024; 60:14968-14971. [PMID: 39605135 DOI: 10.1039/d4cc05895j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
A practical, effective, and regioselective palladium-catalyzed ring opening/[4+2] annulation of enaminones with cyclopropenones for the controllable synthesis of highly substituted γ-butenolides and γ-lactams has been described. This method for the first time reports the regio-selective annulation reaction on the carbon and amine groups of the enaminone structure. This reaction is characterized by its wide substrate scope, good functional group compatibility, moderate to good yields, scale-up synthesis, and versatile transformations, providing a versatile and general protocol to construct γ-butenolides and γ-lactams.
Collapse
Affiliation(s)
- Zhilai Zhang
- Faculty of Life Science and Technology, Kunming, University of Science and Technology, Kunming, 650500, P. R. China.
| | - Yu Xu
- Faculty of Life Science and Technology, Kunming, University of Science and Technology, Kunming, 650500, P. R. China.
| | - Menglin Peng
- Faculty of Life Science and Technology, Kunming, University of Science and Technology, Kunming, 650500, P. R. China.
| | - Siyu Song
- Faculty of Life Science and Technology, Kunming, University of Science and Technology, Kunming, 650500, P. R. China.
| | - Yuanzheng Wei
- Faculty of Life Science and Technology, Kunming, University of Science and Technology, Kunming, 650500, P. R. China.
| | - Huimin Hu
- Faculty of Life Science and Technology, Kunming, University of Science and Technology, Kunming, 650500, P. R. China.
| | - Xiuju Wang
- School of Basic Medicine Science, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, China.
| | - Fuchao Yu
- Faculty of Life Science and Technology, Kunming, University of Science and Technology, Kunming, 650500, P. R. China.
| |
Collapse
|
7
|
Xiao YQ, Fang KX, Zhang Z, Zhang C, Li YJ, Wang BC, Zhang BJ, Jiang YQ, Zhang M, Tan Y, Xiao WJ, Lu LQ. Hyperconjugation-Driven Isodesmic Reaction of Indoles and Anilines: Reaction Discovery, Mechanism Study, and Antitumor Application. Angew Chem Int Ed Engl 2024; 63:e202408426. [PMID: 39177728 DOI: 10.1002/anie.202408426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 08/24/2024]
Abstract
Isodesmic reactions, in which chemical bonds are redistributed between substrates and products, provide a general and powerful strategy for both biological and chemical synthesis. However, most isodesmic reactions involve either metathesis or functional-group transfer. Here, we serendipitously discovered a novel isodesmic reaction of indoles and anilines that proceeds intramolecularly under weakly acidic conditions. In this process, the five-membered ring of the indole motif is broken and a new indole motif is constructed on the aniline side, accompanied by the formation of a new aniline motif. Mechanistic studies revealed the pivotal role of σ→π* hyperconjugation on the nitrogen atom of the indole motif in driving this unusual isodesmic reaction. Furthermore, we successfully synthesized a diverse series of polycyclic indole derivatives; among quinolines, potential antitumor agents were identified using cellular and in vivo experiments, thereby demonstrating the synthetic utility of the developed methodology.
Collapse
Affiliation(s)
- Yu-Qing Xiao
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, 430079, Wuhan, Hubei, China
| | - Kai-Xin Fang
- State Key Laboratory of Chemical Oncogenomics, Institute of Biomedical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, 518055, Shenzhen, China
| | - Zhihan Zhang
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, 430079, Wuhan, Hubei, China
| | - Chen Zhang
- State Key Laboratory of Chemical Oncogenomics, Institute of Biomedical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, 518055, Shenzhen, China
| | - Yu-Jie Li
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, 430079, Wuhan, Hubei, China
| | - Bao-Cheng Wang
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, 430079, Wuhan, Hubei, China
| | - Bin-Jun Zhang
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, 430079, Wuhan, Hubei, China
| | - Yu-Qing Jiang
- State Key Laboratory of Chemical Oncogenomics, Institute of Biomedical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, 518055, Shenzhen, China
| | - Miao Zhang
- State Key Laboratory of Chemical Oncogenomics, Institute of Biomedical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, 518055, Shenzhen, China
| | - Ying Tan
- State Key Laboratory of Chemical Oncogenomics, Institute of Biomedical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, 518055, Shenzhen, China
| | - Wen-Jing Xiao
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, 430079, Wuhan, Hubei, China
- Wuhan Institute of Photochemistry and Technology, 430082, Wuhan, Hubei, P. R. China
| | - Liang-Qiu Lu
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, 430079, Wuhan, Hubei, China
- Wuhan Institute of Photochemistry and Technology, 430082, Wuhan, Hubei, P. R. China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, 730000, Lanzhou, P. R. China
- School of Chemistry and Chemical Engineering, Henan Normal University, 453007, Xinxiang, Henan, China
| |
Collapse
|
8
|
Liu Y, Chen YW, Yang YX, Hartwig JF, He ZT. Asymmetric Amination of Unstrained C(sp 3)-C(sp 3) Bonds. J Am Chem Soc 2024; 146:29857-29864. [PMID: 39412244 DOI: 10.1021/jacs.4c11802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
The asymmetric functionalization of unstrained C(sp3)-C(sp3) bonds could be a powerful strategy to stereoselectively reconstruct the backbone of an organic compound, but such reactions are rare. Although allylic substitutions have been used frequently to construct C-C bonds by the cleavage of more reactive C-X bonds (X is usually an O atom of an ester) by transition metals, the reverse process that involves the replacement of a C-C bond with a C-heteroatom bond is rare and generally considered thermodynamically unfavorable. We show that an unstrained, inert allylic C-C σ bond can be converted to a C-N bond stereoselectively via a designed solubility-control strategy, which makes the thermodynamically unfavorable process possible. The C-C bond amination occurs with a range of amine nucleophiles and cleaves multiple classes of alkyl C-C bonds in good yields with high enantioselectivity. A novel resolution strategy is also reported that transforms racemic allylic amines to the corresponding optically active allylic amine by the sequential conversion of a C-N bond to a C-C bond and back to a C-N bond. Mechanistic studies show that formation of the C-N bond is the rate-limiting step and is driven by the low solubility of the salt formed from the cleaved alkyl group in a nonpolar solvent.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Ye-Wei Chen
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Yuan-Xiang Yang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - John F Hartwig
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Zhi-Tao He
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Ningbo Zhongke Creation Center of New Materials, Ningbo 315899, China
| |
Collapse
|
9
|
Nie C, Park C, Kim J, Chirik PJ. Nickel-Catalyzed C-C Activation of Vinylcyclobutane with Visible Light: Scope, Mechanism, and Application to Chemically Recyclable Polyolefins. J Am Chem Soc 2024; 146:24818-24831. [PMID: 39213587 DOI: 10.1021/jacs.4c04611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
N-heterocyclic carbene (NHC)-supported nickel complexes were investigated for the oxidative ring-opening of vinylcyclobutane (VCB) and photocatalytic activity. Addition of VCB to in situ generated [(NHC)Ni(0)] compounds furnished (NHC)Ni(VCB)2 that underwent oxidative addition and conversion to the corresponding Ni(II) alkyl, allyl-metallacycles. The (NHC)Ni(C6H10) metallacycles were isolated, characterized, and exhibited high thermal and chemical stability. Irradiation with visible light at ambient temperature produced a mixture of ethylene and 4-vinylcyclohexene and 1,5-cyclooctadiene, cycloaddition dimers of butadiene, arising from formal retro-[2 + 2] cycloaddition. A mixture of hexadiene products arising from β-H elimination from the metallacycle was also observed. Free ethylene also underwent a secondary reaction to form cyclopropane products through formal [2 + 1] cycloaddition. A series of sterically and electronically modified NHC ligands was evaluated to establish the structure-activity relationship governing the rate of photocatalytic conversion of VCB and the resulting product distribution. Isotopic labeling experiments, resting state analysis, and independent synthesis of a range of nickel bis(olefin) complexes provided insight into the mechanism of the reaction and origins of the organic product mixture. (NHC)Ni-catalysis was also applied toward the retro-[2 + 2] depolymerization of (1,n'-divinyl)-oligocyclobutane to butadiene dimers.
Collapse
Affiliation(s)
- Cherish Nie
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Chloe Park
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Junho Kim
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Paul J Chirik
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
10
|
Chen Z, Zhao S, Wang T, Xue F, Zhu C, Yue Y, Feng C. Electrooxidative 1,3-Oxo/Carboamination of Arylcyclopropanes. J Org Chem 2024; 89:12769-12774. [PMID: 39140316 DOI: 10.1021/acs.joc.4c01175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Herein, the work demonstrates an electrochemically paired electrolysis approach facilitating the efficient achievement of the electrooxidative 1,3-oxo/carboamination of arylcyclopropanes under mild conditions. The formation of 1,3-arylamination of arylcyclopropanes involves commercially available amine redox mediators through a radical-radical process. In addition, the successful execution of β-amino ketones also occurs under atmospheric conditions. The control experiments supported the existence of key benzylic radical intermediates in the reaction pathway.
Collapse
Affiliation(s)
- Ziyan Chen
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), State Key Laboratory of Material-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Shuaishuai Zhao
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), State Key Laboratory of Material-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Tiantian Wang
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), State Key Laboratory of Material-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Fei Xue
- Institute of Material Physics & Chemistry, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Chuan Zhu
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), State Key Laboratory of Material-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yanni Yue
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), State Key Laboratory of Material-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering of Materials Science, Soochow University, Suzhou 215123, China
| | - Chao Feng
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), State Key Laboratory of Material-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
11
|
Deshwal S, Gopalakrishnan DK, Purohit A, Karmakar T, Vaitla J. Diastereoselective cyclopropanation of α,β-unsaturated carbonyl compounds with vinyl sulfoxonium ylides. Org Biomol Chem 2024; 22:6294-6307. [PMID: 39045784 DOI: 10.1039/d4ob00677a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Herein, we report a three-component stereoselective cyclopropanation of vinyl sulfoxonium ylides with indane 1,3-dione and aldehydes under mild reaction conditions. In contrast to previous reports, the present work shows that electrophilic addition selectively takes place at the α-position of the vinyl sulfoxonium ylide. The interesting feature of this approach is that the multicomponent reaction selectively proceeds because of the difference in nucleophilic reactivity of vinyl sulfoxonium ylides and indane 1,3-dione with electrophilic partners, such as aldehydes and in situ generated arylidenes. Additionally, density functional theory (DFT) studies were conducted to investigate the difference in the reactivity of these reactants, as well as to unveil the mechanism of this three-component reaction. Furthermore, non-covalent interactions of selectivity-determining transition states explain the origin of the diastereoselectivity of cyclopropanation.
Collapse
Affiliation(s)
- Shalu Deshwal
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| | | | - Alok Purohit
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| | - Tarak Karmakar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| | - Janakiram Vaitla
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
12
|
Biswas K, Malik S, Ganesh V. Diastereoselective Synthesis of Cyclopenta[ c]chromanones via Pd 0-Catalyzed [3+2] Cycloaddition. J Org Chem 2024; 89:11014-11018. [PMID: 39011612 DOI: 10.1021/acs.joc.4c00836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
A straightforward method for synthesizing cyclopenta[c]chromanones is demonstrated. The strategy involves a [3+2] cycloaddition of VCPs and activated coumarins under Pd-catalyzed conditions. The reaction provides the desired products bearing up to four consecutive stereocenters with high diastereocontrol. Control experiments and density functional theory studies support the proposed mechanism and the observed diastereoselectivity in the product through a thermodynamically controlled pathway.
Collapse
Affiliation(s)
- Krishna Biswas
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Subrata Malik
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Venkataraman Ganesh
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|
13
|
Lázaro-Milla C, da Concepción E, Fernández I, Mascareñas JL, López F. Cobalt-Catalyzed (3 + 2) Cycloaddition of Cyclopropene-Tethered Alkynes: Versatile Access to Bicyclic Cyclopentadienyl Systems and Their CpM Complexes. ACS Catal 2024; 14:11574-11583. [PMID: 39119354 PMCID: PMC11307490 DOI: 10.1021/acscatal.4c03080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024]
Abstract
Low-valent cobalt complexes can promote intramolecular (3 + 2) cycloadditions of alkyne-tethered cyclopropenes to provide bicyclic systems containing highly substituted cyclopentadienyl moieties with electronically diverse functional groups. The adducts can be easily transformed into new types of CpRh(III) and CpIr(III) complexes, which show catalytic activity in several relevant transformations. Preliminary computational (DFT) and experimental studies provide relevant information on the mechanistic peculiarities of the cobalt-catalyzed process and allow us to rationalize its advantages over the homologous rhodium-promoted reaction.
Collapse
Affiliation(s)
- Carlos Lázaro-Milla
- Centro Singular de Investigación en
Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de
Química Orgánica, Universidade de Santiago de
Compostela, 15782 Santiago de Compostela, Spain
| | - Eduardo da Concepción
- Centro Singular de Investigación en
Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de
Química Orgánica, Universidade de Santiago de
Compostela, 15782 Santiago de Compostela, Spain
| | - Israel Fernández
- Departamento de Química Orgánica I,
Facultad de Ciencias Químicas, Universidad Complutense de
Madrid, 28040 Madrid, Spain
| | - José L. Mascareñas
- Centro Singular de Investigación en
Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de
Química Orgánica, Universidade de Santiago de
Compostela, 15782 Santiago de Compostela, Spain
| | - Fernando López
- Centro Singular de Investigación en
Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de
Química Orgánica, Universidade de Santiago de
Compostela, 15782 Santiago de Compostela, Spain
- Misión Biológica de Galicia,
Consejo Superior de Investigaciones Científicas
(CSIC), 36080 Pontevedra, Spain
| |
Collapse
|
14
|
Zhu Y, Jia J, Song X, Gong C, Xia Y. Double strain-release enables formal C-O/C-F and C-N/C-F ring-opening metathesis. Chem Sci 2024:d4sc03624g. [PMID: 39129767 PMCID: PMC11310891 DOI: 10.1039/d4sc03624g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/20/2024] [Indexed: 08/13/2024] Open
Abstract
Metathesis reactions have been established as a powerful tool in organic synthesis. While great advances were achieved in double-bond metathesis, like olefin metathesis and carbonyl metathesis, single-bond metathesis has received less attention in the past decade. Herein, we describe the first C(sp3)-O/C(sp3)-F bond formal cross metathesis reaction between gem-difluorinated cyclopropanes (gem-DFCPs) and epoxides under rhodium catalysis. The reaction involves the formation of a highly electrophilic fluoroallyl rhodium intermediate, which is capable of reacting with the oxygen atom in epoxides as weak nucleophiles followed by C-F bond reconstruction. The use of two strained ring substrates is the key to the success of the formal cross metathesis, in which the double strain release accounts for the driving force of the transformation. Additionally, azetidine also proves to be a suitable substrate for this transformation. The reaction offers a novel approach for the metathesis of C(sp3)-O and C(sp3)-N bonds, presenting new opportunities for single-bond metathesis.
Collapse
Affiliation(s)
- Yulei Zhu
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C. C. Chen Institute of Health, State Key Laboratory of Biotherapy, Sichuan University Chengdu 610041 China
| | - Jie Jia
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C. C. Chen Institute of Health, State Key Laboratory of Biotherapy, Sichuan University Chengdu 610041 China
| | - Xiangyu Song
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C. C. Chen Institute of Health, State Key Laboratory of Biotherapy, Sichuan University Chengdu 610041 China
| | - Chunyu Gong
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C. C. Chen Institute of Health, State Key Laboratory of Biotherapy, Sichuan University Chengdu 610041 China
| | - Ying Xia
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C. C. Chen Institute of Health, State Key Laboratory of Biotherapy, Sichuan University Chengdu 610041 China
| |
Collapse
|
15
|
Gao ZX, Wang H, Su AH, Li QY, Liang Z, Zhang YQ, Liu XY, Zhu MZ, Zhang HX, Hou YT, Li X, Sun LR, Li J, Xu ZJ, Lou HX. Asymmetric Synthesis and Biological Evaluation of Platensilin, Platensimycin, Platencin, and Their Analogs via a Bioinspired Skeletal Reconstruction Approach. J Am Chem Soc 2024; 146:18967-18978. [PMID: 38973592 DOI: 10.1021/jacs.4c02256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Platensilin, platensimycin, and platencin are potent inhibitors of β-ketoacyl-acyl carrier protein synthase (FabF) in the bacterial and mammalian fatty acid synthesis system, presenting promising drug leads for both antibacterial and antidiabetic therapies. Herein, a bioinspired skeleton reconstruction approach is reported, which enables the unified synthesis of these three natural FabF inhibitors and their skeletally diverse analogs, all stemming from a common ent-pimarane core. The synthesis features a diastereoselective biocatalytic reduction and an intermolecular Diels-Alder reaction to prepare the common ent-pimarane core. From this intermediate, stereoselective Mn-catalyzed hydrogen atom-transfer hydrogenation and subsequent Cu-catalyzed carbenoid C-H insertion afford platensilin. Furthermore, the intramolecular Diels-Alder reaction succeeded by regioselective ring opening of the newly formed cyclopropane enables the construction of the bicyclo[3.2.1]-octane and bicyclo[2.2.2]-octane ring systems of platensimycin and platencin, respectively. This skeletal reconstruction approach of the ent-pimarane core facilitates the preparation of analogs bearing different polycyclic scaffolds. Among these analogs, the previously unexplored cyclopropyl analog 47 exhibits improved antibacterial activity (MIC80 = 0.0625 μg/mL) against S. aureus compared to platensimycin.
Collapse
Affiliation(s)
- Zong-Xu Gao
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, No. 44, Wenhuaxi Rd, Jinan 250012, P. R. China
| | - Hongliang Wang
- School of Pharmaceutical Sciences & Institute of Materia Medica, State Key Laboratory of Advanced Drug Delivery System, Shandong First Medical University & Shandong Academy of Medical Sciences, No. 6699, Qingdao Rd, Jinan 250117, P. R. China
| | - Ai-Hong Su
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, No. 44, Wenhuaxi Rd, Jinan 250012, P. R. China
| | - Qian-Ying Li
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, No. 44, Wenhuaxi Rd, Jinan 250012, P. R. China
| | - Zhen Liang
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, No. 44, Wenhuaxi Rd, Jinan 250012, P. R. China
| | - Yue-Qing Zhang
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, No. 44, Wenhuaxi Rd, Jinan 250012, P. R. China
| | - Xu-Yuan Liu
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, No. 44, Wenhuaxi Rd, Jinan 250012, P. R. China
| | - Ming-Zhu Zhu
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, No. 44, Wenhuaxi Rd, Jinan 250012, P. R. China
| | - Hai-Xia Zhang
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, No. 44, Wenhuaxi Rd, Jinan 250012, P. R. China
| | - Yue-Tong Hou
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, No. 44, Wenhuaxi Rd, Jinan 250012, P. R. China
| | - Xin Li
- School of Pharmaceutical Sciences & Institute of Materia Medica, State Key Laboratory of Advanced Drug Delivery System, Shandong First Medical University & Shandong Academy of Medical Sciences, No. 6699, Qingdao Rd, Jinan 250117, P. R. China
| | - Long-Ru Sun
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, No. 44, Wenhuaxi Rd, Jinan 250012, P. R. China
| | - Jian Li
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, No. 429, Zhangheng Rd, Shanghai 200213, P. R. China
| | - Ze-Jun Xu
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, No. 44, Wenhuaxi Rd, Jinan 250012, P. R. China
| | - Hong-Xiang Lou
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, No. 44, Wenhuaxi Rd, Jinan 250012, P. R. China
| |
Collapse
|
16
|
Cheng B, Wang Q, An Y, Chen F. Recent advances in the total synthesis of galantamine, a natural medicine for Alzheimer's disease. Nat Prod Rep 2024; 41:1060-1090. [PMID: 38450550 DOI: 10.1039/d4np00001c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Covering: 2006 to 2023(-)-Galantamine is a natural product with distinctive structural features and potent inhibitory activity against acetylcholine esterase (AChE). It is clinically approved for the treatment of Alzheimer's disease. The clinical significance and scarcity of this natural product have prompted extensive and ongoing efforts towards the chemical synthesis of this challenging tetracyclic structure. The objective of this review is to summarize and discuss recent progress in the total synthesis of galantamine from 2006 to 2023. The contents are organized according to the synthetic strategies for the construction of the quaternary center. Key features of each synthesis have been highlighted, followed by a summary and outlook at the end.
Collapse
Affiliation(s)
- Bichu Cheng
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China.
- School of Science, Green Pharmaceutical Engineering Research Center, Harbin Institute of Technology, Shenzhen 518055, China
| | - Qi Wang
- School of Science, Green Pharmaceutical Engineering Research Center, Harbin Institute of Technology, Shenzhen 518055, China
| | - Yi An
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China.
| | - Fener Chen
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China.
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
- School of Science, Green Pharmaceutical Engineering Research Center, Harbin Institute of Technology, Shenzhen 518055, China
| |
Collapse
|
17
|
Mendel M, Karl TM, Hamm J, Kaldas SJ, Sperger T, Mondal B, Schoenebeck F. Dynamic stereomutation of vinylcyclopropanes with metalloradicals. Nature 2024; 631:80-86. [PMID: 38898284 PMCID: PMC11222138 DOI: 10.1038/s41586-024-07555-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 05/10/2024] [Indexed: 06/21/2024]
Abstract
The ever increasing demands for greater sustainability and lower energy usage in chemical processes call for fundamentally new approaches and reactivity principles. In this context, the pronounced prevalence of odd-oxidation states in less precious metals bears untapped potential for fundamentally distinct reactivity modes via metalloradical catalysis1-3. Contrary to the well-established reactivity paradigm that organic free radicals, upon addition to a vinylcyclopropane, lead to rapid ring opening under strain release-a transformation that serves widely as a mechanistic probe (radical clock)4 for the intermediacy of radicals5-we herein show that a metal-based radical, that is, a Ni(I) metalloradical, triggers reversible cis/trans isomerization instead of opening. The isomerization proceeds under chiral inversion and, depending on the substitution pattern, occurs at room temperature in less than 5 min, requiring solely the addition of the non-precious catalyst. Our combined computational and experimental mechanistic studies support metalloradical catalysis as origin of this profound reactivity, rationalize the observed stereoinversion and reveal key reactivity features of the process, including its reversibility. These insights enabled the iterative thermodynamic enrichment of enantiopure cis/trans mixtures towards a single diastereomer through multiple Ni(I) catalysis rounds and also extensions to divinylcyclopropanes, which constitute strategic motifs in natural product- and total syntheses6. While the trans-isomer usually requires heating at approximately 200 °C to trigger thermal isomerization under racemization to cis-divinylcyclopropane, which then undergoes facile Cope-type rearrangement, the analogous contra-thermodynamic process is herein shown to proceed under Ni(I) metalloradical catalysis under mild conditions without any loss of stereochemical integrity, enabling a mild and stereochemically pure access to seven-membered rings, fused ring systems and spirocycles.
Collapse
Affiliation(s)
- Marvin Mendel
- Institute of Organic Chemistry, RWTH Aachen University, Aachen, Germany
| | - Teresa M Karl
- Institute of Organic Chemistry, RWTH Aachen University, Aachen, Germany
| | - Jegor Hamm
- Institute of Organic Chemistry, RWTH Aachen University, Aachen, Germany
| | - Sherif J Kaldas
- Institute of Organic Chemistry, RWTH Aachen University, Aachen, Germany
| | - Theresa Sperger
- Institute of Organic Chemistry, RWTH Aachen University, Aachen, Germany
| | - Bhaskar Mondal
- Institute of Organic Chemistry, RWTH Aachen University, Aachen, Germany
| | | |
Collapse
|
18
|
Li T, Wei L, Wang Z, Zhang X, Yang J, Wei Y, Li P, Xu L. Vinylcyclopropane-Cyclopentene (VCP-CP) Rearrangement Enabled by Pyridine-Assisted Boronyl Radical Catalysis. Org Lett 2024; 26:5341-5346. [PMID: 38875468 DOI: 10.1021/acs.orglett.4c01724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
An unprecedented VCP-CP (vinylcyclopropane-cyclopentene) rearrangement approach has been established herein by virtue of the pyridine-boronyl radical catalyzed intramolecular ring expansions. This metal-free radical pathway harnesses readily available catalysts and unactivated vinylcyclopropane starting materials, providing an array of cyclopentene derivatives chemoselectively under relatively mild conditions. Mechanistic studies support the idea that the boronyl radical engages in the generation of allylic/ketyl radical species, thus inducing the ring opening of cyclopropanes and the following intramolecular cyclization processes.
Collapse
Affiliation(s)
- Ting Li
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Lanfeng Wei
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China
- Xinjiang Key Laboratory of Coal Mine Disasters Intelligent Prevention and Emergency Response, Xinjiang Institute of Engineering, Urumqi 830023, China
| | - Zhijun Wang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Xinyu Zhang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Jinbo Yang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Yu Wei
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Pengfei Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710054, China
| | - Liang Xu
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China
| |
Collapse
|
19
|
Zhang C, Mazet C. Access to Cyclic Borates by Cu-Catalyzed Borylation of Unactivated Vinylcyclopropanes. Org Lett 2024; 26:5386-5390. [PMID: 38870414 PMCID: PMC11217945 DOI: 10.1021/acs.orglett.4c01938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/15/2024]
Abstract
We report the copper-catalyzed borylation of unactivated vinylcyclopropanes to form six-membered cyclic borate salts. A copper complex bearing an N-heterocyclic ligand in combination with bis(pinacolato)diboron and LiOtBu catalyzes the ring-opening of the substrate under mild reaction conditions. The protocol can be applied to aryl- and heteroaryl-substituted vinylcyclopropanes and can be conducted on a gram scale. The synthetic utility of the lithium salts of the cyclic borate has been demonstrated through regioselective ring-opening functionalizations.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Organic Chemistry, University of Geneva, 30 quai Ernest Ansermet, 1211 Geneva, Switzerland
| | - Clément Mazet
- Department of Organic Chemistry, University of Geneva, 30 quai Ernest Ansermet, 1211 Geneva, Switzerland
| |
Collapse
|
20
|
Tang Y, Sun X, Tan Y, Wang L, Xiong Y, Guo H. Palladium-Catalyzed (4 + 1) Annulation of 4-Vinylbenzodioxinones with Sulfur Ylides: Diastereoselective Synthesis of Dihydrobenzofuran Derivatives. J Org Chem 2024; 89:8951-8959. [PMID: 38814141 DOI: 10.1021/acs.joc.4c00912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Palladium-catalyzed (4 + 1) annulation of 4-vinylbenzodioxinones with sulfur ylides has been developed to afford various dihydrobenzofuran derivatives in moderate to high yields with excellent diastereoselectivities. The scale-up reaction and further derivations of the product worked well, demonstrating the application potential of the current reaction in organic synthesis.
Collapse
Affiliation(s)
- Yi Tang
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China
| | - Xiaojing Sun
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China
| | - Yu Tan
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China
| | - Lan Wang
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China
| | - Yanmei Xiong
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China
| | - Hongchao Guo
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
21
|
Wang W, Li Q, Xu M, Chen J, Xiang R, Luo Y, Xia Y. Ligand-Controlled Cobalt-Catalyzed Regiodivergent and Stereoselective Ring-Opening Isomerization of Vinyl Cyclopropanes. Org Lett 2024; 26:5004-5009. [PMID: 38825811 DOI: 10.1021/acs.orglett.4c01668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
A ligand-controlled regiodivergent and stereoselective ring-opening isomerization of vinylcyclopropane was developed with cobalt catalysis. Employing the commercially available Xantphos ligand, the reactions afforded exclusively linear-type 1,3-dienes as the products. Interestingly, when switching the ligand to an amido-diphosphine ligand (PNP), branched-type 1,3-dienes were obtained with high regioselectivity and stereoselectivity. Preliminary mechanistic investigations suggested that a π-allyl metal and a metal-hydride species are involved as key intermediates in the two transformations, respectively.
Collapse
Affiliation(s)
- Wei Wang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Qiao Li
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Man Xu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Jianhui Chen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Ruoyao Xiang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yanshu Luo
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yuanzhi Xia
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
22
|
Nachimuthu K, Nallasivam JL. Recent updates on vinyl cyclopropanes, aziridines and oxiranes: access to heterocyclic scaffolds. Org Biomol Chem 2024; 22:4212-4242. [PMID: 38738483 DOI: 10.1039/d4ob00246f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
This present review delineates the repertoire of vinyl cyclopropanes and their stuctural analogues to accomplish a wide array of oxa-cycles, aza-cycles, and thia-cycles under transition metal catalysis and metal-free approaches from early 2019 to the present date. The generation of electrophilic π-allyl intermediates and 1-3/1-5-dipolarophile chemistry originating from VCPs are always green, step- and atom-economical and sustainable strategies in comparsion with prefunctionalized and/or C-H activation protocols. Here, the strained ring-system extends its applicability by relieving the strain to undergo a ring-expansion reaction to accomplish 5-9 membered carbo- and heterocyclic systems. The availability of chiral ligands in the ring-expansion reaction of VCPs and their analogues has paved the way to realizing asymmetric synthetic transformations.
Collapse
Affiliation(s)
- Kiruthika Nachimuthu
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tiruchirappalli-620 015, Tamil Nadu, India.
| | - Jothi Lakshmi Nallasivam
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tiruchirappalli-620 015, Tamil Nadu, India.
| |
Collapse
|
23
|
Lu YN, Che C, Zhen G, Chang X, Dong XQ, Wang CJ. Visible-light-enabled stereoselective synthesis of functionalized cyclohexylamine derivatives via [4 + 2] cycloadditions. Chem Sci 2024; 15:6507-6514. [PMID: 38699278 PMCID: PMC11062095 DOI: 10.1039/d4sc00667d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/26/2024] [Indexed: 05/05/2024] Open
Abstract
An unprecedented intermolecular [4 + 2] cycloaddition of benzocyclobutylamines with α-substituted vinylketones, enabled by photoredox catalysis, has been developed. The current method enables facile access to highly functionalized cyclohexylamine derivatives that were otherwise inaccessible, in moderate to good yields with excellent diastereoselectivities. This protocol has some excellent features, such as full atom economy, good functional-group compatibility, mild reaction conditions, and an overall redox-neutral process. Additionally, an asymmetric version of this cycloaddition was preliminarily investigated via the incorporation of a chiral phosphoric acid (CPA), and moderate to good enantioselectivity could be effectively realized with excellent diastereoselectivity. Synthetic applications were demonstrated via a scale-up experiment and elaborations to access amino alcohol and cyclobutene derivatives. Based on the results of control experiments, a reasonable reaction mechanism was proposed to elucidate the reaction pathway.
Collapse
Affiliation(s)
- Yi-Nan Lu
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University Wuhan Hubei 430072 China
| | - Chao Che
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University Wuhan Hubei 430072 China
| | - Guangjin Zhen
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University Wuhan Hubei 430072 China
| | - Xin Chang
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University Wuhan Hubei 430072 China
| | - Xiu-Qin Dong
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University Wuhan Hubei 430072 China
| | - Chun-Jiang Wang
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University Wuhan Hubei 430072 China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry Shanghai 230021 China
| |
Collapse
|
24
|
Tang Y, Huang M, Ding S, Liu X, Huyang X, Wang B, Guo H. Palladium-Catalyzed Enantioselective [4+2] Cycloaddition of 4-Vinylbenzodioxinones with Barbiturate-Derived Alkenes: Con-struction of Chiral Spirobarbiturate-Chromanes. Chemistry 2024; 30:e202400302. [PMID: 38380868 DOI: 10.1002/chem.202400302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 02/22/2024]
Abstract
In this paper, Pd-catalyzed [4+2] decarboxylative cycloaddition of 4-vinylbenzodioxinones with barbiturate-derived alkenes has been developed, leading to various spirobarbiturate-chromane derivatives in high yields with excellent diastereo- and enantioselectivities. The scale-up reaction and further derivation of the product were demonstrated. A plausible reaction mechanism was also proposed.
Collapse
Affiliation(s)
- Yi Tang
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, 2 West Yuanmingyuan Road, Beijing, 100193, P. R., China
| | - Mingxia Huang
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, 2 West Yuanmingyuan Road, Beijing, 100193, P. R., China
| | - Siyuan Ding
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, 2 West Yuanmingyuan Road, Beijing, 100193, P. R., China
| | - Xinyao Liu
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, 2 West Yuanmingyuan Road, Beijing, 100193, P. R., China
| | - Xiaochun Huyang
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, 2 West Yuanmingyuan Road, Beijing, 100193, P. R., China
| | - Bo Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
| | - Hongchao Guo
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, 2 West Yuanmingyuan Road, Beijing, 100193, P. R., China
| |
Collapse
|
25
|
Nie JJ, Wang ZX. Rh(III)-Catalyzed C-H Allylation of Aromatic Ketoximes with Vinylaziridines. J Org Chem 2024; 89:5764-5777. [PMID: 38578982 DOI: 10.1021/acs.joc.4c00343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
The Rh(III)-catalyzed reaction of aromatic ketoximes with 2-vinylaziridines affords ortho-allylation products of the phenyl rings of aromatic ketoximes in moderate to excellent yields. The reaction requires 0.5 equiv of NaOAc as a base and occurs under mild conditions. The protocol exhibits ortho-monoallylation selectivity, wide scope of substrates, and good compatibility of functional groups.
Collapse
Affiliation(s)
- Jing-Jing Nie
- CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Zhong-Xia Wang
- CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| |
Collapse
|
26
|
Wang L, Yang S, Tang Y, Li K, Lu M, Guo H. Palladium-Catalyzed [5 + 4] Cycloaddition of 4-Vinyl-4-Butyrolactones with N-Tosyl Azadienes: Construction of Nine-Membered Ring. J Org Chem 2024; 89:5019-5028. [PMID: 38502934 DOI: 10.1021/acs.joc.4c00245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
In this paper, we reported the palladium-catalyzed formal [5 + 4] cycloaddition reactions between 4-vinyl-4-butyrolactones (VBLs) and azadienes. Under mild reaction conditions, a wide range of benzofuran-fused 9-membered heterocyclic compounds had been provided in moderate to excellent yields with exclusive regioselectivities and excellent diastereoselectivities. The practical applicability of the synthesis was demonstrated through scale-up reaction and further transformation.
Collapse
Affiliation(s)
- Lan Wang
- Department of Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Sen Yang
- Department of Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Yi Tang
- Department of Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Kuan Li
- Department of Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Mengxi Lu
- Department of Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Hongchao Guo
- Department of Chemistry, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
27
|
Zeng Y, Jiang ZT, Xia Y. Selectivity in Rh-catalysis with gem-difluorinated cyclopropanes. Chem Commun (Camb) 2024; 60:3764-3773. [PMID: 38501197 DOI: 10.1039/d4cc00793j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Small-ring chemistry is a fascinating field in organic chemistry. gem-Difluorinated cyclopropanes, a unique class of cyclopropanes, have garnered significant interest due to their intrinsic high reactivity. In this context, gem-difluorinated cyclopropanes have been extensively investigated as fluoroallylic synthons in Pd-catalyzed ring-opening/cross-coupling reactions for the synthesis of monofluoroalkenes with linear or branched selectivity. In contrast, Rh-catalysis has revealed diverse selectivity in the reaction of gem-difluorinated cyclopropanes, such as regioselectivity, enantioselectivity, and chemoselectivity. This feature article aims to summarize our efforts towards developing Rh-catalyzed reactions of gem-difluorinated cyclopropanes, briefly discussing the design, selectivity, reaction mechanisms and future research prospects.
Collapse
Affiliation(s)
- Yaxin Zeng
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China.
| | - Zhong-Tao Jiang
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China.
| | - Ying Xia
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
28
|
Li D, Wang Y. DFT study on isothiourea-catalyzed C-C bond activation of cyclobutenone: the role of the catalyst and the origin of stereoselectivity. Org Biomol Chem 2024; 22:2662-2669. [PMID: 38477235 DOI: 10.1039/d4ob00267a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
The organocatalytic C-C bond activation strategy stands out as a new reaction mode for the release of ring strain and expands the scope of organocatalysts. Thus, disclosing the role of the organocatalyst in the C-C bond cleavage process would be of interest. Here, an isothiourea-catalyzed C-C bond activation/cycloaddition reaction of cyclobutenone is selected as a computational model to uncover the role of the catalyst. Based on the calculations, the electrocyclic cleavage of cyclobutenone is calculated to be energetically more favorable than the isothiourea-catalyzed C-C bond cleavage, which is different from the NHC-catalyzed C-C bond activation of cyclobutenone. The computational results show that the isothiourea promotes the reaction by increasing the nucleophilicity of vinyl ketene and thus lowers the energy barrier of the cycloaddition process. Moreover, NCI and AIM analyses are performed to disclose the origin of stereoselectivity.
Collapse
Affiliation(s)
- Daochang Li
- Department of Chemical and Material Engineering, Zhengzhou University of Light Industry, 136 Science Avenue, Zhengzhou, Henan Province, 450002, P. R. China.
| | - Yang Wang
- Department of Chemical and Material Engineering, Zhengzhou University of Light Industry, 136 Science Avenue, Zhengzhou, Henan Province, 450002, P. R. China.
| |
Collapse
|
29
|
Yan X, Liu M, Pan D, Wang Q, Tang Q, Dai YM, Hu P, Wang BQ, Huang G, Song F. Diastereo- and Enantioselective Synthesis of Tetracyclic Cycloheptanols through (4+3) Annulation via C-C/C-H Activation Cascade. Angew Chem Int Ed Engl 2024; 63:e202317433. [PMID: 38086770 DOI: 10.1002/anie.202317433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Indexed: 12/23/2023]
Abstract
Transition metal-catalyzed annulations of four-membered rings via C-C activation are powerful tools to construct complex fused and bridged ring systems. Despite significant progress in (4+1), (4+2) and (4+4) annulations, the (4+3) annulation remains unexplored. Herein, we develop an asymmetric Rh-catalyzed intramolecular (4+3) annulation of α-arylalkene-tethered benzocyclobutenols for the synthesis of dihydrofuran-annulated dibenzocycloheptanols with two discontinuous chiral carbon centers via a C-C and C-H activation cascade. The reaction features excellent diastereo- and enantioselectivities and 100 % atom economy, and is applicable to late-stage modification of complex molecules.
Collapse
Affiliation(s)
- Xin Yan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan, China, 610066
| | - Min Liu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan, China, 610066
| | - Deng Pan
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, China
| | - Qi Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan, China, 610066
| | - Qi Tang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan, China, 610066
| | - Ya-Mei Dai
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan, China, 610066
| | - Ping Hu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan, China, 610066
| | - Bi-Qin Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan, China, 610066
| | - Genping Huang
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, China
| | - Feijie Song
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan, China, 610066
| |
Collapse
|
30
|
Dong Y, Yang S, Tang Y, Li K, Liu J, Yang F, Zhang C, Guo H. Palladium-Catalyzed [3 + 2] Cycloaddition of 4-Vinyl-4-butyrolactones with Ketenes Generated in Situ from Acyl Chlorides: A Method for the Synthesis of Dihydrofurans. Org Lett 2024; 26:2057-2061. [PMID: 38426714 DOI: 10.1021/acs.orglett.4c00315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
In this paper, palladium-catalyzed [3 + 2] cycloaddition of 4-vinyl-4-butyrolactones with ketenes generated from easily available acyl chlorides was achieved. With Pd2(dba)3·CHCl3/XantPhos as the catalyst, the reaction proceeded smoothly under mild reaction conditions, affording a series of 2,3-dihydrofurans in moderate to high yields. The scale-up reaction and further transformations of the products are demonstrated, and a plausible mechanism is proposed as well.
Collapse
Affiliation(s)
- Yujie Dong
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China
| | - Sen Yang
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China
| | - Yi Tang
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China
| | - Kuan Li
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China
| | - Jun Liu
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China
| | - Fazhou Yang
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China
| | - Cheng Zhang
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China
| | - Hongchao Guo
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
31
|
Rani S, Aslam S, Lal K, Noreen S, Alsader KAM, Hussain R, Shirinfar B, Ahmed N. Electrochemical C-H/C-C Bond Oxygenation: A Potential Technology for Plastic Depolymerization. CHEM REC 2024; 24:e202300331. [PMID: 38063812 DOI: 10.1002/tcr.202300331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/23/2023] [Indexed: 03/10/2024]
Abstract
Herein, we provide eco-friendly and safely operated electrocatalytic methods for the selective oxidation directly or with water, air, light, metal catalyst or other mediators serving as the only oxygen supply. Heavy metals, stoichiometric chemical oxidants, or harsh conditions were drawbacks of earlier oxidative cleavage techniques. It has recently come to light that a crucial stage in the deconstruction of plastic waste and the utilization of biomass is the selective activation of inert C(sp3 )-C/H(sp3 ) bonds, which continues to be a significant obstacle in the chemical upcycling of resistant polyolefin waste. An appealing alternative to chemical oxidations using oxygen and catalysts is direct or indirect electrochemical conversion. An essential transition in the chemical and pharmaceutical industries is the electrochemical oxidation of C-H/C-C bonds. In this review, we discuss cutting-edge approaches to chemically recycle commercial plastics and feasible C-C/C-H bonds oxygenation routes for industrial scale-up.
Collapse
Affiliation(s)
- Sadia Rani
- Department of Chemistry, The Women University Multan, Multan, 60000, Pakistan
| | - Samina Aslam
- Department of Chemistry, The Women University Multan, Multan, 60000, Pakistan
| | - Kiran Lal
- Department of Chemistry, The Women University Multan, Multan, 60000, Pakistan
| | - Sobia Noreen
- Institute of Chemistry, University of Sargodha, Sargodha, 40100, Pakistan
| | | | - Riaz Hussain
- Department of Chemistry, University of Education Lahore, D.G. Khan Campus, 32200, Pakistan
| | - Bahareh Shirinfar
- West Herts College - University of Hertfordshire, Watford, WD17 3EZ, London, United Kingdom
| | - Nisar Ahmed
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, United Kingdom
| |
Collapse
|
32
|
Liu Y, Ding C, Huang JJ, Zhou Q, Xiong BQ, Tang KW, Huang PF. Visible-light-induced synthesis of 2,4-disubstituted quinolines from o-vinylaryl isocyanides and oxime esters. Org Biomol Chem 2024; 22:1458-1465. [PMID: 38282546 DOI: 10.1039/d3ob02060f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
A visible-light-induced radical cyclization reaction of o-vinylaryl isocyanides and oxime esters to access various 2,4-disubstituted quinolines was disclosed. Oxime esters were employed as acyl radical precursors via the carbon-carbon bond cleavage. It provided an effective way for the synthesis of 2-acyl-4-arlysubstituted quinolines under mild conditions and exhibited good functional group tolerance and substrate applicability.
Collapse
Affiliation(s)
- Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Chuan Ding
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Jia-Jing Huang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Quan Zhou
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Bi-Quan Xiong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Peng-Fei Huang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| |
Collapse
|
33
|
Tang Y, Zhang R, Dong Y, Yu S, Wu Y, Xiao Y, Guo H. 4-Vinylbenzodioxinones as a new type of precursor for palladium-catalyzed (4+3) cycloaddition of azomethine imines. Chem Commun (Camb) 2024; 60:1436-1439. [PMID: 38206119 DOI: 10.1039/d3cc06012h] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
In this paper, benzo-fused cyclic carbonates were designed and synthesized as a new type of precursor of π-allylpalladium zwitterionic intermediates, and were applied in Pd-catalyzed diastereo- and enantioselective (4+3) cycloaddition with C,N-cyclic azomethine imines, leading to various biologically important 1,3,4-benzoxadiazepine derivatives in 43-99% yields with 6 : 1 to >20 : 1 dr and up to 95% ee.
Collapse
Affiliation(s)
- Yi Tang
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, China.
| | - Rulei Zhang
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, China.
| | - Yujie Dong
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, China.
| | - Songcheng Yu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yumei Xiao
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, China.
| | - Hongchao Guo
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
34
|
Xu B, Wang Q, Fang C, Zhang ZM, Zhang J. Recent advances in Pd-catalyzed asymmetric cyclization reactions. Chem Soc Rev 2024; 53:883-971. [PMID: 38108127 DOI: 10.1039/d3cs00489a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Over the past few decades, there have been major developments in transition metal-catalyzed asymmetric cyclization reactions, enabling the convenient access to a wide spectrum of structurally diverse chiral carbo- and hetero-cycles, common skeletons found in fine chemicals, natural products, pharmaceuticals, agrochemicals, and materials. In particular, a plethora of enantioselective cyclization reactions have been promoted by chiral palladium catalysts owing to their outstanding features. This review aims to collect the latest advancements in enantioselective palladium-catalyzed cyclization reactions over the past eleven years, and it is organized into thirteen sections depending on the different types of transformations involved.
Collapse
Affiliation(s)
- Bing Xu
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
- Zhuhai Fudan Innovation Institute, Zhuhai 519000, China
| | - Quanpu Wang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
| | - Chao Fang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
| | - Zhan-Ming Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
- Fudan Zhangjiang Institute, Shanghai 201203, China
| | - Junliang Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
- Fudan Zhangjiang Institute, Shanghai 201203, China
- School of Chemisty and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| |
Collapse
|
35
|
Wang Y, Feng J, Li EQ, Jia Z, Loh TP. Recent advances in ligand-enabled palladium-catalyzed divergent synthesis. Org Biomol Chem 2023; 22:37-54. [PMID: 38050418 DOI: 10.1039/d3ob01679j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Developing efficient and straightforward strategies to rapidly construct structurally distinct and diverse organic molecules is one of the most fundamental tasks in organic synthesis, drug discovery and materials science. In recent years, divergent synthesis of organic functional molecules from the same starting materials has attracted significant attention and has been recognized as an efficient and powerful strategy. To achieve this objective, the proper adjustment of reaction conditions, such as catalysts, solvents, ligands, etc., is required. In this review, we summarized the recent efforts in chemo-, regio- and stereodivergent reactions involving acyclic and cyclic systems catalyzed by palladium complexes. Meanwhile, the reaction types, including carbonylative reactions, coupling reactions and cycloaddition reactions, as well as the probable mechanism have also been highlighted in detail.
Collapse
Affiliation(s)
- Yue Wang
- College of Advanced Interdisciplinary Science and Technology (CAIST), Henan University of Technology, Zhengzhou450001, China.
| | - Jinzan Feng
- College of Advanced Interdisciplinary Science and Technology (CAIST), Henan University of Technology, Zhengzhou450001, China.
| | - Er-Qing Li
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Zhenhua Jia
- College of Advanced Interdisciplinary Science and Technology (CAIST), Henan University of Technology, Zhengzhou450001, China.
| | - Teck-Peng Loh
- College of Advanced Interdisciplinary Science and Technology (CAIST), Henan University of Technology, Zhengzhou450001, China.
| |
Collapse
|
36
|
Wang YJ, Zhao LM. Synthesis of 10-Membered Azecines through Pd-Catalyzed Formal [6+4] Cycloaddition and Their Transannular Reaction to Polycyclic Compounds. Chemistry 2023; 29:e202302111. [PMID: 37776147 DOI: 10.1002/chem.202302111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/17/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023]
Abstract
Azecine fragments are frequently presented in natural products and bioactive compounds. However, minor efforts have been devoted to these 10-membered N-heterocycles, and their synthesis is still challenging. Reported herein is the first catalytic formal [6+4] cycloaddition for the synthesis of 10-membered azecines. Under palladium catalysis, the reaction of δ-vinylvalerolactones and benzofuran-derived azadienes proceeds smoothly to afford benzofuran-fused azecines with high diastereoselectivity in moderate to good yields. A unique transannular reaction of these 10-membered azecines for the construction of polycyclic compounds is also demonstrated.
Collapse
Affiliation(s)
- Yu-Jiao Wang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, China
| | - Li-Ming Zhao
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, China
| |
Collapse
|
37
|
Duan YT, Wang ZX. Ruthenium(II)-Catalyzed S(II)-Directed Aromatic C-H Allylation with Vinylaziridines. J Org Chem 2023; 88:16076-16090. [PMID: 37972295 DOI: 10.1021/acs.joc.3c01322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The ruthenium-catalyzed reaction of aryl methyl thioethers with vinylaziridines affords ortho-position mono- or bis-allylation products depending on substituents on the phenyl rings of sulfide substrates or the ratio of reactants. The reaction also features mild reaction conditions, good product yields, wide scope of substrates, good compatibility of functional groups, and the selective formation of E-configurated C-C double bonds.
Collapse
Affiliation(s)
- Yu-Tong Duan
- CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zhong-Xia Wang
- CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
38
|
Saha S, Bhattacharyya H, Karjee P, Debnath B, Verma K, Punniyamurthy T. Expedient C-H allylation of sulfoxonium ylides: merging C-H and C-C/C-het bond activation. Chem Commun (Camb) 2023; 59:14173-14176. [PMID: 37955606 DOI: 10.1039/d3cc04507b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Sulfoxonium ylide chelation-assisted C-H allylation of arenes has been accomplished utilizing strained vinyl carbo/heterocycles as the allyl surrogates via sequential C-H and C-C/het bond activation. Broad substrate scope, Co-catalysis, selectivity, and late-stage drug mutation are the important practical features.
Collapse
Affiliation(s)
- Sharajit Saha
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | - Hemanga Bhattacharyya
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | - Pallab Karjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | - Bijoy Debnath
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | - Kshitiz Verma
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | | |
Collapse
|
39
|
Liang YF, Bilal M, Tang LY, Wang TZ, Guan YQ, Cheng Z, Zhu M, Wei J, Jiao N. Carbon-Carbon Bond Cleavage for Late-Stage Functionalization. Chem Rev 2023; 123:12313-12370. [PMID: 37942891 DOI: 10.1021/acs.chemrev.3c00219] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Late-stage functionalization (LSF) introduces functional group or structural modification at the final stage of the synthesis of natural products, drugs, and complex compounds. It is anticipated that late-stage functionalization would improve drug discovery's effectiveness and efficiency and hasten the creation of various chemical libraries. Consequently, late-stage functionalization of natural products is a productive technique to produce natural product derivatives, which significantly impacts chemical biology and drug development. Carbon-carbon bonds make up the fundamental framework of organic molecules. Compared with the carbon-carbon bond construction, the carbon-carbon bond activation can directly enable molecular editing (deletion, insertion, or modification of atoms or groups of atoms) and provide a more efficient and accurate synthetic strategy. However, the efficient and selective activation of unstrained carbon-carbon bonds is still one of the most challenging projects in organic synthesis. This review encompasses the strategies employed in recent years for carbon-carbon bond cleavage by explicitly focusing on their applicability in late-stage functionalization. This review expands the current discourse on carbon-carbon bond cleavage in late-stage functionalization reactions by providing a comprehensive overview of the selective cleavage of various types of carbon-carbon bonds. This includes C-C(sp), C-C(sp2), and C-C(sp3) single bonds; carbon-carbon double bonds; and carbon-carbon triple bonds, with a focus on catalysis by transition metals or organocatalysts. Additionally, specific topics, such as ring-opening processes involving carbon-carbon bond cleavage in three-, four-, five-, and six-membered rings, are discussed, and exemplar applications of these techniques are showcased in the context of complex bioactive molecules or drug discovery. This review aims to shed light on recent advancements in the field and propose potential avenues for future research in the realm of late-stage carbon-carbon bond functionalization.
Collapse
Affiliation(s)
- Yu-Feng Liang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Muhammad Bilal
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Le-Yu Tang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Tian-Zhang Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yu-Qiu Guan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Zengrui Cheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Minghui Zhu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jialiang Wei
- Changping Laboratory, Yard 28, Science Park Road, Changping District, Beijing 102206, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Changping Laboratory, Yard 28, Science Park Road, Changping District, Beijing 102206, China
- State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
40
|
Lu JB, Xu XQ, Ruan ZS, Liu K, Liang RX, Jia YX. Pd-Catalyzed Intramolecular Dearomative [4 + 2] Cycloaddition of Naphthalenes with Arylalkynes. Org Lett 2023; 25:8139-8144. [PMID: 37934112 DOI: 10.1021/acs.orglett.3c03240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
A Pd-catalyzed intramolecular dearomative [4 + 2] cycloaddition reaction of naphthalenes with arylalkynes is developed. The protocol provides a straightforward method to access a range of polycyclic dihydronaphthalenes containing two vicinal all-carbon stereocenters in moderate yields under mild conditions in an air atmosphere. The deuterium labeling experiment suggests a pathway involving electrophilic dearomatization followed by Friedel-Crafts cyclization. Several synthetic transformations of the product were conducted to demonstrate the utility of this reaction.
Collapse
Affiliation(s)
- Jin-Bo Lu
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18, Hangzhou, Zhejiang 310014, China
| | - Xiao-Qiu Xu
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18, Hangzhou, Zhejiang 310014, China
| | - Zi-Sheng Ruan
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18, Hangzhou, Zhejiang 310014, China
| | - Kai Liu
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18, Hangzhou, Zhejiang 310014, China
| | - Ren-Xiao Liang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18, Hangzhou, Zhejiang 310014, China
| | - Yi-Xia Jia
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18, Hangzhou, Zhejiang 310014, China
| |
Collapse
|
41
|
Song F, Wang B, Shi ZJ. Transition-Metal-Catalyzed C-C Bond Formation from C-C Activation. Acc Chem Res 2023; 56:2867-2886. [PMID: 37882453 DOI: 10.1021/acs.accounts.3c00230] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
ConspectusC-C single bonds are ubiquitous in organic compounds. The activation and subsequent functionalization of C-C single bonds provide a unique opportunity to synthesize conventionally inaccessible molecules through the rearrangement of carbon skeletons, often with a favorable atom and step economy. However, the C-C bonds are thermodynamically and kinetically inert. Consequently, the activation of C-C bonds is particularly attractive yet challenging in the field of organic chemistry. In the past decade, we sought to develop efficient strategies to carry out transition-metal-catalyzed diverse C-C cleavage/C-C forming reactions and to obtain some insights into the intrinsic reactivities of different C-C bonds. With our efforts, readily available alcohols, carboxylic acids, and ketones served as suitable substrates for the catalytic C-C coupling reactions, which are reviewed in this Account. In 2009, we observed a Ni-catalyzed cross coupling of aryl nitriles with arylboronic esters through C-CN cleavage. Encouraged by these results, we are interested in transition-metal-catalyzed C-C bond activation. Due to their broad availability, we then turned our attention to C-C cleavage of carboxylic acids. Rhodium-catalyzed decarbonylative coupling of carboxylic acids with (hetero)arenes was then achieved through oxidative addition of in situ formed, more reactive mixed anhydrides to Rh(I) without the need for oxidants that are commonly required for the decarboxylative coupling of carboxylic acids. Subsequently, the decarbonylation of more challenging unstrained aryl ketones was realized under Rh catalysis assisted by N-containing directing groups. Following this work, a group exchange of aryl ketones with carboxylic acids was achieved through 2-fold C-C bond cleavage. By employing the chelation strategy, Rh-catalyzed C-C bond activation of secondary benzyl alcohols was also accomplished through β-carbon elimination of the rhodium alcoholate intermediates. The competing oxidation of secondary alcohols to ketones via β-hydrogen elimination of the same intermediates was suppressed as thermodynamically favorable five-membered rhodacycles are formed after β-carbon elimination. Different types of transformations of alcohols, including the Heck-type reaction with alkenes, cross coupling with arylsilanes, and Grignard-type addition with aldehydes or imines, have been achieved, showing the great potential of secondary alcohols in the formation of C-C bonds. These C-C bond-forming reactions are complementary to traditional cross couplings of aryl halides with organometallic reagents. However, these transformations produce small molecules as byproducts. To improve the atom economy, we then investigated C-C bond transformations of strained-ring cyclic compounds. Ni-catalyzed intermolecular cyclization of benzocyclobutenones with alkynes was recently achieved via the uncommon cleavage of the C1-C8 bond by employing a removable blocking strategy. Rh-catalyzed intramolecular annulation of benzocyclobutenols with alkynes was also achieved. In summary, our developments demonstrate the great potential of transition-metal-catalyzed C-C bond activation for the formation of new C-C bonds. To further expand the synthetic utility of C-C bond activation, more efforts are required to expand the substrate scope and to achieve earth-abundant metal-catalyzed transformations.
Collapse
Affiliation(s)
- Feijie Song
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan 610066, P. R. China
| | - Biqin Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan 610066, P. R. China
| | - Zhang-Jie Shi
- Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
42
|
Rao HW, Zhao TL, Wang L, Deng HD, Zhang YP, You Y, Wang ZH, Zhao JQ, Yuan WC. Palladium-catalyzed decarboxylative α-allylation of thiazolidinones and azlactones with sulfonamido-substituted acyclic allylic carbonates. Org Biomol Chem 2023; 21:8593-8602. [PMID: 37861421 DOI: 10.1039/d3ob01404e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
A palladium-catalyzed decarboxylative α-allylation of thiazolidinones and azlactones with aza-π-allylpalladium zwitterionic intermediates, in situ generated from sulfonamido-substituted allylic carbonates, is successfully developed. This method allows the formation of a series of structurally diverse 5-alkylated thiazolidinones and 2-piperidones under mild conditions in moderate to high yields (up to 99% yield).
Collapse
Affiliation(s)
- Han-Wen Rao
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China.
| | - Tian-Lan Zhao
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China.
| | - Long Wang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China.
| | - Hong-Dan Deng
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China.
| | - Yan-Ping Zhang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China.
| | - Yong You
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China.
| | - Zhen-Hua Wang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China.
| | - Jian-Qiang Zhao
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China.
| | - Wei-Cheng Yuan
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
43
|
Sun L, Li J, Wu Y, Li Y, Chen J, Xia X, Yuan C, Guo H, Mao B. Palladium-catalyzed [4 + 2] cycloaddition of 2-methylidenetrimethylene carbonate or methylene cyclic carbamate with sulfamate-derived cyclic imines. Org Biomol Chem 2023; 21:8107-8111. [PMID: 37801030 DOI: 10.1039/d3ob01361h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
A palladium-catalyzed [4 + 2] cycloaddition of 2-methylidenetrimethylene carbonate or methylene cyclic carbamate with sulfamate-derived cyclic imines has been successfully developed under mild reaction conditions, affording pharmacologically interesting oxazine or hydropyrimidine derivatives in high yields (up to 99% yield). Furthermore, the cycloaddition reactions could be efficiently scaled up and several synthetic transformations were accomplished for the construction of other useful 1,3-oxazine and hydropyrimidinone derivatives.
Collapse
Affiliation(s)
- Li Sun
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, P. R. China.
| | - Jiyu Li
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, P. R. China.
| | - Yafei Wu
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, P. R. China.
| | - Ying Li
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, P. R. China.
| | - Junqi Chen
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, P. R. China.
| | - Xiaoye Xia
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, P. R. China.
| | - Chunhao Yuan
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University, Shandong Academy of Medical Sciences, Taian 271016, Shandong, P. R. China
| | - Hongchao Guo
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China.
| | - Biming Mao
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, P. R. China.
| |
Collapse
|
44
|
Kastrati A, Jaquier V, Garbo M, Besnard C, Mazet C. Pd-Catalyzed Regioselective Cyclopropanation of 2-Substituted 1,3-Dienes. ACS ORGANIC & INORGANIC AU 2023; 3:291-298. [PMID: 37810406 PMCID: PMC10557126 DOI: 10.1021/acsorginorgau.3c00024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/06/2023] [Accepted: 07/06/2023] [Indexed: 10/10/2023]
Abstract
A Pd-catalyzed 3,4-regioselective cyclopropanation of 2-substituted 1,3-dienes by decomposition of diazo esters is reported. The vinylcyclopropanes generated are isolated in practical chemical yields with high levels of regioselectivity but low diastereoselectivity. The system operates under mild reaction conditions, is scalable, and tolerates various sensitive functional groups. A series of original postcatalytic derivatizations is presented to highlight the synthetic potential of the catalytic method.
Collapse
Affiliation(s)
- Agonist Kastrati
- Department
of Organic Chemistry, University of Geneva, 30 Quai Ernest Ansermet, 1211 Geneva, Switzerland
| | - Vincent Jaquier
- Department
of Organic Chemistry, University of Geneva, 30 Quai Ernest Ansermet, 1211 Geneva, Switzerland
| | - Michele Garbo
- Department
of Organic Chemistry, University of Geneva, 30 Quai Ernest Ansermet, 1211 Geneva, Switzerland
| | - Céline Besnard
- Laboratory
of Crystallography, University of Geneva, 24 Quai Ernest Ansermet, 1211 Geneva, Switzerland
| | - Clément Mazet
- Department
of Organic Chemistry, University of Geneva, 30 Quai Ernest Ansermet, 1211 Geneva, Switzerland
| |
Collapse
|
45
|
Xiao Y, Zhang Y, Ji WS, Jia XN, Shan LH, Li X, Liu YJ, Jiang T, Gao F. Discovery of myrsinane-type Euphorbia diterpene derivatives through a skeleton conversion strategy from lathyrane diterpene for the treatment of Alzheimer's disease. Bioorg Chem 2023; 138:106595. [PMID: 37178652 DOI: 10.1016/j.bioorg.2023.106595] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/15/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
A series of novel myrsinane-type Euphorbia diterpene derivatives (1-37) were synthesized from the abundant natural lathyrane-type Euphorbia factor L3, using a multi-step chemical process guided by a bioinspired skeleton conversion strategy, with the aim of discovering potential anti-Alzheimer's disease (AD) bioactive lead compounds. The synthesis process involved a concise reductive olefin coupling reaction through an intramolecular Michael addition with a free radical, followed by a visible-light-triggered regioselective cyclopropane ring-opening. The cholinesterase inhibitory and neuroprotective activities of the synthesized myrsinane derivatives were evaluated. Most of the compounds showed moderate to strong potency, highlighting the importance of ester groups in Euphorbia diterpene. In particular, derivative 37 displayed the most potent acetylcholinesterase (AChE) inhibition, with an IC50 value of 8.3 μM, surpassing that of the positive control, tacrine. Additionally, 37 also showed excellent neuroprotective effect against H2O2-induced injury in SH-SY5Y cells, with a cell viability rate of 124.2% at 50 μM, which was significantly higher than that of the model group (viability rate 52.1%). Molecular docking, reactive oxygen species (ROS) analysis, immunofluorescence, and immunoblotting were performed to investigate the mechanism of action of myrsinane derivative 37. The results indicated that derivative 37 may be a promising myrsinane-type multi-functional lead compound for the treatment of Alzheimer's disease. Furthermore, a preliminary SAR analysis was performed to study the acetylcholinesterase inhibitory and neuroprotective activities of these diterpenes.
Collapse
Affiliation(s)
- Yao Xiao
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Yang Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Wan-Sheng Ji
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Xiao-Nan Jia
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Lian-Hai Shan
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Xiaohuan Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Yan-Jun Liu
- The Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, PR China.
| | - Ting Jiang
- Department of Pharmacy, The First Afflicted Hospital of Chengdu Medical College, Chengdu 610500, PR China.
| | - Feng Gao
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China.
| |
Collapse
|
46
|
Yang Y, Li HX, Zhu TY, Zhang ZY, Yu ZX. Rh-Catalyzed [4 + 1] Reaction of Cyclopropyl-Capped Dienes (but not Common Dienes) and Carbon Monoxide: Reaction Development and Mechanistic Study. J Am Chem Soc 2023; 145:17087-17095. [PMID: 37523458 DOI: 10.1021/jacs.3c03047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Transition-metal-catalyzed [4 + 1] reaction of dienes and carbon monoxide (CO) is the most straightforward and easily envisioned cyclization for the synthesis of five-membered carbocycles, which are ubiquitously found in natural products and functional molecules. Unfortunately, no test of this reaction was reported, and consequently, chemists do not know whether such kind of reaction works or not. Herein, we report that the [4 + 1] reaction of common dienes and CO cannot work, at least under the catalysis of [Rh(cod)Cl]2. However, using cyclopropyl-capped dienes (also named allylidenecyclopropanes) as substrates, the corresponding [4 + 1] reaction with CO proceeds smoothly in the presence of [Rh(cod)Cl]2. This [4 + 1] reaction, with a broad scope, provides efficient access to five-membered carbocyclic compounds of spiro[2.4]hept-6-en-4-ones. The [4 + 1] cycloadducts can be further transformed into other molecules by using the unique chemistry of cyclopropyl groups present in these molecules. The mechanism of this [4 + 1] reaction has been investigated by quantum chemical calculations, uncovering that cyclopropyl-capped dienes are strained dienes and the oxidative cyclization step in the [4 + 1] catalytic cycle can release this (angular) strain both kinetically and thermodynamically. The strain release in this step then propagates to all followed CO coordination/CO insertion/reductive elimination steps in the [4 + 1] catalytic cycle, helping the realization of this cycloaddition reaction. In contrast, common dienes (including cyclobutyl-capped dienes) do not have such advantages and their [4 + 1] reaction suffers from energy penalty in all steps involved in the [4 + 1] catalytic cycle. The reactivity of ene-allenes for the [4 + 1] reaction with CO is also discussed.
Collapse
Affiliation(s)
- Yusheng Yang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Han-Xiao Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Tian-Yu Zhu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Zi-You Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Zhi-Xiang Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| |
Collapse
|
47
|
Debnath B, Sarkar T, Karjee P, Purkayastha SK, Guha AK, Punniyamurthy T. Palladium-Catalyzed Annulative Coupling of Spirovinylcyclopropyl Oxindoles with p-Quinone Methides. J Org Chem 2023. [PMID: 37437136 DOI: 10.1021/acs.joc.3c00173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Pd-catalyzed annulative coupling of spirovinylcyclopropyl oxindoles with p-quinone methides has been accomplished via cascade carbon-carbon bond formation to afford bis-spirooxindole scaffolds. The mild reaction conditions, diastereoselectivity, functional group diversity, post-synthetic transformations, and mechanistic studies using DFT calculations are the important practical features.
Collapse
Affiliation(s)
- Bijoy Debnath
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Tanumay Sarkar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Pallab Karjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | | | - Ankur K Guha
- Advanced Computational Chemistry Centre, Cotton University, Guwahati 781001, India
| | | |
Collapse
|
48
|
Pham QH, Tague AJ, Richardson C, Gardiner MG, Pyne SG, Hyland CJT. Palladium-catalysed enantio- and regioselective (3 + 2) cycloaddition reactions of sulfamidate imine-derived 1-azadienes towards spirocyclic cyclopentanes. Chem Sci 2023; 14:4893-4900. [PMID: 37181759 PMCID: PMC10171190 DOI: 10.1039/d3sc01510f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 05/16/2023] Open
Abstract
An enantio- and diastereoselective Pd-catalysed (3 + 2) cycloaddition of bis(trifluoroethyl) 2-vinyl-cyclopropane-1,1-dicarboxylate (VCP) with cyclic sulfamidate imine-derived 1-azadienes (SDAs) has been developed. These reactions provide highly functionalized spiroheterocycles having three contiguous stereocentres, including a tetrasubstituted carbon bearing an oxygen functionality. The two geminal trifluoroethyl ester moieties can be manipulated in a facially selective manner to afford more diversely decorated spirocycles with four contiguous stereocentres. In addition, diastereoselective reduction of the imine moiety can also afford a fourth stereocentre and exposes the important 1,2-amino alcohol functionality.
Collapse
Affiliation(s)
- Quoc Hoang Pham
- School of Chemistry and Molecular Bioscience, Molecular Horizons Research Institute, University of Wollongong Wollongong 2522 New South Wales Australia
| | - Andrew J Tague
- School of Chemistry and Molecular Bioscience, Molecular Horizons Research Institute, University of Wollongong Wollongong 2522 New South Wales Australia
| | - Christopher Richardson
- School of Chemistry and Molecular Bioscience, Molecular Horizons Research Institute, University of Wollongong Wollongong 2522 New South Wales Australia
| | - Michael G Gardiner
- Research School of Chemistry, The Australian National University Canberra 2601 Australia
| | - Stephen G Pyne
- School of Chemistry and Molecular Bioscience, Molecular Horizons Research Institute, University of Wollongong Wollongong 2522 New South Wales Australia
| | - Christopher J T Hyland
- School of Chemistry and Molecular Bioscience, Molecular Horizons Research Institute, University of Wollongong Wollongong 2522 New South Wales Australia
| |
Collapse
|
49
|
Saha S, Debnath B, Talukdar K, Karjee P, Mandal S, Punniyamurthy T. Cascade C-H Activation/Annulation of Sulfoxonium Ylides with Vinyl Cyclopropanes: Access to Cyclopropane-Fused α-Tetralones. Org Lett 2023; 25:3352-3357. [PMID: 37140969 DOI: 10.1021/acs.orglett.3c00650] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Rh-catalyzed weak and traceless directing-group-assisted cascade C-H activation and annulation of sulfoxonium ylides with vinyl cyclopropanes as a coupling partner have been accomplished to furnish functionalized cyclopropane-fused tetralones at moderate temperature. The C-C bond formation, cyclopropanation, functional group tolerance, late-stage diversifications of drug molecules, and scale-up are the important practical features.
Collapse
Affiliation(s)
- Sharajit Saha
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Bijoy Debnath
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Kangkan Talukdar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Pallab Karjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Santu Mandal
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | | |
Collapse
|
50
|
Lu JL, Zhang Z, Deng JT, Ma AJ, Peng JB. Molybdenum-Mediated Reductive Hydroamination of Vinylcyclopropanes with Nitroarenes: Synthesis of Homoallylamines. Org Lett 2023; 25:2991-2995. [PMID: 37126019 DOI: 10.1021/acs.orglett.3c00781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
A molybdenum-mediated reductive hydroamination of vinylcyclopropanes with nitroarenes has been developed. A broad range of substituted homoallylamines were prepared in good to excellent yields from readily available starting materials. No noble metal catalysts were used in this reaction, and Mo(CO)6 acted as both catalyst and reductant. This protocol provides an effective method for the selective synthesis of substituted homoallylamines from easily available nitroarenes.
Collapse
Affiliation(s)
- Jin-Liang Lu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Zhi Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Jing-Tong Deng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Ai-Jun Ma
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Jin-Bao Peng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| |
Collapse
|