1
|
Bu Y, Li X, Lei W, Yang H, Xu W, Han Q, Li J. Advanced Bionic 3D Interfacial Solar Steam Generator With One-way Water Supply for Highly Efficient Desalination and Oil-Fouling Prevention. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2412545. [PMID: 39721036 DOI: 10.1002/advs.202412545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/12/2024] [Indexed: 12/28/2024]
Abstract
Interfacial solar steam generation (ISSG) employed for seawater desalination and wastewater purification shows great promise to alleviate global freshwater scarcity. However, simultaneous optimization of water transfer direction in a cost-effective and reliable ISSG to balance thermal localization, salt accumulation, and resistance to oilfouling represents a rare feat. Herein, inspired by seabird beaks for unidirectional water transfer, eco-friendly and cost-effective plant extracts, sodium alginate, and tannic acid, are selected for crafting an innovative Sodium Alginate-Tannic Acid Hemispheric Evaporator (STHE). The STHE aligned with centripetally tapered channels ensures one-directional water flow and effectively inhibits downward heat transfer, thereby boosting energy efficiency. Additionally, the integration of one-way water supply in tapered channels with interfacial evaporation of STHE, mimicking plant transpiration, collaboratively facilitates upward water transfer for a reliable solar-driven water evaporation rate of ≈2.26 kg m-2 h-1 under one sun irradiation. Even in a brine of 15.0 wt % solution, no salt crystals are observed on the surface of STHE. Hemispheric structure and superhydrophilicity are conducive to oil repellence. This work provides pivotal inspiration for constructing next-generation solar generators of high-efficiency, salt-tolerance, and anti-oil-fouling.
Collapse
Affiliation(s)
- Yiming Bu
- Institute for Frontier Materials, Deakin University, Geelong, VIC, 3216, Australia
| | - Xin Li
- Institute for Frontier Materials, Deakin University, Geelong, VIC, 3216, Australia
| | - Weiwei Lei
- Institute for Frontier Materials, Deakin University, Geelong, VIC, 3216, Australia
| | - Hongjun Yang
- Key Laboratory of Green Processing and Functional New Textile Materials of Ministry of Education, Wuhan Textile University, Wuhan, 430200, China
| | - Weilin Xu
- Key Laboratory of Green Processing and Functional New Textile Materials of Ministry of Education, Wuhan Textile University, Wuhan, 430200, China
| | - Qi Han
- School of Science, RMIT University, City Campus, Melbourne, VIC, 3000, Australia
| | - Jingliang Li
- Institute for Frontier Materials, Deakin University, Geelong, VIC, 3216, Australia
| |
Collapse
|
2
|
Mohapatra L, Paramanik L, Sabnam S, Yoo SH. Advanced strategies for controlling three-phase boundaries in photocatalysis. NANOSCALE 2024; 16:22099-22119. [PMID: 39540614 DOI: 10.1039/d4nr03651d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
This review delves into the latest advancements in controlling three-phase boundaries (TPBs) in photocatalytic systems, with a focus on photo(electro)catalytic processes for nitrogen reduction, oxygen reduction, and water reduction. We critically analyze various strategies and advanced materials designed to enhance TPB performance, evaluating their impact on catalytic efficiency and identifying gaps in the existing literature. By examining sophisticated triphasic systems that integrate superwetting materials, we emphasize their essential role in improving light absorption, charge separation, and mass transfer. Key challenges in TPB optimization are discussed, and future research directions are proposed to advance photocatalytic technologies for sustainable energy applications. This review highlights the crucial importance of TPBs in photo(electro)catalysis, aiming to inspire further innovation for more efficient and scalable solutions.
Collapse
Affiliation(s)
- Lagnamayee Mohapatra
- Department of Quantum System Engineering, Jeonbuk National University, Republic of Korea.
| | - Lekha Paramanik
- Department of Quantum System Engineering, Jeonbuk National University, Republic of Korea.
| | - Subhashree Sabnam
- Department of Applied Plasma and Quantum Beam Engineering, Jeonbuk National University, Republic of Korea
| | - Seung Hwa Yoo
- Department of Quantum System Engineering, Jeonbuk National University, Republic of Korea.
- Department of Applied Plasma and Quantum Beam Engineering, Jeonbuk National University, Republic of Korea
- Department of JBNU-KIST Industry-Academia Convergence Research, Graduate School, Jeonbuk National University, Republic of Korea
| |
Collapse
|
3
|
Xu W, Yan K, Zhao L, He Y, Jiang H, Min Y. Discontinuous Directional Wetting Transitions in Polymeric Droplets on the Heterogeneous Microcavity Surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39563086 DOI: 10.1021/acs.langmuir.4c03024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
The wetting transition behaviors of polymeric droplets on microcavity surfaces are familiar and play a vital role in micromanufacturing, microfluidics, and printing industries. Despite previous research indicating that microcavity surfaces can precisely control the droplet wetting state, the understanding of the complex effects of droplet spreading, surface morphology, and property of polymeric droplet on wetting transitions remains incomplete. The air-liquid interfaces (ALIs) typically arise from the entrapped air beneath the droplet on microcavity surfaces, adopting a metastable wetting state caused by either bubble escape or dissolution. Here, we discovered a previously unobserved phenomenon: the time-dependent evolution of regularly arranged ALIs with discontinuous wetting states, along with the pronounced directional wetting transitions from the Cassie-Baxter state to the Wenzel state upon deposition of polymeric droplets on heterogeneous microcavity surfaces. The durability of ALIs in microcavities was quantified, illustrating that the wetting transitions associated with droplet spreading processes obeyed power laws. By integrating the wetting theory and the viscoelastic effect of polymeric droplet, we have proposed a phenomenological coevolution model for wetting transitions that emphasizes the synergistic interaction between adjacent microcavities, resulting in the observed cluster evolution behavior of ALIs within droplets. Our study holds great significance in guiding soft manufacturing techniques utilizing internal ALIs as templates. The established mechanism opens up avenues for investigating the intricate wetting phenomena of polymeric droplets on microtextured substrates.
Collapse
Affiliation(s)
- Wenshuai Xu
- Wide Range Flight Engineering Science and Applications Center, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- Key Laboratory of Microgravity, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Kuo Yan
- Wide Range Flight Engineering Science and Applications Center, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Lingling Zhao
- Wide Range Flight Engineering Science and Applications Center, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yifan He
- Wide Range Flight Engineering Science and Applications Center, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Heng Jiang
- Wide Range Flight Engineering Science and Applications Center, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- Key Laboratory of Microgravity, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yonggang Min
- Wide Range Flight Engineering Science and Applications Center, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
4
|
Mikaeeli Kangarshahi B, Naghib SM, Rabiee N. 3D printing and computer-aided design techniques for drug delivery scaffolds in tissue engineering. Expert Opin Drug Deliv 2024; 21:1615-1636. [PMID: 39323396 DOI: 10.1080/17425247.2024.2409913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 09/27/2024]
Abstract
INTRODUCTION The challenge in tissue engineering lies in replicating the intricate structure of the native extracellular matrix. Recent advancements in AM, notably 3D printing, offer unprecedented capabilities to tailor scaffolds precisely, controlling properties like structure and bioactivity. CAD tools complement this by facilitating design using patient-specific data. AREA’S COVERED This review introduces additive manufacturing (AM) and computer-aided design (CAD) as pivotal tools in advancing tissue engineering, particularly cartilage regeneration. This article explores various materials utilized in AM, focusing on polymers and hydrogels for their advantageous properties in tissue engineering applications. Integrating bioactive molecules, including growth factors, into scaffolds to promote tissue regeneration is discussed alongside strategies involving different cell sources, such as stem cells, to enhance tissue development within scaffold matrices. EXPERT OPINION Applications of AM and CAD in addressing specific challenges like osteochondral defects and osteoarthritis in cartilage tissue engineering are highlighted. This review consolidates current research findings, offering expert insights into the evolving landscape of AM and CAD technologies in advancing tissue engineering, particularly in cartilage regeneration.
Collapse
Affiliation(s)
- Babak Mikaeeli Kangarshahi
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology, Tehran, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology, Tehran, Iran
| | - Navid Rabiee
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai, India
| |
Collapse
|
5
|
Yu J, Kan X, Xiang Z, Liu J, Bao F, Hou L. On-Chip Droplet Splitting with High Volume Ratios Using a 3D Conical Microstructure-Based Microfluidic Device. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:22355-22362. [PMID: 39377732 DOI: 10.1021/acs.langmuir.4c03047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
This work reports a simple microfluidic method for splitting a mother droplet into two daughter droplets with high and precise volume ratios. To achieve this, a droplet-splitting microfluidic device embedded with a three-dimensional (3D) conical microstructure is fabricated, in which the high splitting ratios of monodisperse mother droplets are achieved. The volume ratio of the split daughter droplets can reach up to 265. In addition, we examined factors that affect the splitting ratio of the daughter droplets and found that the ratio is affected by the flow rates of the two individual outlet channels, the injection length of the conical microstructure, and the diameter of the original mother droplets. Numerical simulations of these parameters were conducted to gain a clearer understanding of the splitting behavior. The proposed droplet splitting device with a conical microstructure enables on-chip sample extraction and droplet volume control, which can be a powerful tool for various droplet-based applications in microfluidic devices such as viral infectivity assays and sequencing heterogeneous populations.
Collapse
Affiliation(s)
- Jian Yu
- Zhejiang Provincial Key Laboratory of Flow Measurement Technology, College of Metrology Measurement and Instrument, China Jiliang University, Hangzhou 310018, China
| | - Xueqing Kan
- Zhejiang Provincial Key Laboratory of Flow Measurement Technology, College of Metrology Measurement and Instrument, China Jiliang University, Hangzhou 310018, China
| | - Zhaoyang Xiang
- Zhejiang Provincial Key Laboratory of Flow Measurement Technology, College of Metrology Measurement and Instrument, China Jiliang University, Hangzhou 310018, China
| | - Jiachen Liu
- Zhejiang Provincial Key Laboratory of Flow Measurement Technology, College of Metrology Measurement and Instrument, China Jiliang University, Hangzhou 310018, China
| | - Fubing Bao
- Zhejiang Provincial Key Laboratory of Flow Measurement Technology, College of Metrology Measurement and Instrument, China Jiliang University, Hangzhou 310018, China
| | - Likai Hou
- Zhejiang Provincial Key Laboratory of Flow Measurement Technology, College of Metrology Measurement and Instrument, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
6
|
Dinh T, Xu Y, Mason TG, Cubaud T. Microfluidic dissolution of nanoemulsions in solvents. SOFT MATTER 2024; 20:8052-8060. [PMID: 39350727 DOI: 10.1039/d4sm00824c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2024]
Abstract
We experimentally investigate the behavior of nanoemulsion and microscale emulsion jets flowing in solvents using coaxial microfluidic devices. The stability of colloidal dispersions made of oil droplets dispersed in water is significantly altered by the presence of a miscible solvent, which induces complex solutal and droplet coalescence instabilities over various timescales. We reveal intriguing microflow patterns of oil-in-water micro- and nanoemulsion threads in a continuous phase of isopropanol, including the dissolving, diffusive, gravitational, and stable thread regimes. We discuss the evolution of core-annular flow characteristics and develop scaling relationships to model thread dynamics through measurements of effective diameter as well as persistence and gravitational lengths. A microflow method based on dynamic similitude is developed to estimate the diffusion coefficients of nanoemulsions and microscale emulsions in miscible solvents. This work shows the possibility to process soft colloidal dispersions and control degradation mechanisms using microfluidic techniques.
Collapse
Affiliation(s)
- Thai Dinh
- Department of Mechanical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Yixuan Xu
- Department of Materials Science and Engineering, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Thomas G Mason
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, CA 90095, USA.
- Department of Physics and Astronomy, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Thomas Cubaud
- Department of Mechanical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
7
|
Liu Z, Si Y, Yu C, Jiang L, Dong Z. Bioinspired superwetting oil-water separation strategy: toward the era of openness. Chem Soc Rev 2024; 53:10012-10043. [PMID: 39302142 DOI: 10.1039/d4cs00673a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Bioinspired superwetting oil-water separation strategies have received significant attention for their potential in addressing global water scarcity and aquatic pollution challenges. Over the past two decades, the field has rapidly developed, reaching a pivotal phase of innovation in the oil-water separation process. However, many groundbreaking studies have not received extensive scientific recognition. In this review, we systematically examine the application of bioinspired superwetting materials for complex multiscale oil-water separation. We discuss the development of 2D membrane filtration and 3D sponge adsorption materials in confined spaces, summarizing the core separation mechanisms, key research findings, and the evolutionary logic of these materials. Additionally, we highlight emerging open-space separation strategies, emphasizing several novel dynamic separation devices of significant importance. We evaluate and compare the design concepts, separation principles, materials used, comprehensive performance, and existing challenges of these diverse strategies. Finally, we summarize these advantages, critical bottlenecks, and prospects of this field and propose potential solutions for real oil-water separation processes from a general perspective.
Collapse
Affiliation(s)
- Zhuoxing Liu
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yifan Si
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong S.A.R 999077, China.
| | - Cunlong Yu
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Jiang
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Zhichao Dong
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| |
Collapse
|
8
|
Zhao H, Wen R, Zhang L, Chen L, Li H, Xia F, Song Y. Magneto-Controlled Tubular Liquid Actuators with Pore Engineering for Liquid Transport and Regulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406325. [PMID: 39137359 PMCID: PMC11497001 DOI: 10.1002/advs.202406325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/08/2024] [Indexed: 08/15/2024]
Abstract
Liquid manipulation using tubular actuators finds diverse applications ranging from microfluidics, printing, liquid transfer to micro-reactors. Achieving flexible and simple regulation of manipulated liquid droplets during transport is crucial for the tubular liquid actuators to perform complex and multiple functions, yet it remains challenging. Here, a facile tubular actuator for directional transport of various liquid droplets under the control of an externally applied magnetic field is presented. The surfaces of the actuator can be engineered with submillimeter-sized through-hole pores, which enables the liquid droplet to be easily modulated in the transport process. Furthermore, the liquid actuator with featured through-hole pores is expanded to function as a switch in an integrated external electric circuit by magnetically controlling the motion of a conductive liquid droplet. This work develops a strategy for regulating liquid droplets in the tubular actuation systems, which may inspire ideas for designing functional liquid actuators with potential applications in microfluidics, microchemical reaction, liquid switch, and liquid robotics.
Collapse
Affiliation(s)
- Huan Zhao
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano‐Geomaterials of Ministry of Education, Faculty of Materials Science and ChemistryChina University of GeosciencesWuhan430074P. R. China
| | - Ruyi Wen
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano‐Geomaterials of Ministry of Education, Faculty of Materials Science and ChemistryChina University of GeosciencesWuhan430074P. R. China
| | - Liyun Zhang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano‐Geomaterials of Ministry of Education, Faculty of Materials Science and ChemistryChina University of GeosciencesWuhan430074P. R. China
| | - Linfeng Chen
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano‐Geomaterials of Ministry of Education, Faculty of Materials Science and ChemistryChina University of GeosciencesWuhan430074P. R. China
| | - Huizeng Li
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of ChemistryChinese Academy of Sciences (CAS)Beijing100190P. R. China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano‐Geomaterials of Ministry of Education, Faculty of Materials Science and ChemistryChina University of GeosciencesWuhan430074P. R. China
| | - Yanlin Song
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of ChemistryChinese Academy of Sciences (CAS)Beijing100190P. R. China
| |
Collapse
|
9
|
Zheng F, Tian R, Lu H, Liang X, Shafiq M, Uchida S, Chen H, Ma M. Droplet Microfluidics Powered Hydrogel Microparticles for Stem Cell-Mediated Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401400. [PMID: 38881184 DOI: 10.1002/smll.202401400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/21/2024] [Indexed: 06/18/2024]
Abstract
Stem cell-related therapeutic technologies have garnered significant attention of the research community for their multi-faceted applications. To promote the therapeutic effects of stem cells, the strategies for cell microencapsulation in hydrogel microparticles have been widely explored, as the hydrogel microparticles have the potential to facilitate oxygen diffusion and nutrient transport alongside their ability to promote crucial cell-cell and cell-matrix interactions. Despite their significant promise, there is an acute shortage of automated, standardized, and reproducible platforms to further stem cell-related research. Microfluidics offers an intriguing platform to produce stem cell-laden hydrogel microparticles (SCHMs) owing to its ability to manipulate the fluids at the micrometer scale as well as precisely control the structure and composition of microparticles. In this review, the typical biomaterials and crosslinking methods for microfluidic encapsulation of stem cells as well as the progress in droplet-based microfluidics for the fabrication of SCHMs are outlined. Moreover, the important biomedical applications of SCHMs are highlighted, including regenerative medicine, tissue engineering, scale-up production of stem cells, and microenvironmental simulation for fundamental cell studies. Overall, microfluidics holds tremendous potential for enabling the production of diverse hydrogel microparticles and is worthy for various stem cell-related biomedical applications.
Collapse
Affiliation(s)
- Fangqiao Zheng
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China
| | - Ruizhi Tian
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hongxu Lu
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiao Liang
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China
| | - Muhammad Shafiq
- Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, Kawasaki-ku, Kawasaki, Kanagawa, 210-0821, Japan
| | - Satoshi Uchida
- Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, Kawasaki-ku, Kawasaki, Kanagawa, 210-0821, Japan
- Department of Advanced Nanomedical Engineering, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
| | - Hangrong Chen
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ming Ma
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
10
|
Alexandre-Franco MF, Kouider R, Kassir Al-Karany R, Cuerda-Correa EM, Al-Kassir A. Recent Advances in Polymer Science and Fabrication Processes for Enhanced Microfluidic Applications: An Overview. MICROMACHINES 2024; 15:1137. [PMID: 39337797 PMCID: PMC11433824 DOI: 10.3390/mi15091137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024]
Abstract
This review explores significant advancements in polymer science and fabrication processes that have enhanced the performance and broadened the application scope of microfluidic devices. Microfluidics, essential in biotechnology, medicine, and chemical engineering, relies on precise fluid manipulation in micrometer-sized channels. Recent innovations in polymer materials, such as flexible, biocompatible, and structurally robust polymers, have been pivotal in developing advanced microfluidic systems. Techniques like replica molding, microcontact printing, solvent-assisted molding, injection molding, and 3D printing are examined, highlighting their advantages and recent developments. Additionally, the review discusses the diverse applications of polymer-based microfluidic devices in biomedical diagnostics, drug delivery, organ-on-chip models, environmental monitoring, and industrial processes. This paper also addresses future challenges, including enhancing chemical resistance, achieving multifunctionality, ensuring biocompatibility, and scaling up production. By overcoming these challenges, the potential for widespread adoption and impactful use of polymer-based microfluidic technologies can be realized.
Collapse
Affiliation(s)
- María F Alexandre-Franco
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencias, Universidad de Extremadura, Avenida de Elvas s/n, 06006 Badajoz, Spain
| | - Rahmani Kouider
- Department of Technology, Ziane Achour University of Djelfa, Djelfa 17000, Algeria
| | | | - Eduardo M Cuerda-Correa
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencias, Universidad de Extremadura, Avenida de Elvas s/n, 06006 Badajoz, Spain
| | - Awf Al-Kassir
- School of Industrial Engineers, University of Extremadura, 06006 Badajoz, Spain
| |
Collapse
|
11
|
Wang S, Li S, Zhao W, Zhou Y, Wang L, Aizenberg J, Zhu P. Programming hierarchical anisotropy in microactuators for multimodal actuation. LAB ON A CHIP 2024; 24:4073-4084. [PMID: 39115160 DOI: 10.1039/d4lc00369a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Microactuators, capable of executing tasks typically repetitive, hazardous, or impossible for humans, hold great promise across fields such as precision medicine, environmental remediation, and swarm intelligence. However, intricate motions of microactuators normally require high complexity in design, making it increasingly challenging to realize at small scales using existing fabrication techniques. Taking inspiration from the hierarchical-anisotropy principle found in nature, we program liquid crystalline elastomer (LCE) microactuators with multimodal actuation tailored to their molecular, shape, and architectural anisotropies at (sub)nanometer, micrometer, and (sub)millimeter scales, respectively. Our strategy enables diverse deformations with individual LCE microstructures, including expanding, contracting, twisting, bending, and unwinding, as well as re-programmable shape transformations of assembled LCE architectures with negative Poisson's ratios, locally adjustable actuation, and changing from two-dimensional (2D) to three-dimensional (3D) structures. Furthermore, we design tetrahedral microactuators with well-controlled mobility and precise manipulation of both solids and liquids in various environments. This study provides a paradigm shift in the development of microactuators, unlocking a vast array of complexities achievable through manipulation at each hierarchical level of anisotropy.
Collapse
Affiliation(s)
- Shiyu Wang
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China.
| | - Shucong Li
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Wenchang Zhao
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China.
| | - Ying Zhou
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China.
| | - Liqiu Wang
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Joanna Aizenberg
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Pingan Zhu
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China.
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China
| |
Collapse
|
12
|
Yang C, Li W, Zhao Y, Shang L. Flexible liquid-diode microtubes from multimodal microfluidics. Proc Natl Acad Sci U S A 2024; 121:e2402331121. [PMID: 38959044 PMCID: PMC11252946 DOI: 10.1073/pnas.2402331121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/04/2024] [Indexed: 07/04/2024] Open
Abstract
Directional transport of liquids is of great importance in energy saving, chemical/biomedical engineering, and microfluidics applications. Despite considerable progress in engineering different open surfaces to achieve liquid manipulation, the realization of diode-like liquid transport in enclosed spaces is still challenging. Here, a flexible diode microtube is presented for directional liquid transport within confined spaces using pulsed microfluidics. The microtubes exhibit sophisticated microstructures on the inner wall, replicated from a precisely controlled flow configuration in the microfluidic channel. Under the effect of asymmetric pinning and unbalanced Laplace pressure, such microtubes enable directional liquid transport in closed channels. More importantly, by integrating in situ flow lithography with the microfluidic system, segmented liquid diodes are fabricated as assembly units for the construction of fluidic-electronic circuits that perform logic operations. These results demonstrate the capacity of the present liquid-diode microtubes for flexible, directional, and programmable liquid transport. We believe that it can open an avenue for designing advanced fluidic circuit-based devices toward versatile practical applications.
Collapse
Affiliation(s)
- Chaoyu Yang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing210096, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou325001, China
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Wenzhao Li
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing210096, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou325001, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing210096, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou325001, China
| | - Luoran Shang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing210096, China
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, the Shanghai Key Laboratory of Medical Epigenetics, the International Co-Laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai200032, China
| |
Collapse
|
13
|
Fung FM, Widyantoro C, Li SFY. Keeping Analytical Chemistry Training Up-to-Date. Anal Chem 2024; 96:6863-6869. [PMID: 38656177 DOI: 10.1021/acs.analchem.4c00407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The undergraduate analytical chemistry curriculum serves to equip students with the knowledge and skills for work outside of classroom training. As such, instructors face a challenging task in deciding the breadth and depth of topics for their courses to ensure their syllabi can remain up-to-date with today's needs. We propose that instructors consider covering capillary electrophoresis (CE) and lab-on-a-chip (LOC) technologies in their analytical chemistry courses. Past surveys of the curriculum show a noticeable lack of emphasis on these topics, which we feel is a missed opportunity and one that holds potential for the collective benefit of instructors and students. CE and LOCs are utilized in a diverse array of fields like biochemistry, pharmaceutical production, materials science, and environmental analysis, and their applications are becoming increasingly important amidst the growing movement toward environmentally sustainable practices and green chemistry. They are also more accessible in the analytical chemistry classroom compared with typical benchtop instruments due to the flexibility of their size and cost. This makes them easier to obtain, maintain, and transport for use and demonstration purposes. Additionally, interwoven in these topics are core concepts that are fundamental to analytical chemistry; thus, covering them will inherently reinforce students' understanding of fundamental knowledge. Therefore, we believe increased coverage of CE and LOCs can better prepare undergraduates for modern analytical chemistry work in various industries and fields of research.
Collapse
Affiliation(s)
- Fun Man Fung
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- College of Humanities and Sciences, National University of Singapore, 21 Lower Kent Ridge Road, Singapore 119077
- Centre for Teaching, Learning and Technology, National University of Singapore,15 Kent Ridge Road, Singapore 119225
| | - Clarissa Widyantoro
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- College of Humanities and Sciences, National University of Singapore, 21 Lower Kent Ridge Road, Singapore 119077
| | - Sam Fong Yau Li
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- College of Humanities and Sciences, National University of Singapore, 21 Lower Kent Ridge Road, Singapore 119077
- NUS Environmental Research Institute (NERI), #02-01, T-Lab Building (TL), 5A Engineering Drive 1, Singapore 117411, Singapore
| |
Collapse
|
14
|
Zhu Z, Chen T, Wu Y, Wu X, Lang Z, Huang F, Zhu P, Si T, Xu RX. Microfluidic strategies for engineering oxygen-releasing biomaterials. Acta Biomater 2024; 179:61-82. [PMID: 38579919 DOI: 10.1016/j.actbio.2024.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/26/2024] [Accepted: 03/29/2024] [Indexed: 04/07/2024]
Abstract
In the field of tissue engineering, local hypoxia in large-cell structures (larger than 1 mm3) poses a significant challenge. Oxygen-releasing biomaterials supply an innovative solution through oxygen delivery in a sustained and controlled manner. Compared to traditional methods such as emulsion, sonication, and agitation, microfluidic technology offers distinct benefits for oxygen-releasing material production, including controllability, flexibility, and applicability. It holds enormous potential in the production of smart oxygen-releasing materials. This review comprehensively covers the fabrication and application of microfluidic-enabled oxygen-releasing biomaterials. To begin with, the physical mechanism of various microfluidic technologies and their differences in oxygen carrier preparation are explained. Then, the distinctions among diverse oxygen-releasing components in regards for oxygen-releasing mechanism, oxygen-carrying capacity, and duration of oxygen release are presented. Finally, the present obstacles and anticipated development trends are examined together with the application outcomes of oxygen-releasing biomaterials based on microfluidic technology in the biomedical area. STATEMENT OF SIGNIFICANCE: Oxygen is essential for sustaining life, and hypoxia (a condition of low oxygen) is a significant challenge in various diseases. Microfluidic-based oxygen-releasing biomaterials offer precise control and outstanding performance, providing unique advantages over traditional approaches for tissue engineering. However, comprehensive reviews on this topic are currently lacking. In this review, we provide a comprehensive analysis of various microfluidic technologies and their applications for developing oxygen-releasing biomaterials. We compare the characteristics of organic and inorganic oxygen-releasing biomaterials and highlight the latest advancements in microfluidic-enabled oxygen-releasing biomaterials for tissue engineering, wound healing, and drug delivery. This review may hold the potential to make a significant contribution to the field, with a profound impact on the scientific community.
Collapse
Affiliation(s)
- Zhiqiang Zhu
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, China; Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, China; Department of Mechanical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Tianao Chen
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China; Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Yongqi Wu
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China; Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Xizhi Wu
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China; Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Zhongliang Lang
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China; Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Fangsheng Huang
- Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Pingan Zhu
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Ting Si
- Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Ronald X Xu
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, China; Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, China; School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China; Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
15
|
Lei X, Ye W, Safdarin F, Baghaei S. Microfluidics devices for sports: A review on technology for biomedical application used in fields such as biomedicine, drug encapsulation, preparation of nanoparticles, cell targeting, analysis, diagnosis, and cell culture. Tissue Cell 2024; 87:102339. [PMID: 38432127 DOI: 10.1016/j.tice.2024.102339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/05/2024]
Abstract
Microfluidics is an interdisciplinary field that combines knowledge from various disciplines, including biology, chemistry, sports medicine, fluid dynamics, kinetic biomechanics, and microelectronics, to manipulate and control fluids and particles in micron-scale channels and chambers. These channels and chambers can be fabricated using different materials and methods to achieve various geometries and shapes. Microfluidics has numerous biomedical applications, such as drug encapsulation, nanoparticle preparation, cell targeting, analysis, diagnosis, and treatment of sports injuries in both professional and non-professional athletes. It can also be used in other fields, such as biological analysis, chemical synthesis, optics, and acceleration in the treatment of critical sports injuries. The objective of this review is to provide a comprehensive overview of microfluidic technology, including its fabrication methods, current platform materials, and its applications in sports medicine. Biocompatible, biodegradable, and semi-crystalline polymers with unique mechanical and thermal properties are one of the promising materials in microfluidic technology. Despite the numerous advantages of microfluidic technology, further research and development are necessary. Although the technology offers benefits such as ease of operation and cost efficiency, it is still in its early stages. In conclusion, this review emphasizes the potential of microfluidic technology and highlights the need for continued research to fully exploit its potential in the biomedical field and sport applications.
Collapse
Affiliation(s)
- Xuehui Lei
- Graduate School of Wuhan Institute of Physical Education, Wuhan 430079, China
| | - Weiwu Ye
- National Traditional Sports College of Harbin Sports University, Harbin 150008, China.
| | - F Safdarin
- Mechanical Engineering Department, lslamic Azad University, Esfahan, Iran
| | - Sh Baghaei
- Mechanical Engineering Department, lslamic Azad University, Esfahan, Iran
| |
Collapse
|
16
|
Zhu Z, Chen T, Huang F, Wang S, Zhu P, Xu RX, Si T. Free-Boundary Microfluidic Platform for Advanced Materials Manufacturing and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304840. [PMID: 37722080 DOI: 10.1002/adma.202304840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/14/2023] [Indexed: 09/20/2023]
Abstract
Microfluidics, with its remarkable capacity to manipulate fluids and droplets at the microscale, has emerged as a powerful platform in numerous fields. In contrast to conventional closed microchannel microfluidic systems, free-boundary microfluidic manufacturing (FBMM) processes continuous precursor fluids into jets or droplets in a relatively spacious environment. FBMM is highly regarded for its superior flexibility, stability, economy, usability, and versatility in the manufacturing of advanced materials and architectures. In this review, a comprehensive overview of recent advancements in FBMM is provided, encompassing technical principles, advanced material manufacturing, and their applications. FBMM is categorized based on the foundational mechanisms, primarily comprising hydrodynamics, interface effects, acoustics, and electrohydrodynamic. The processes and mechanisms of fluid manipulation are thoroughly discussed. Additionally, the manufacturing of advanced materials in various dimensions ranging from zero-dimensional to three-dimensional, as well as their diverse applications in material science, biomedical engineering, and engineering are presented. Finally, current progress is summarized and future challenges are prospected. Overall, this review highlights the significant potential of FBMM as a powerful tool for advanced materials manufacturing and its wide-ranging applications.
Collapse
Affiliation(s)
- Zhiqiang Zhu
- Department of Precision Machinery and Precision Instrumentation, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Tianao Chen
- School of Biomedical Engineering, Division of Life Sciences and Medicine, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, China
| | - Fangsheng Huang
- Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Shiyu Wang
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Pingan Zhu
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Ronald X Xu
- Department of Precision Machinery and Precision Instrumentation, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui, 230026, China
- School of Biomedical Engineering, Division of Life Sciences and Medicine, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, China
| | - Ting Si
- Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
17
|
Jiang T, Wu H, Liu S, Yan H, Jiang H. Effective colloidal emulsion droplet regulation in flow-focusing glass capillary microfluidic device via collection tube variation. RSC Adv 2024; 14:3250-3260. [PMID: 38249672 PMCID: PMC10797494 DOI: 10.1039/d3ra08561a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
Colloidal emulsion droplets, created using glass capillary microfluidic devices, have been found in a myriad of applications, serving as subtle microcarriers, delicate templates, etc. To meet the objective requirements under varying circumstances, it is crucial to efficiently control the morphology and dimensions of the droplets on demand. The glass capillary collection tube is a crucial component of the flow-focusing microfluidic system due to its close association with the geometrical confinement of the multiphasic flow. However, there are currently no guidelines for the design of the morphology and dimensions of the glass capillary collection tube, which shall result in a delay in assessing serviceability until after the microfluidic device is prepared, thereby causing a loss of time and effort. Herein, an experimental study was conducted to investigate the effect of the geometrical characteristics of glass capillary collection tubes on the production of colloidal emulsion droplets. After characterizing the generated colloidal emulsion droplets, it was found that the geometrical variations of the glass capillary collection tube resulted in numerical disparities of droplets due to different degrees of flow-focusing effects. The stronger flow-focusing effect produced smaller droplets at a higher frequency, and the dimensional variation of colloidal emulsion droplets was more responsive to varying flow rates. Furthermore, the transformation from colloidal single-core double-emulsion droplets to multi-core double-emulsion droplets also changed with the flow rate due to the glass capillary collection tube morphology-determined varying flow-focusing effect. These experimental findings can offer qualitative guidance for the design of glass capillary microfluidic devices in the preliminary stage, thus facilitating the smooth production of desired colloidal emulsion droplets.
Collapse
Affiliation(s)
- Tianyi Jiang
- School of Mechatronics Engineering, Harbin Institute of Technology West Da-Zhi Street 92 Harbin Heilongjiang PR China 150001
| | - Hao Wu
- School of Mechatronics Engineering, Harbin Institute of Technology West Da-Zhi Street 92 Harbin Heilongjiang PR China 150001
- Department of Mechanical Engineering, City University of Hong Kong Kowloon Hong Kong SAR PR China 999077
| | - Shuofu Liu
- School of Mechatronics Engineering, Harbin Institute of Technology West Da-Zhi Street 92 Harbin Heilongjiang PR China 150001
| | - Hui Yan
- School of Mechatronics Engineering, Harbin Institute of Technology West Da-Zhi Street 92 Harbin Heilongjiang PR China 150001
| | - Hongyuan Jiang
- School of Mechatronics Engineering, Harbin Institute of Technology West Da-Zhi Street 92 Harbin Heilongjiang PR China 150001
| |
Collapse
|
18
|
Wu H, Chen J, Jiang T, Wu W, Li M, Zhang S, Li Z, Ye H, Zhu M, Zhou J, Lu Y, Jiang H. Effect of Eccentricity Difference on the Mechanical Response of Microfluidics-Derived Hollow Silica Microspheres during Nanoindentation. MICROMACHINES 2024; 15:109. [PMID: 38258228 PMCID: PMC10821515 DOI: 10.3390/mi15010109] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024]
Abstract
Hollow microspheres as the filler material of syntactic foams have been adopted in extensive practical applications, where the physical parameters and their homogeneity have been proven to be critical factors during the design process, especially for high-specification scenarios. Based on double-emulsion droplet templates, hollow microspheres derived from microfluidics-enabled soft manufacturing have been validated to possess well-controlled morphology and composition with a much narrower size distribution and fewer defects compared to traditional production methods. However, for more stringent requirements, the innate density difference between the core-shell solution of the double-emulsion droplet template shall result in the wall thickness heterogeneity of the hollow microsphere, which will lead to unfavorable mechanical performance deviations. To clarify the specific mechanical response of microfluidics-derived hollow silica microspheres with varying eccentricities, a hybrid method combining experimental nanoindentation and a finite element method (FEM) simulation was proposed. The difference in eccentricity can determine the specific mechanical response of hollow microspheres during nanoindentation, including crack initiation and the evolution process, detailed fracture modes, load-bearing capacity, and energy dissipation capability, which should shed light on the necessity of optimizing the concentricity of double-emulsion droplets to improve the wall thickness homogeneity of hollow microspheres for better mechanical performance.
Collapse
Affiliation(s)
- Hao Wu
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Juzheng Chen
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Nano-Manufacturing Laboratory (NML), City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Tianyi Jiang
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Wenlong Wu
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Ming Li
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Shanguo Zhang
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Ziyong Li
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Nano-Manufacturing Laboratory (NML), City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Haitao Ye
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Nano-Manufacturing Laboratory (NML), City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Mengya Zhu
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Jingzhuo Zhou
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Yang Lu
- Nano-Manufacturing Laboratory (NML), City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, China
| | - Hongyuan Jiang
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
19
|
Chen J, Spoljaric S, Calatayud-Sanchez A, Alvarez-Braña Y, Caruso F. Engineering Metal-Phenolic Network Nanoparticles via Microfluidics. ACS APPLIED MATERIALS & INTERFACES 2023; 15:48050-48059. [PMID: 37812166 DOI: 10.1021/acsami.3c11889] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Microfluidics opens new avenues for materials engineering, as it enables scalable synthesis and provides highly controllable environments for reactions. Herein, we leverage microfluidics to engineer the properties of (bioactive) metal-phenolic network nanoparticles (MPN NPs), an emerging and highly modular nanoparticle platform for the incorporation and delivery of bioactive cargo. By varying the microfluidics operating parameters (flow rate ratio, total flow rate, temperature) and NP composition, we assemble MPN NPs, which consist of poly(ethylene glycol), biomacromolecules, metal ions, and polyphenols. Compared to MPN NPs prepared via bulk assembly, the microfluidics-assembled MPN NPs possess a broader tunable size range (i.e., ∼40-330 nm vs ∼45-220 nm for bulk-assembled NPs) and a higher (by ∼30%) protein loading. The bulk-assembled MPN NPs show pH-responsive protein release behavior (e.g., ∼50% at pH 7; ∼25% at pH 9; 48 h). Likewise, the MPN NPs prepared via microfluidics at a flow rate ratio of 1:1 display similar pH-responsive protein release behavior. For the microfluidics-assembled MPN NPs, protein release is also dependent on temperature (e.g., 30% at 4 °C, and ∼50% at 20 and 37 °C). Furthermore, assembly at a 1:1 flow rate ratio overall enables greater tunability of protein release profiles than that at higher flow rate ratios. While bulk-assembled NPs display a higher degree of cell association, NPs assembled via both strategies can be internalized by cells after 24 h. These findings provide new insights into engineering the properties of metal-organic materials via microfluidics, which is expected to advance their development and application.
Collapse
Affiliation(s)
- Jingqu Chen
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Steve Spoljaric
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Alba Calatayud-Sanchez
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
- Microfluidics Cluster UPV/EHU, Analytical Microsystems & Materials for Lab-on-a-Chip (AMMa-LOAC) Group, Analytical Chemistry Department, University of the Basque Country UPV/EHU, Leioa 48940, Spain
- Microfluidics Cluster UPV/EHU, BIOMICs Microfluidics Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz 01006, Spain
| | - Yara Alvarez-Braña
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
- Microfluidics Cluster UPV/EHU, Analytical Microsystems & Materials for Lab-on-a-Chip (AMMa-LOAC) Group, Analytical Chemistry Department, University of the Basque Country UPV/EHU, Leioa 48940, Spain
- Microfluidics Cluster UPV/EHU, BIOMICs Microfluidics Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz 01006, Spain
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
20
|
Shono M, Honda G, Yanagisawa M, Yoshikawa K, Shioi A. Spontaneous Formation of Uniform Cell-Sized Microgels through Water/Water Phase Separation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302193. [PMID: 37224803 DOI: 10.1002/smll.202302193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/07/2023] [Indexed: 05/26/2023]
Abstract
In this study, a one-step method is discussed for producing uniform cell-sized microgels using glass capillaries filled with a binary polymer blend of polyethylene glycol (PEG) and gelatin. Upon decreasing temperature, phase separation of the PEG/gelatin blends and gelation of gelatin occur, and then the polymer blend forms linearly aligned, uniformly sized gelatin microgels in the glass capillary. When DNA is added to the polymer solution, gelatin microgels entrapping DNA are spontaneously formed, and the DNA prevents the coalescence of the microdroplets even at temperatures above the melting point. This novel method to form uniform cell-sized microgels may be applicable to other biopolymers. This method is expected to contribute to diverse materials science via biopolymer microgels and biophysics and synthetic biology through cellular models containing biopolymer gels.
Collapse
Affiliation(s)
- Mayu Shono
- Department of Chemical Engineering and Materials Science, Doshisha University, 6100321, Kyoto, Japan
| | - Gen Honda
- Komaba Institute for Science, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro, Tokyo, 153-8902, Japan
| | - Miho Yanagisawa
- Komaba Institute for Science, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro, Tokyo, 153-8902, Japan
- Center for Complex Systems Biology, Universal Biology Institute, The University of Tokyo, Komaba 3-8-1, Meguro, Tokyo, 153-8902, Japan
- Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo, Tokyo, 113-0033, Japan
| | - Kenichi Yoshikawa
- Faculty of Life and Medical Sciences, Doshisha University, 6100394, Kyoto, Japan
- Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, 606 8501, Kyoto, Japan
| | - Akihisa Shioi
- Department of Chemical Engineering and Materials Science, Doshisha University, 6100321, Kyoto, Japan
| |
Collapse
|
21
|
Deng Q, Yin K, Wang L, Zhang H, Huang Q, Luo Z, He J, Duan JA. One Droplet toward Efficient Alcohol Detection Using Femtosecond Laser Textured Micro/Nanostructured Surface with Superwettability. SMALL METHODS 2023; 7:e2300290. [PMID: 37140085 DOI: 10.1002/smtd.202300290] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/19/2023] [Indexed: 05/05/2023]
Abstract
Alcohol with different concentrations is commonly used in food, industry, and medicine fields all over the world. However, current methods for detecting alcohol concentration are restricted to large sample consumption, additional senergy consuming, or complex operations. Here, inspired by superwettability of lotus leaves, a superhydrophobic and superorganophilic surface is designed on the polydimethylsiloxane (PDMS) for one droplet efficient alcohol detection, which is prepared via femtosecond laser direct writing technology. Meanwhile, the contact angles of droplets with various alcohol concentrations on the laser-treated PDMS (LTP) surface are different. Based on the above characteristic, alcohol concentration through contact angle measurement without any external energy is directly detected, which is simple and efficient. Furthermore, it is worth noting that the LTP surface remains stable wettability after 1000 water-ethanol cycles and 300 days tests in air, indicating strong surface repeatability and stability. Significantly, the LTP surface has a broad potential application in one droplet detecting alcohol concentration, fake or genuine wine, and alcohol molecules. This work provides a new strategy to fabricate a superwetting surface for efficient one droplet alcohol detection.
Collapse
Affiliation(s)
- Qinwen Deng
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, Changsha, 410083, P. R. China
| | - Kai Yin
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, Changsha, 410083, P. R. China
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Lingxiao Wang
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, Changsha, 410083, P. R. China
| | - Hao Zhang
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, Changsha, 410083, P. R. China
| | - Qiaoqiao Huang
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, Changsha, 410083, P. R. China
| | - Zhi Luo
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Jun He
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, Changsha, 410083, P. R. China
| | - Ji-An Duan
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha, 410083, P. R. China
| |
Collapse
|
22
|
Wang Z, Chen T, Li X, Guo B, Liu P, Zhu Z, Xu RX. Oxygen-releasing biomaterials for regenerative medicine. J Mater Chem B 2023; 11:7300-7320. [PMID: 37427691 DOI: 10.1039/d3tb00670k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Oxygen is critical to the survival, function and fate of mammalian cells. Oxygen tension controls cellular behavior through metabolic programming, which in turn controls tissue regeneration. A variety of biomaterials with oxygen-releasing capabilities have been developed to provide oxygen supply to ensure cell survival and differentiation for therapeutic efficacy, and to prevent hypoxia-induced tissue damage and cell death. However, controlling the oxygen release with spatial and temporal accuracy is still technically challenging. In this review, we provide a comprehensive overview of organic and inorganic materials available as oxygen sources, including hemoglobin-based oxygen carriers (HBOCs), perfluorocarbons (PFCs), photosynthetic organisms, solid and liquid peroxides, and some of the latest materials such as metal-organic frameworks (MOFs). Additionally, we introduce the corresponding carrier materials and the oxygen production methods and present state-of-the-art applications and breakthroughs of oxygen-releasing materials. Furthermore, we discuss the current challenges and the future perspectives in the field. After reviewing the recent progress and the future perspectives of oxygen-releasing materials, we predict that smart material systems that combine precise detection of oxygenation and adaptive control of oxygen delivery will be the future trend for oxygen-releasing materials in regenerative medicine.
Collapse
Affiliation(s)
- Zhaojun Wang
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215000, China.
| | - Tianao Chen
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, China.
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xin Li
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215000, China.
| | - Buyun Guo
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, China.
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Peng Liu
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215000, China.
| | - Zhiqiang Zhu
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, China.
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ronald X Xu
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215000, China.
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, China.
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
23
|
Yu Y, Jin B, Chen J, Lou C, Guo J, Yang C, Zhao Y. Nerve-on-a-Chip Derived Biomimicking Microfibers for Peripheral Nerve Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2207536. [PMID: 37119478 PMCID: PMC10369236 DOI: 10.1002/advs.202207536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/28/2023] [Indexed: 06/19/2023]
Abstract
Fibrous scaffolds have shown their advantages in tissue engineering, such as peripheral nerve regeneration, while most of the existing fiber-shaped scaffolds are with simple structures, and the in vitro performance for nerve regeneration lacks systematic analysis. Here, novel nerve-on-a-chip derived biomimicking microfibers for peripheral nerve regeneration are presented. The microfibers with controllable core-shell structures and functionalities are generated through capillary microfluidic devices. By integrating these microfibers into a multitrack-architectured chip, and coculturing them with nerve cells as well as gradient bioactive elements, the nerve-on-a-chip with the capabilities of systematically assessing the performances of nerve fiber formation in the hollow microfibers at in vitro level is constructed. Based on a rat sciatic nerve injury model, the rapid promotion ability is demonstrated of optimized microfibers in nerve regeneration and function recovery in vivo, which implies the credibility of the nerve-on-a-chip on biomimicking microfibers evaluation for peripheral nerve regeneration. Thus, it is convinced that the organ-on-a-chip will undoubtedly open up a new chapter in evaluating biological scaffolds for in vivo tissue engineering.
Collapse
Affiliation(s)
- Yunru Yu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, P. R. China
| | - Binghui Jin
- Oujiang Laboratory, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Jinghao Chen
- Oujiang Laboratory, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Chenghao Lou
- Oujiang Laboratory, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Jiahui Guo
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Chaoyu Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, P. R. China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, P. R. China
| |
Collapse
|
24
|
Huang Y, Li X, Hou J, Luo Z, Yang G, Zhou S. Conductive Nanofibers-Enhanced Microfluidic Device for the Efficient Capture and Electrical Stimulation-Triggered Rapid Release of Circulating Tumor Cells. BIOSENSORS 2023; 13:bios13050497. [PMID: 37232858 DOI: 10.3390/bios13050497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/18/2023] [Accepted: 04/22/2023] [Indexed: 05/27/2023]
Abstract
The effective detection and release of circulating tumor cells (CTCs) are of great significance for cancer diagnosis and monitoring. The microfluidic technique has proved to be a promising method for CTCs isolation and subsequent analysis. However, complex micro-geometries or nanostructures were often constructed and functionalized to improve the capture efficiency, which limited the scale-up for high-throughput production and larger-scale clinical applications. Thus, we designed a simple conductive nanofiber chip (CNF-Chip)-embedded microfluidic device with a herringbone microchannel to achieve the efficient and specific capture and electrical stimulation-triggered rapid release of CTCs. Here, the most used epithelial cell adhesion molecule (EpCAM) was selected as the representative biomarker, and the EpCAM-positive cancer cells were mainly studied. Under the effects of the nanointerface formed by the nanofibers with a rough surface and the herringbone-based high-throughput microfluidic mixing, the local topographic interaction between target cells and nanofibrous substrate in the microfluidic was synergistically enhanced, and the capture efficiency for CTCs was further improved (more than 85%). After capture, the sensitive and rapid release of CTCs (release efficiency above 97%) could be conveniently achieved through the cleavage of the gold-sulfur bond by applying a low voltage (-1.2 V). The device was successfully used for the effective isolation of CTCs in clinical blood samples from cancer patients, indicating the great potential of this CNF-Chip-embedded microfluidic device in clinical applications.
Collapse
Affiliation(s)
- Yisha Huang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xilin Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jianwen Hou
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Zhouying Luo
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Guang Yang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Shaobing Zhou
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
25
|
Zhou S, Jiang L, Dong Z. Overflow Control for Sustainable Development by Superwetting Surface with Biomimetic Structure. Chem Rev 2023; 123:2276-2310. [PMID: 35522923 DOI: 10.1021/acs.chemrev.1c00976] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Liquid flowing around a solid edge, i.e., overflow, is a commonly observed flow behavior. Recent research into surface wetting properties and microstructure-controlled overflow behavior has attracted much attention. Achieving controllable macroscale liquid dynamics by manipulating the micro-nanoscale liquid overflow has stimulated diverse scientific interest and fostered widespread use in practical applications. In this review, we outline the evolution of overflow and present a critical survey of the mechanism of surface wetting properties and microstructure-controlled liquid overflow in multilength scales ranging from centimeter to micro and even nanoscale. We summarize the latest progress in utilizing the mechanisms to manipulate liquid overflow and achieve macroscale liquid dynamics and in emerging applications to manipulate overflow for sustainable development in various fields, along with challenges and perspectives.
Collapse
Affiliation(s)
- Shan Zhou
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhichao Dong
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
26
|
Su YY, Pan DW, Deng CF, Yang SH, Faraj Y, Xie R, Ju XJ, Liu Z, Wang W, Chu LY. Facile and Scalable Rotation-Based Microfluidics for Controllable Production of Emulsions, Microparticles, and Microfibers. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Affiliation(s)
- Yao-Yao Su
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Da-Wei Pan
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Chuan-Fu Deng
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Shi-Hao Yang
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yousef Faraj
- Department of Chemical Engineering, University of Chester, Chester CH1 4BJ, United Kingdom
| | - Rui Xie
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xiao-Jie Ju
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Zhuang Liu
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Wei Wang
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Liang-Yin Chu
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|
27
|
Nanostructure-free crescent-shaped microparticles as full-color reflective pigments. Nat Commun 2023; 14:793. [PMID: 36774360 PMCID: PMC9922275 DOI: 10.1038/s41467-023-36482-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 01/31/2023] [Indexed: 02/13/2023] Open
Abstract
Structural colors provide a promising visualization with high color saturation, iridescent characteristics, and fade resistance. However, pragmatic uses are frequently impeded by complex manufacturing processes for sophisticated nanostructures. Here, we report a facile emulsion-templating strategy to produce crescent-shaped microparticles as structural color pigments. The micro-crescents exhibit brilliant colors under directional light originating from total internal reflections and optical interferences in the absence of periodic nanostructures while being transparent under ambient light. The colors are finely tunable by adjusting the size of the micro-crescents, which can be further mixed to enrich the variety. Importantly, the pre-defined convex surface secures high stability of colors and enables structural coloration on target surfaces through direct deposition as inks. We anticipate this class of nanostructure-free structural colorants is pragmatic as invisible inks in particular for anti-counterfeiting patches and color cosmetics with distinctive impressions due to low-cost, scalable manufacturing, unique optical properties, and versatility.
Collapse
|
28
|
Wu J, Issadore DA, Lee D. Patterning Wettability on Solvent-Resistant Elastomers with High Spatial Resolution for Replica Mold Fabrication of Droplet Microfluidics. ACS APPLIED MATERIALS & INTERFACES 2023; 15:10212-10218. [PMID: 36749848 DOI: 10.1021/acsami.2c19937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Controlling the surface wetting properties of channels is crucial to the robust and reliable performance of microfluidic devices. Spatially patterned hydrophobic/hydrophilic microchannels have found utility across various applications, notably in the generation of higher-order emulsions. Unfortunately, the patterning of surface wettability currently requires multistep processes with limited spatial resolution, making it impractical for many applications. In this work, we take inspiration from soft lithography and have developed a new replica mold fabrication technique wherein both the channel geometry and surface wettability are transferred from the mold to the replica. In this approach, the mold is a silicon wafer with lithographically defined features etched into its surface to define the channel geometry and lithographically defined patterns of hydrophobic silanes to define surface wetting properties. The replica is a co-polymer network of PFPE-PEG, for which PFPE can be locally enriched by the mold's patterned silanes to define the spatially patterned wetting properties. We demonstrated the utility of this approach by fabricating a PFPE-PEG-based microfluidic chip, with hydrophobic/hydrophilic patterned microchannels, to generate double emulsions.
Collapse
Affiliation(s)
- Jingyu Wu
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - David A Issadore
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Daeyeon Lee
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
29
|
Mahanta U, Deshpande AS, Khandelwal M. TiO
2
Decorated SiO
2
Nanoparticles as Efficient Antibacterial Materials: Enhanced Activity under Low Power UV Light. ChemistrySelect 2023. [DOI: 10.1002/slct.202203724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Urbashi Mahanta
- Department of Materials Science and Metallurgical Engineering Indian Institute of Technology Hyderabad, Kandi, Sangareddy- 502285 Telangana India
| | - Atul S. Deshpande
- Department of Materials Science and Metallurgical Engineering Indian Institute of Technology Hyderabad, Kandi, Sangareddy- 502285 Telangana India
| | - Mudrika Khandelwal
- Department of Materials Science and Metallurgical Engineering Indian Institute of Technology Hyderabad, Kandi, Sangareddy- 502285 Telangana India
| |
Collapse
|
30
|
Wang L, Yin K, Deng Q, Huang Q, He J, Duan J. Wetting Ridge-Guided Directional Water Self-Transport. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204891. [PMID: 36253156 PMCID: PMC9731720 DOI: 10.1002/advs.202204891] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/26/2022] [Indexed: 05/12/2023]
Abstract
Directional water self-transport plays a crucial role in diverse applications such as biosensing and water harvesting. Despite extensive progress, current strategies for directional water self-transport are restricted to a short self-driving distance, single function, and complicated fabrication methods. Here, a lubricant-infused heterogeneous superwettability surface (LIHSS) for directional water self-transport is proposed on polyimide (PI) film through femtosecond laser direct writing and lubricant infusion. By tuning the parameters of the femtosecond laser, the wettability of PI film can be transformed into superhydrophobic or superhydrophilic. After trapping water droplets on the superhydrophilic surface and depositing excess lubricant, the asymmetrical wetting ridge drives water droplets by an attractive capillary force on the LIHSS. Notably, the maximum droplet self-driving distance can approach ≈3 mm, which is nearly twice as long as the previously reported strategies for direction water self-transport. Significantly, it is demonstrated that this strategy makes it possible to achieve water self-transport, anti-gravity pumping, and chemical microreaction on a tilted LIHSS. This work provides an efficient method to fabricate a promising platform for realizing directional water self-transport.
Collapse
Affiliation(s)
- Lingxiao Wang
- Hunan Key Laboratory of Nanophotonics and DevicesSchool of Physics and ElectronicsCentral South UniversityChangsha410083P. R. China
| | - Kai Yin
- Hunan Key Laboratory of Nanophotonics and DevicesSchool of Physics and ElectronicsCentral South UniversityChangsha410083P. R. China
- The State Key Laboratory of High Performance and Complex ManufacturingCollege of Mechanical and Electrical EngineeringCentral South UniversityChangsha410083P. R. China
| | - Qinwen Deng
- Hunan Key Laboratory of Nanophotonics and DevicesSchool of Physics and ElectronicsCentral South UniversityChangsha410083P. R. China
| | - Qiaoqiao Huang
- Hunan Key Laboratory of Nanophotonics and DevicesSchool of Physics and ElectronicsCentral South UniversityChangsha410083P. R. China
| | - Jun He
- Hunan Key Laboratory of Nanophotonics and DevicesSchool of Physics and ElectronicsCentral South UniversityChangsha410083P. R. China
| | - Ji‐An Duan
- The State Key Laboratory of High Performance and Complex ManufacturingCollege of Mechanical and Electrical EngineeringCentral South UniversityChangsha410083P. R. China
| |
Collapse
|
31
|
Sinha Mahapatra P, Ganguly R, Ghosh A, Chatterjee S, Lowrey S, Sommers AD, Megaridis CM. Patterning Wettability for Open-Surface Fluidic Manipulation: Fundamentals and Applications. Chem Rev 2022; 122:16752-16801. [PMID: 36195098 DOI: 10.1021/acs.chemrev.2c00045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Effective manipulation of liquids on open surfaces without external energy input is indispensable for the advancement of point-of-care diagnostic devices. Open-surface microfluidics has the potential to benefit health care, especially in the developing world. This review highlights the prospects for harnessing capillary forces on surface-microfluidic platforms, chiefly by inducing smooth gradients or sharp steps of wettability on substrates, to elicit passive liquid transport and higher-order fluidic manipulations without off-the-chip energy sources. A broad spectrum of the recent progress in the emerging field of passive surface microfluidics is highlighted, and its promise for developing facile, low-cost, easy-to-operate microfluidic devices is discussed in light of recent applications, not only in the domain of biomedical microfluidics but also in the general areas of energy and water conservation.
Collapse
Affiliation(s)
- Pallab Sinha Mahapatra
- Micro Nano Bio-Fluidics group, Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai600036, India
| | - Ranjan Ganguly
- Department of Power Engineering, Jadavpur University, Kolkata700098, India
| | - Aritra Ghosh
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, Illinois60607, United States
| | - Souvick Chatterjee
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, Illinois60607, United States
| | - Sam Lowrey
- Department of Physics, University of Otago, Dunedin9016, New Zealand
| | - Andrew D Sommers
- Department of Mechanical and Manufacturing Engineering, Miami University, Oxford, Ohio45056, United States
| | - Constantine M Megaridis
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, Illinois60607, United States
| |
Collapse
|
32
|
Jang Y, Kim H, Jung J, Oh J. Controlled Thin Polydimethylsiloxane Membrane with Small and Large Micropores for Enhanced Attachment and Detachment of the Cell Sheet. MEMBRANES 2022; 12:688. [PMID: 35877891 PMCID: PMC9315480 DOI: 10.3390/membranes12070688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/30/2022] [Accepted: 06/30/2022] [Indexed: 02/01/2023]
Abstract
Polydimethylsiloxane (PDMS) membranes can allow the precise control of well-defined micropore generation. A PDMS solution was mixed with a Rushton impeller to generate a large number of microbubbles. The mixed solution was spin-coated on silicon wafer to control the membrane thickness. The microbubbles caused the generation of a large number of small and large micropores in the PDMS membranes with decreased membrane thickness. The morphology of the thinner porous PDMS membrane induced higher values of roughness, Young's modulus, contact angle, and air permeability. At day 7, the viability of cells on the porous PDMS membranes fabricated at the spin-coating speed of 5000 rpm was the highest (more than 98%) due to their internal networking structure and surface properties. These characteristics closely correlated with the increased formation of actin stress fibers and migration of keratinocyte cells, resulting in enhanced physical connection of actin stress fibers of neighboring cells throughout the discontinuous adherent junctions. The intact detachment of a cell sheet attached to a porous PDMS membrane was demonstrated. Therefore, PDMS has a great potential for enhancing the formation of cell sheets in regenerative medicine.
Collapse
Affiliation(s)
- Yeongseok Jang
- Department of Mechanical Design Engineering, College of Engineering, Jeonbuk National University, Jeonju 54896, Korea;
| | - Hyojae Kim
- Center for Social Innovation Policy, Office of S&T Policy Planning, Korea Institute of S&T Evaluation and Planning, Eumseong 27740, Korea;
| | - Jinmu Jung
- Department of Nano-bio Mechanical System Engineering, College of Engineering, Jeonbuk National University, Jeonju 54896, Korea
| | - Jonghyun Oh
- Department of Nano-bio Mechanical System Engineering, College of Engineering, Jeonbuk National University, Jeonju 54896, Korea
| |
Collapse
|
33
|
Zhou C, Zhu P, Tian Y, Shi R, Wang L. Progress in all-aqueous droplets generation with microfluidics: Mechanisms of formation and stability improvements. BIOPHYSICS REVIEWS 2022; 3:021301. [PMID: 38505416 PMCID: PMC10914135 DOI: 10.1063/5.0054201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 01/27/2022] [Indexed: 03/21/2024]
Abstract
All-aqueous systems have attracted intensive attention as a promising platform for applications in cell separation, protein partitioning, and DNA extraction, due to their selective separation capability, rapid mass transfer, and good biocompatibility. Reliable generation of all-aqueous droplets with accurate control over their size and size distribution is vital to meet the increasingly growing demands in emulsion-based applications. However, the ultra-low interfacial tension and large effective interfacial thickness of the water-water interface pose challenges for the generation and stabilization of uniform all-aqueous droplets, respectively. Microfluidics technology has emerged as a versatile platform for the precision generation of all-aqueous droplets with improved stability. This review aims to systematize the controllable generation of all-aqueous droplets and summarize various strategies to improve their stability with microfluidics. We first provide a comprehensive review on the recent progress of all-aqueous droplets generation with microfluidics by detailing the properties of all-aqueous systems, mechanisms of droplet formation, active and passive methods for droplet generation, and the property of droplets. We then review the various strategies used to improve the stability of all-aqueous droplets and discuss the fabrication of biomaterials using all-aqueous droplets as liquid templates. We envision that this review will benefit the future development of all-aqueous droplet generation and its applications in developing biomaterials, which will be useful for researchers working in the field of all-aqueous systems and those who are new and interested in the field.
Collapse
Affiliation(s)
| | - Pingan Zhu
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | | | | | | |
Collapse
|
34
|
Liu Y, Chen X, Gao Y, Yu DG, Liu P. Elaborate design of shell component for manipulating the sustained release behavior from core–shell nanofibres. J Nanobiotechnology 2022; 20:244. [PMID: 35643572 PMCID: PMC9148457 DOI: 10.1186/s12951-022-01463-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/18/2022] [Indexed: 12/15/2022] Open
Abstract
Background The diversified combination of nanostructure and material has received considerable attention from researchers to exploit advanced functional materials. In drug delivery systems, the hydrophilicity and sustained–release drug properties are in opposition. Thus, difficulties remain in the simultaneous improve sustained–release drug properties and increase the hydrophilicity of materials. Methods In this work, we proposed a modified triaxial electrospinning strategy to fabricate functional core–shell fibres, which could elaborate design of shell component for manipulating the sustained-release drug. Cellulose acetate (CA) was designed as the main polymeric matrix, whereas polyethylene glycol (PEG) was added as a hydrophilic material in the middle layer. Cur, as a model drug, was stored in the inner layer. Results Scanning electron microscopy (SEM) results and transmission electron microscopy (TEM) demonstrated that the cylindrical F2–F4 fibres had a clear core–shell structure. The model drug Cur in fibres was verified in an amorphous form during the X-ray diffraction (XRD) patterns, and Fourier transformed infrared spectroscopy (FTIR) results indicated good compatibility with the CA matrix. The water contact angle test showed that functional F2–F4 fibres had a high hydrophilic property in 120 s and the control sample F1 needed over 0.5 h to obtain hydrophilic property. In the initial stage of moisture intrusion into fibres, the quickly dissolved PEG component guided the water molecules and rapidly eroded the internal structure of functional fibres. The good hydrophilicity of F2–F4 fibres brought relatively excellent swelling rate around 4600%. Blank outer layer of functional F2 fibres with 1% PEG created an exciting opportunity for providing a 96 h sustained-release drug profile, while F3 and F4 fibres with over 3% PEG provided a 12 h modified drug release profile to eliminate tailing–off effect. Conclusion Here, the functional F2–F4 fibres had been successfully produced by using the advanced modified triaxial electrospinning nanotechnology with different polymer matrices. The simple strategy in this work has remarkable potential to manipulate hydrophilicity and sustained release of drug carriers, meantime it can also enrich the preparation approaches of functional nanomaterials. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01463-0.
Collapse
|