1
|
Mao CP, Chen XY, Han J, Jiang T, Yan XX, Hao DL, Jin JH, Yu B, Zhou JL, Wang K, Zhang LT. In vivo imaging of alkaline phosphatase in lipid metabolic diseases with a photoacoustic probe. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 327:125351. [PMID: 39481164 DOI: 10.1016/j.saa.2024.125351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/14/2024] [Accepted: 10/25/2024] [Indexed: 11/02/2024]
Abstract
Lipid metabolic diseases have become an important challenge to global public health. Along with lifestyle changes, the incidence of obesity, diabetes and other metabolic syndromes is on the rise, and the number of patients with fatty liver disease is also increasing. Therefore, it is particularly important to develop effective lipid imaging strategies to monitor and manage fatty liver disease. Herein, based on the essential role of alkaline phosphatase (ALP) in both AS and OB, in vivo imaging of ALP was achieved in two lipid metabolic diseases models with a photoacoustic (PA) probe phosphorylated hemicyanine (P-Hcy). After being triggered by ALP, P-Hcy responded in different modalities including absorbance, fluorescence and, most significantly, PA-reporting. Notably, the PA signal showed the reliable linear correlation to the ALP level within the range of 0-800 U/L. The probe P-Hcy exhibited the advantages including high sensitivity, high selectivity, and steadiness in required biological conditions. The intracellular imaging results ensured that P-Hcy could visualize the ALP level in the foam cells induced from mouse mononuclear macrophages. In the healthy and lipid metabolic diseases models, P-Hcy was able to distinguish well between a lipid metabolic disease model and a healthy mouse model by photoacoustic imaging. By combining the ALP detection with P-Hcy in PA/fluorescence modality and traditional techniques such as blood biochemical testing and immunohistochemically staining, more potential strategy to accurately diagnose lipid metabolic diseases in the pre-clinical trials might be developed in future.
Collapse
Affiliation(s)
- Chun-Pu Mao
- Department of Endocrinology, Affiliated Hospital of Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - Xu-Yang Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Jie Han
- Department of Oncology, Wujin Hospital Affiliated With Jiangsu University, Changzhou, 213017, China
| | - Ting Jiang
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Changzhou, 213017, China
| | - Xiao-Xin Yan
- Department of Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Changzhou Wujin People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, 213017, China; Department of Oncology, Wujin Hospital Affiliated With Jiangsu University, Changzhou, 213017, China
| | - Dong-Lin Hao
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Changzhou, 213017, China
| | - Jian-Hua Jin
- Department of Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Changzhou Wujin People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, 213017, China; Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Changzhou, 213017, China; Department of Oncology, Wujin Hospital Affiliated With Jiangsu University, Changzhou, 213017, China
| | - Biao Yu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China.
| | - Jie-Li Zhou
- UM-SJTU Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Kai Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| | - Li-Ting Zhang
- Department of Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Changzhou Wujin People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, 213017, China; Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Changzhou, 213017, China; Department of Oncology, Wujin Hospital Affiliated With Jiangsu University, Changzhou, 213017, China.
| |
Collapse
|
2
|
Gong Y, Zhang H, Lu M, Sun J, Jia Y, Yang Y, Liu X, Yin B, Zhou Y, Ling Y. Tuning the Fe-Gd nanoparticles co-functionalized mesoporous carbon from sphere to nanobowl for advanced bioapplications. J Colloid Interface Sci 2025; 679:412-421. [PMID: 39461130 DOI: 10.1016/j.jcis.2024.10.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/24/2024] [Accepted: 10/20/2024] [Indexed: 10/29/2024]
Abstract
Studies on the function-integrated nanocomposites with well-tuned morphologies have received considerable interest. Here, we reported the preparation of mesoporous carbon nanobowl integrated with stoichiometric γ-Fe2O3 and GdPO4 nanoparticles (Fe-Gd/MCN-B) for morphological advantage exploration. Followed by (i) emulsion-induced interface anisotropic assembly of polydopamine, (ii) solvent evaporation-induced sorption of Wells-Dawson-like heterometallic cluster of {Fe6Gd6P6} and (iii) temperature-programmed carbonization, Fe-Gd/MCN-B with the size around 200 nm was isolated. Our in-vitro studies revealed that Fe-Gd/MCN-B showed a 63.0 % amplified photoacoustic (PA) signal intensity as compared with its nanospherical analogue of Fe-Gd/MCN-S owing to the enhanced light harvesting and photothermal conversion on the interface of its nanobowl morphology. Furthermore, the combined magnetic resonance (MR) imagining, drug delivery and photothermal treatment efficacy in Fe-Gd/MCN-B were also validated in-vitro. These results demonstrated that the delicate design of the morphology of function-integrated nanocomposites is an available way for enhanced imaging performance.
Collapse
Affiliation(s)
- Yimin Gong
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Hui Zhang
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Mingzhu Lu
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Jiayu Sun
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E14NS, United Kingdom
| | - Yu Jia
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Yannan Yang
- Institute of Optoelectronics, Fudan University, Shanghai 200433, China; South Australian immunoGENomics Cancer Institute, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Xiaofeng Liu
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Bo Yin
- Department of Radiology, Huashan Hospital North, Fudan University, Shanghai, 201907, China; State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Yaming Zhou
- Department of Chemistry, Fudan University, Shanghai 200433, China.
| | - Yun Ling
- Department of Chemistry, Fudan University, Shanghai 200433, China.
| |
Collapse
|
3
|
Li H, Cheng J, Ge H, Sun J, Chen Z, Ren J, Du Y, Xu D, Yuan Z. Dopamine-supported HPLC post-column derivatization to fluorescence: Simultaneous and sensitive detection of eight tea polyphenols. Food Chem 2025; 464:141582. [PMID: 39406143 DOI: 10.1016/j.foodchem.2024.141582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/03/2024] [Accepted: 10/06/2024] [Indexed: 11/21/2024]
Abstract
The effective differentiation and detection of multiple tea polyphenols are often challenging due to their subtle structural similarities. Although post-column derivatization HPLC strategies are commonly employed to distinguish multiple targets, the short physical distance between chromatographic column and detector limits reaction time, thereby reducing the derivatization efficiency. Dopamine (DA) reacts rapidly with resorcinol to form fluorescent azamonardine products, making fast fluorometric derivatization of tea polyphenols containing resorcinol motifs possible. In this study, a DA-driven rapid and post-column fluorescence derivatization method has been applied to sensitively detect eight tea polyphenols. This method is based on fluorescence derivatization and possesses low background interference, high sensitivity, and excellent reproducibility. Moreover, the practical application of this proposed fluorometric derivatization platform was further validated by simultaneous identification of multiple tea polyphenols in different tea samples. This work has great potential to become an alternative to the National Standard method for tea polyphenols determination.
Collapse
Affiliation(s)
- Hongchen Li
- National Engineering Laboratory for Rice and By-products Further Processing, College of Food Science and Engineering, Central South University of Forestry & Technology, Changsha 410004, China
| | - Jing Cheng
- Technology Center of Changsha Customs, Hunan Academy of Inspection and Quarantine, Changsha 410004, China
| | - Hanbing Ge
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jingbo Sun
- National Engineering Laboratory for Rice and By-products Further Processing, College of Food Science and Engineering, Central South University of Forestry & Technology, Changsha 410004, China
| | - Zihan Chen
- National Engineering Laboratory for Rice and By-products Further Processing, College of Food Science and Engineering, Central South University of Forestry & Technology, Changsha 410004, China
| | - Jiali Ren
- National Engineering Laboratory for Rice and By-products Further Processing, College of Food Science and Engineering, Central South University of Forestry & Technology, Changsha 410004, China
| | - Yi Du
- Analysis Center, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Dong Xu
- National Engineering Laboratory for Rice and By-products Further Processing, College of Food Science and Engineering, Central South University of Forestry & Technology, Changsha 410004, China.
| | - Zhiqin Yuan
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
4
|
Xu L, Liu H, Kong Y, Li L, Li J, Li K, Liang S, Chen B. Illuminating cisplatin-induced ferroptosis in non-small-cell lung cancer with biothiol-activatable fluorescent/photoacoustic bimodal probes. J Mater Chem B 2024; 13:239-248. [PMID: 39530521 DOI: 10.1039/d4tb01656d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Ferroptosis modulation represents a pioneering therapeutic approach for non-small-cell lung cancer (NSCLC), where precise monitoring and regulation of ferroptosis levels are pivotal for achieving optimal therapeutic outcomes. Cisplatin (Cis), a widely used chemotherapy drug for NSCLC, demonstrates remarkable therapeutic efficacy, potentially through its ability to induce ferroptosis and synergize with other treatments. However, in vivo studies of ferroptosis face challenges due to the scarcity of validated biomarkers and the absence of reliable tools for real-time visualization. Biothiols emerge as suitable biomarkers for ferroptosis, as their concentrations decrease significantly during this process. To address these challenges, fluorescence/photoacoustic (PA) bimodal imaging offers a promising solution by providing more accurate in vivo information on ferroptosis. Therefore, the development of methods to detect biothiols using fluorescence/PA bimodal imaging is highly desirable for visualizing ferroptosis in NSCLC. In this study, we designed and constructed two activatable near-infrared (NIR) fluorescent/PA bimodal imaging probes specifically for visualizing ferroptosis by monitoring the fluctuations in biothiol levels. These probes exhibited excellent bimodal response performance in solution, cells, and tumors. Furthermore, they were successfully applied for real-time monitoring of biothiol changes during the ferroptosis process in NSCLC cells and tumors. Importantly, our findings revealed that the combined use of erastin and cisplatin exacerbates the consumption of biothiols, suggesting an enhancement of ferroptosis in NSCLC. This work not only provides powerful tools for monitoring in vivo ferroptosis but also facilitates the study of ferroptosis mechanisms and holds the potential to further advance the treatment of NSCLC.
Collapse
Affiliation(s)
- Li Xu
- The Second Department of Thoracic Oncology, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, P. R. China.
| | - Hongwen Liu
- Key Laboratory of Light Energy Conversion Materials of Hunan Province College, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Yi Kong
- The Second Department of Thoracic Oncology, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, P. R. China.
| | - Lingyun Li
- Key Laboratory of Light Energy Conversion Materials of Hunan Province College, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Jia Li
- Key Laboratory of Light Energy Conversion Materials of Hunan Province College, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Kang Li
- The Second Department of Thoracic Oncology, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, P. R. China.
| | - Shuzhi Liang
- The Second Department of Thoracic Oncology, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, P. R. China.
| | - Bolin Chen
- The Second Department of Thoracic Oncology, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, P. R. China.
| |
Collapse
|
5
|
Zhu Y, Hao Q, Zhu H, Zhao R, Feng L, He S, Wang W, He G, Liu B, Yang P. Thermoelectric Nanoheterojunction-Mediated Multiple Energy Conversion for Enhanced Cancer Therapy. ACS NANO 2024; 18:34257-34271. [PMID: 39630424 DOI: 10.1021/acsnano.4c12261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Electron-hole recombination and exogenous local hypoxia both impede the effectiveness of thermoelectric tumor catalytic therapy. Here, a thermoelectric heterojunction (Pt-TiO2-x/Ti3C2Tx-PEG) was developed to enhance charge carrier separation and alleviate tumor hypoxia. By incorporating titanium oxide with oxygen vacancies and platinum single atoms onto Ti3C2Tx MXene, we not only improve the charge separation efficiency but also prevent the recombination of positive and negative charges generated by the thermoelectric effect, leading to an increased production of reactive oxygen species (ROS). Furthermore, the Pt SAs exhibited excellent catalase-mimicking (CAT-mimicking) activity, catalyzing hydrogen peroxide to generate oxygen and alleviating the hypoxic tumor microenvironment. Titanium oxide with oxygen vacancies also serves as a sonosensitizer for sonodynamic therapy (SDT), enhancing ROS generation in collaboration with thermoelectric catalytic therapy. Moreover, the photothermal conversion efficiency of Pt-TiO2-x/Ti3C2Tx-PEG is augmented by Pt SAs with a surface plasmon resonance effect, further boosting CAT-mimicking activity and thermoelectric catalytic therapy efficacy. This tumor-specific thermoelectric heterojunction integrates thermoelectric therapy, SDT, and photothermal therapy, demonstrating excellent tumor suppression efficacy both in vitro and in vivo. Therefore, this study offers highly valuable and promising insights into utilizing photothermoelectric/ultrasound-mediated methods for cancer treatment.
Collapse
Affiliation(s)
- Yanlin Zhu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Qingyu Hao
- Infectious Disease Hospital of Heilongjiang Province, Harbin 150500, P. R. China
| | - Haixia Zhu
- Cancer Institute, Affiliated Tumor Hospital of Nantong University, Nantong 226631, P. R. China
| | - Ruoxi Zhao
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Lili Feng
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Song He
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Wenzhuo Wang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Guanting He
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Bin Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| |
Collapse
|
6
|
Li X, Tang WJ, Wang W, Yue S, Yao H, Zhu JJ. Acid-responsive liposomal nanodrug with promoted tumor penetration for photoacoustic imaging-guided sonodynamic therapy. Chem Commun (Camb) 2024; 60:15023-15026. [PMID: 39605026 DOI: 10.1039/d4cc05043f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Herein, an acid-responsive liposomal nanodrug was developed for photoacoustic (PA) imaging-guided oxygen (O2)-independent sonodynamic therapy (SDT). This liposomal nanodrug offers several advantages: (i) it facilitates O2-independent alkyl radical generation upon ultrasound irradiation, (ii) it exhibits acid-responsive charge reversion that enhances tumor penetration, and (iii) it enables activated PA imaging for therapeutic feedback.
Collapse
Affiliation(s)
- Xiangli Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Wen-Jing Tang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Wei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Shuzhen Yue
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Huiqin Yao
- Department of Medical Chemistry, College of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China.
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
7
|
Li B, Ayala‐Orozco C, Si T, Zhou L, Wang Z, Martí AA, Tour JM. Divergent Syntheses of Near-Infrared Light-Activated Molecular Jackhammers for Cancer Cell Eradication. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405965. [PMID: 39400530 PMCID: PMC11615805 DOI: 10.1002/advs.202405965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/28/2024] [Indexed: 10/15/2024]
Abstract
Aminocyanines incorporating Cy7 and Cy7.5 moieties function as molecular jackhammers (MJH) through vibronic-driven action (VDA). This mechanism, which couples molecular vibrational and electronic modes, results in picosecond-scale concerted stretching of the entire molecule. When cell-associated and activated by near-infrared light, MJH mechanically disrupts cell membranes, causing rapid necrotic cell death. Unlike photodynamic and photothermal therapies, the ultrafast vibrational action of MJH is unhindered by high concentrations of reactive oxygen species scavengers and induces only a minimal temperature increase. Here, the efficient synthesis of a library of MJH is described using a practical approach to access a key intermediate and facilitating the preparation of various Cy7 and Cy7.5 MJH with diverse side chains in moderate to high yields. Photophysical characterization reveals that structural modifications significantly affect molar extinction coefficients and quantum yields while maintaining desirable absorption and emission wavelengths. The most promising compounds, featuring dimethylaminoethyl and dimethylcarbamoyl substitutions, demonstrate up to sevenfold improvement in phototherapeutic index compared to Cy7.5 amine across multiple cancer cell lines. This synthetic strategy provides a valuable platform for developing potent, light-activated therapeutic agents for cancer treatment, with potentially broad applicability across various cancer types.
Collapse
Affiliation(s)
- Bowen Li
- Department of ChemistryRice UniversityHoustonTX77005USA
| | | | - Tengda Si
- Department of ChemistryRice UniversityHoustonTX77005USA
| | - Lixin Zhou
- Department of ChemistryRice UniversityHoustonTX77005USA
| | - Zicheng Wang
- Department of ChemistryRice UniversityHoustonTX77005USA
| | - Angel A. Martí
- Department of ChemistryRice UniversityHoustonTX77005USA
- Department of BioengineeringRice UniversityHoustonTX77005USA
- Department of Materials Science and NanoengineeringRice UniversityHoustonTX77005USA
| | - James M. Tour
- Department of ChemistryRice UniversityHoustonTX77005USA
- Department of Materials Science and NanoengineeringRice UniversityHoustonTX77005USA
- Smalley‐Curl InstituteRice UniversityHoustonTX77005USA
- NanoCarbon Center and the Rice Advanced Materials InstituteRice UniversityHoustonTX77005USA
| |
Collapse
|
8
|
Zhang F, Cai H, Wang L, Shao J. Synthesis of heavy-atom-free thienoisoindigo dye as near-infrared photosensitizer for type I photodynamic therapy and photoacoustic imaging. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 261:113052. [PMID: 39515246 DOI: 10.1016/j.jphotobiol.2024.113052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/19/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Thienoisoindigo (TIIG) has been extensively employed as promising building block of near-infrared (NIR) dyes and organic semiconductor materials. Herein, heavy-atom-free TIIG-based NIR dye TIIGTPA is reported as photosensitizer for combinational photodynamic and photothermal therapy and photoacoustic imaging (PAI). By introducing two methoxy-substituted triphenylamines as the rotors and electron donors at the periphery sites of the electron-deficient TIIG core, dye TIIGTPA featuring Donor-Acceptor-Donor (D-AD) structure is constructed with intensive NIR absorption. Through co-assembly with amphipathic F-127, water-soluble TIIGTPA NPs were prepared with good superoxide anion radical (O2-•) production and high photothermal conversion efficiency (PCE) of 59.0 % under 730 nm photoirradiation. Additionally, the excellent photothermal effect enabled a superior photoacoustic response for tumor blood vessel visualization through PAI. All results indicated the favorable potential of TIIGTPA NPs for PAI-mediated combinational phototherapy.
Collapse
Affiliation(s)
- Feng Zhang
- Medical School, Taizhou Polytechnic College, Taizhou 225300, Jiangsu, China
| | - Hao Cai
- Key Laboratory of Flexible Electronics (KLOFE) & School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211816, China
| | - Leichen Wang
- Key Laboratory of Flexible Electronics (KLOFE) & School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211816, China
| | - Jinjun Shao
- Key Laboratory of Flexible Electronics (KLOFE) & School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
9
|
Liu H, Zhu M, Yang H, Chai L, Han J, Ning L, Zhan Z. Monitoring Endoplasmic Reticulum Peroxynitrite Fluctuations in Primary Tendon-Derived Stem Cells and Insights into Tendinopathy. ACS Sens 2024. [PMID: 39540869 DOI: 10.1021/acssensors.4c02452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Tendinopathy is one of the most prevalent musculoskeletal disorders, significantly affecting the quality of life of patients. Treatment outcomes can be improved with an early diagnosis and timely targeted interventions. Increasing evidence indicates that ROS and endoplasmic reticulum (ER) stress play key roles in modulating the differentiation processes of tendon-derived stem cells (TDSCs), thereby contributing to the initiation and progression of tendinopathy. However, the relationship between ONOO- and the differentiation process, as well as the various stages of tendinopathy, remains unexplored. Herein, we developed two highly specific and sensitive fluorescent probes (Rod-Cl and Rod-Br) for detecting ONOO- in the ER. Rod-Br can detect basal levels of ONOO- in the ER of TDSCs and measure ONOO- levels in primary TDSCs stimulated by interleukin-1β over various durations, allowing for comparisons between chondrogenic and osteogenic differentiation and ER stress levels. Additionally, we examined ONOO- variations in different stages of tendinopathy and treatment rat models in vivo and discussed the potential mechanisms. This research provides a robust tool for analyzing ONOO- dynamics in the tenogenic and osteogenic differentiation of TDSCs, offering new insights into the pathophysiology and treatment of tendinopathy.
Collapse
Affiliation(s)
- Huimin Liu
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Min Zhu
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Haihui Yang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Li Chai
- Core Facilities of West China Hospital, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Junyuan Han
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Liangju Ning
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Zixuan Zhan
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
10
|
Hu B, Liu Q, Jiang Y, Huang Y, Ji H, Zhang J, Wang X, Shen XC, Chen H. NIR-II Fluorescence/Photoacoustic Dual Ratiometric Probes with Unique Recognition Site for Quantitatively Visualizing H 2S 2 in Vivo. Angew Chem Int Ed Engl 2024:e202418378. [PMID: 39533159 DOI: 10.1002/anie.202418378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 10/29/2024] [Accepted: 11/12/2024] [Indexed: 11/16/2024]
Abstract
Hydrogen persulfide (H2S2) plays a significant role in redox biology and signal transduction; therefore, quantitative visualization of H2S2 in the deep tissue of living organisms is essential for obtaining reliable information about relevant pathophysiological processes directly. However, currently reported H2S2 probes are unsuitable for this purpose because of their poor selectivity for many polysulfide species or their short wavelength, which hinders precise imaging in deep tissues. Herein, for the first time, we report a unique H2S2-mediated dithiole formation reaction. Based on this reaction, we construct the first NIR-II fluorescence (FL) and photoacoustic (PA) dual-ratiometric probe (NIR-II-H2S2) for quantitatively visualizing H2S2 in vivo. This probe shows dual-ratiometric NIR-II fluorescence (I840/I1000, 107-fold) and photoacoustic (PA800/PA900, 6.5-fold) responses towards Na2S2 species with high specificity, excellent sensitivity (1.8 nM), improved water solubility, and deep-tissue penetration. More importantly, using NIR-II dual-ratiometric FL/PA imaging, we successfully demonstrated that the probe could be used to accurately quantify the fluctuating H2S2 levels in the liver-injury mouse models induced by lipopolysaccharides or metformin drugs. Overall, this study not only presents a promising tool for H2S2-related pathological research, but also provides a unique recognition site that may be generalized for designing more useful H2S2 imaging agents in the future.
Collapse
Affiliation(s)
- Bangping Hu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Qinian Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Yulan Jiang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Yujie Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Huiquan Ji
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Jiqi Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Xia Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Xing-Can Shen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Hua Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| |
Collapse
|
11
|
Chang YK, Hao SJ, Wu FG. Recent Biomedical Applications of Functional Materials Based on Polyhedral Oligomeric Silsesquioxane (POSS). SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401762. [PMID: 39279395 DOI: 10.1002/smll.202401762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 08/06/2024] [Indexed: 09/18/2024]
Abstract
Polyhedral oligomeric silsesquioxane (POSS) is a 3D, cage-like nanoparticle with an inorganic Si-O-Si core and eight tunable corner functional groups. Its well-defined structure grants it distinctive physical, chemical, and biological properties and has been widely used for preparing high-performance materials. Recently, click chemistry has enabled the synthesis of various functional POSS-based materials for diverse biomedical applications. This article reviews the recent applications of POSS-based materials in the biomedical field, including cancer treatment, tissue engineering, antibacterial use, and biomedical imaging. Representative examples are discussed in detail. Among the various POSS-based applications, cancer treatment and tissue engineering are the most important. Finally, this review presents the current limitations of POSS-based materials and provides guidance for future research.
Collapse
Affiliation(s)
- Yun-Kai Chang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China
| | - Shi-Jie Hao
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China
| |
Collapse
|
12
|
Kong X, Liang J, Lu M, Zhang K, Zhao E, Kang X, Wang G, Yu Q, Gan Z, Gu X. A NIR-II Organic Dendrimer with Superb Photothermal Performance Based on Electron-Donor Iteration for Photothermal Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409041. [PMID: 39374026 DOI: 10.1002/adma.202409041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/24/2024] [Indexed: 10/08/2024]
Abstract
Organic photothermal materials have attracted extensive attention due to their designable molecular structure, tunable excited-state properties, and excellent biocompatibility, however, the development of near-infrared II (NIR-II) absorbing organic photothermal materials with high photothermal conversion efficiency (PTCE) and molar extinction coefficient (ɛ) remains challenging. Herein, a novel "electron-donor iteration" strategy is proposed to construct organic photothermal dendrimers (CR-DPA-T, CR-(DPA)2-T and CR-(DPA)3-T) with donor-π-acceptor-π-donor (D-π-A-π-D) features and diradical characteristics. Owing to the enhanced D-A effect and intramolecular motions, their absorption and photothermal capacity increase as the generation grows. Surprisingly, an excellent photothermal performance (ɛ1064 × PTCE1064) with a superb value of 2.85 × 104 in the NIR-II region is achieved for CR-(DPA)3-T nanoparticles (CR-(DPA)3-T NPs) compared to most reported counterparts. Besides, CR-(DPA)3-T NPs exhibit superior antitumor efficacy by the synergistic effect of photothermal therapy (PTT) and immunotherapy, efficiently inhibiting the growth of both primary and distant tumors. To the best knowledge, organic photothermal dendrimer is for the first time reported, and a universal donor engineering strategy is offered to develop NIR-II-absorbing organic photothermal materials for photothermal immunotherapy.
Collapse
Affiliation(s)
- Xiangwei Kong
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jie Liang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Min Lu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Kaixin Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Engui Zhao
- School of Science, Harbin Institute of Technology, Shenzhen, HIT Campus of University Town, Shenzhen, 518055, China
| | - Xingjian Kang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Guan Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Qingsong Yu
- The State Key Laboratory of Organic-inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhihua Gan
- The State Key Laboratory of Organic-inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xinggui Gu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
13
|
Liu Y, Zhang J, Zhou X, Wang Y, Lei S, Feng G, Wang D, Huang P, Lin J. Dissecting Exciton Dynamics in pH-Activatable Long-Wavelength Photosensitizers for Traceable Photodynamic Therapy. Angew Chem Int Ed Engl 2024; 63:e202408064. [PMID: 38853147 DOI: 10.1002/anie.202408064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
Tumor-specific activatable long-wavelength (LW) photosensitizers (PSs) show promise in overcoming the limitations of traditional photodynamic therapy (PDT), such as systemic phototoxicity and shallow tissue penetration. However, their insufficient LW light absorption and low singlet oxygen quantum yield (Φ 1O2) usually require high laser power density to produce thermal energy and synergistically enhance PDT. The strong photothermal radiation causing acute pain significantly reduces patient compliance and hinders the broader clinical application of LW PDT. Through the exciton dynamics dissection strategy, we have developed a series of pH-activatable cyanine-based LW PSs (LET-R, R = H, Cl, Br, I), among which the activated LET-I exhibits strong light absorption at 808 nm and a remarkable 3.2-fold enhancement in Φ 1O2 compared to indocyanine green. Transient spectroscopic analysis and theoretical calculations confirmed its significantly promoted intersystem crossing and simultaneously enhanced LW fluorescence emission characteristics. These features enable the activatable fluorescence and photoacoustic dual-modal imaging-escorted complete photodynamic eradication of tumors by the folic acid (FA)-modified LET-I probe (LET-I-FA), under the ultralow 808 nm laser power density (0.2 W cm-2) for irradiation, without the need for photothermal energy synergy. This research presents a novel strategy of dissecting exciton dynamics to screen activatable LW PSs for traceable PDT.
Collapse
Affiliation(s)
- Yurong Liu
- Department Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Jing Zhang
- Department Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Xuan Zhou
- School of Sino-German Intelligent Manufacturing, Shenzhen Institute of Technology, Shenzhen, 518116, China
| | - Yaru Wang
- Department Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Shan Lei
- Department Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Guangle Feng
- Department Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, China
| | - Peng Huang
- Department Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Jing Lin
- Department Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| |
Collapse
|
14
|
Zhu Y, Wang X, Feng L, Zhao R, Yu C, Liu Y, Xie Y, Liu B, Zhou Y, Yang P. Intermetallics triggering pyroptosis and disulfidptosis in cancer cells promote anti-tumor immunity. Nat Commun 2024; 15:8696. [PMID: 39379392 PMCID: PMC11461493 DOI: 10.1038/s41467-024-53135-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 10/03/2024] [Indexed: 10/10/2024] Open
Abstract
Pyroptosis, an immunogenic programmed cell death, could efficiently activate tumor immunogenicity and reprogram immunosuppressive microenvironment for boosting cancer immunotherapy. However, the overexpression of SLC7A11 promotes glutathione biosynthesis for maintaining redox balance and countering pyroptosis. Herein, we develop intermetallics modified with glucose oxidase (GOx) and soybean phospholipid (SP) as pyroptosis promoters (Pd2Sn@GOx-SP), that not only induce pyroptosis by cascade biocatalysis for remodeling tumor microenvironment and facilitating tumor cell immunogenicity, but also trigger disulfidptosis mediated by cystine accumulation to further promote tumor pyroptosis in female mice. Experiments and density functional theory calculations show that Pd2Sn nanorods with an intermediate size exhibit stronger photothermal and enzyme catalytic activity compared with the other three morphologies investigated. The peroxidase-mimic and oxidase-mimic activities of Pd2Sn cause potent reactive oxygen species (ROS) storms for triggering pyroptosis, which could be self-reinforced by photothermal effect, hydrogen peroxide supply accompanied by glycometabolism, and oxygen production from catalase-mimic activity of Pd2Sn. Moreover, the increase of NADP+/NADPH ratio induced by glucose starvation could pose excessive cystine accumulation and inhibit glutathione synthesis, which could cause disulfidptosis and further augment ROS-mediated pyroptosis, respectively. This two-pronged treatment strategy could represent an alternative therapeutic approach to expand anti-tumor immunotherapy.
Collapse
Affiliation(s)
- Yanlin Zhu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, PR China
| | - Xinxin Wang
- Department of Radiology, Harbin Medical University Cancer Hospital, Harbin, PR China
| | - Lili Feng
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, PR China.
| | - Ruoxi Zhao
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, PR China
| | - Can Yu
- Department of Radiology, Harbin Medical University Cancer Hospital, Harbin, PR China
| | - Yuanli Liu
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Ying Xie
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin, PR China
| | - Bin Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, PR China
| | - Yang Zhou
- Department of Radiology, Harbin Medical University Cancer Hospital, Harbin, PR China.
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, PR China.
| |
Collapse
|
15
|
Cui Z, Wang L, Liu W, Xu D, Zhang T, Ma B, Zhang K, Yuan L, Bing Z, Liu J, Liu B, Wu W, Tian L. Imageable Brachytherapy with Chelator-Free Radiolabeling Hydrogel. Adv Healthc Mater 2024; 13:e2401438. [PMID: 38744050 DOI: 10.1002/adhm.202401438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/09/2024] [Indexed: 05/16/2024]
Abstract
Brachytherapy stands as an essential clinical approach for combating locally advanced tumors. Here, an injectable brachytherapy hydrogel is developed for the treatment of both local and metastatic tumor. Fe-tannins nanoparticles are efficiently and stably radiolabeled with clinical used therapeutic radionuclides (such as 131I, 90Y, 177Lu, and 225Ac) without a chelator, and then chemically cross-linked with 4-armPEG-SH to form brachytherapy hydrogel. Upon intratumoral administration, magnetic resonance imaging (MRI) signal from ferric ions embedded within the hydrogel directly correlates with the retention dosage of radionuclides, which can real-time monitor radionuclides emitting short-range rays in vivo without penetration limitation during brachytherapy. The hydrogel's design ensures the long-term tumor retention of therapeutic radionuclides, leading to the effective eradication of local tumor. Furthermore, the radiolabeled hydrogel is integrated with an adjuvant to synergize with immune checkpoint blocking therapy, thereby activating potent anti-tumor immune responses and inhibiting metastatic tumor growth. Therefore, this work presents an imageable brachytherapy hydrogel for real-time monitoring therapeutic process, and expands the indications of brachytherapy from treatment of localized tumors to metastatic tumors.
Collapse
Affiliation(s)
- Zhencun Cui
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
- School of Nuclear Science and Technology, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
- Department of Nuclear Medicine, Second Hospital of Lanzhou University, 82 Cuiying Gate, Lanzhou, 730000, China
| | - Liqin Wang
- Department of Nuclear Medicine, Second Hospital of Lanzhou University, 82 Cuiying Gate, Lanzhou, 730000, China
| | - Wei Liu
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
- School of Nuclear Science and Technology, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
| | - Dan Xu
- School of Nuclear Science and Technology, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, China
| | - Taofeng Zhang
- School of Life Science and Engineering, Lanzhou University of Technology, 287 Langongping Road, Lanzhou, 730000, China
| | - Baoliang Ma
- Department of Nuclear Medicine, Second Hospital of Lanzhou University, 82 Cuiying Gate, Lanzhou, 730000, China
| | - Kai Zhang
- Department of Nuclear Medicine, Second Hospital of Lanzhou University, 82 Cuiying Gate, Lanzhou, 730000, China
| | - Lingyan Yuan
- Key Laboratory of Heavy Ion Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, China
| | - Zhitong Bing
- Key Laboratory of Heavy Ion Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, China
| | - Jiangyan Liu
- Department of Nuclear Medicine, Second Hospital of Lanzhou University, 82 Cuiying Gate, Lanzhou, 730000, China
| | - Bin Liu
- School of Nuclear Science and Technology, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
- School of Stomatology, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, China
| | - Wangsuo Wu
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
- School of Nuclear Science and Technology, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
| | - Longlong Tian
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
- School of Nuclear Science and Technology, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
| |
Collapse
|
16
|
Song J, Zhai T, Hahm HS, Li Y, Mao H, Wang X, Jo J, Chang JW. Development of a Dual-Factor Activatable Covalent Targeted Photoacoustic Imaging Probe for Tumor Imaging. Angew Chem Int Ed Engl 2024; 63:e202410645. [PMID: 38935405 DOI: 10.1002/anie.202410645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 06/28/2024]
Abstract
Photoacoustic imaging (PAI) is an emerging modality in biomedical imaging with superior imaging depth and specificity. However, PAI still has significant limitations, such as the background noise from endogenous chromophores. To overcome these limitations, we developed a covalent activity-based PAI probe, NOx-JS013, targeting NCEH1. NCEH1, a highly expressed and activated serine hydrolase in aggressive cancers, has the potential to be employed for the diagnosis of cancers. We show that NOx-JS013 labels active NCEH1 in live cells with high selectivity relative to other serine hydrolases. NOx-JS013 also presents its efficacy as a hypoxia-responsive imaging probe in live cells. Finally, NOx-JS013 successfully visualizes aggressive prostate cancer tumors in mouse models of PC3, while being negligibly detected in tumors of non-aggressive LNCaP mouse models. These findings show that NOx-JS013 has the potential to be used to develop precision PAI reagents for detecting metastatic progression in various cancers.
Collapse
Affiliation(s)
- Jiho Song
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, Georgia, 30322, United States
| | - Tianqu Zhai
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Heung Sik Hahm
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, Georgia, 30322, United States
| | - Yuancheng Li
- Department of Radiology and Imaging Science, Emory University, Atlanta, Georgia, 30322, United States
| | - Hui Mao
- Department of Radiology and Imaging Science, Emory University, Atlanta, Georgia, 30322, United States
| | - Xueding Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Janggun Jo
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jae Won Chang
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, Georgia, 30322, United States
- Department of Hematology and Medical Oncology, Emory University, Atlanta, Georgia, 30322, United States
- Winship Cancer Institute, Emory University, Atlanta, Georgia, 30322, United States
| |
Collapse
|
17
|
Xu J, Lv Z, Wang L, Wu X, Tan B, Shen XC, Chen H. Tuning Tumor Targeting and Ratiometric Photoacoustic Imaging by Fine-Tuning Torsion Angle for Colorectal Liver Metastasis Diagnosis. Chemistry 2024; 30:e202402019. [PMID: 38923040 DOI: 10.1002/chem.202402019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 06/28/2024]
Abstract
Photoacoustic (PA) tomography is an emerging biomedical imaging technology for precision cancer medicine. Conventional small-molecule PA probes usually exhibit a single PA signal and poor tumor targeting that lack the imaging reliability. Here, we introduce a series of cyanine/hemicyanine interconversion dyes (denoted Cy-HCy) for PA/fluorescent dual-mode probe development that features optimized ratiometric PA imaging and tunable tumor-targeting ability for precise diagnosis and resection of colorectal cancer (CRC). Importantly, Cy-HCy can be presented in cyanine (inherent tumor targeting and long NIR PA wavelength) and hemicyanine (poor tumor targeting and short NIR PA wavelength) by fine-tuning torsion angle and the ingenious transformation between cyanine and hemicyanine through regulation optically tunable group endows the NIR ratiometric PA and tunable tumor-targeting properties. To demonstrate the applicability of Cy-HCy dyes, we designed the first small-molecule tumor-targeting and NIR ratiometric PA probe Cy-HCy-H2S for precise CRC liver metastasis diagnosis, activated by H2S (a CRC biomarker). Using this probe, we not only visualized the subcutaneous tumor and liver metastatic cancers in CRC mouse models but also realized PA and fluorescence image-guided tumor excision. We expect that Cy-HCy will be generalized for creating a wide variety of inherently tumor-targeting NIR ratiometric PA probes in oncological research and practice.
Collapse
Affiliation(s)
- Jinyuan Xu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Zhangkang Lv
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Liping Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Xingqing Wu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Bisui Tan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Xing-Can Shen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Hua Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| |
Collapse
|
18
|
Truong TT, Mondal S, Doan VHM, Tak S, Choi J, Oh H, Nguyen TD, Misra M, Lee B, Oh J. Precision-engineered metal and metal-oxide nanoparticles for biomedical imaging and healthcare applications. Adv Colloid Interface Sci 2024; 332:103263. [PMID: 39121830 DOI: 10.1016/j.cis.2024.103263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/19/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024]
Abstract
The growing field of nanotechnology has witnessed numerous advancements over the past few years, particularly in the development of engineered nanoparticles. Compared with bulk materials, metal nanoparticles possess more favorable properties, such as increased chemical activity and toxicity, owing to their smaller size and larger surface area. Metal nanoparticles exhibit exceptional stability, specificity, sensitivity, and effectiveness, making them highly useful in the biomedical field. Metal nanoparticles are in high demand in biomedical nanotechnology, including Au, Ag, Pt, Cu, Zn, Co, Gd, Eu, and Er. These particles exhibit excellent physicochemical properties, including amenable functionalization, non-corrosiveness, and varying optical and electronic properties based on their size and shape. Metal nanoparticles can be modified with different targeting agents such as antibodies, liposomes, transferrin, folic acid, and carbohydrates. Thus, metal nanoparticles hold great promise for various biomedical applications such as photoacoustic imaging, magnetic resonance imaging, computed tomography (CT), photothermal, and photodynamic therapy (PDT). Despite their potential, safety considerations, and regulatory hurdles must be addressed for safe clinical applications. This review highlights advancements in metal nanoparticle surface engineering and explores their integration with emerging technologies such as bioimaging, cancer therapeutics and nanomedicine. By offering valuable insights, this comprehensive review offers a deep understanding of the potential of metal nanoparticles in biomedical research.
Collapse
Affiliation(s)
- Thi Thuy Truong
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Sudip Mondal
- Digital Healthcare Research Center, Institute of Information Technology and Convergence, Pukyong National University, Busan 48513, Republic of Korea
| | - Vu Hoang Minh Doan
- Smart Gym-Based Translational Research Center for Active Senior's Healthcare, Pukyong National University, Busan 48513, Republic of Korea
| | - Soonhyuk Tak
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Jaeyeop Choi
- Smart Gym-Based Translational Research Center for Active Senior's Healthcare, Pukyong National University, Busan 48513, Republic of Korea
| | - Hanmin Oh
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Tan Dung Nguyen
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Mrinmoy Misra
- Mechatronics Engineering Department, School of Automobile, Mechanical and Mechatronics, Manipal University, Jaipur, India
| | - Byeongil Lee
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea; Digital Healthcare Research Center, Institute of Information Technology and Convergence, Pukyong National University, Busan 48513, Republic of Korea
| | - Junghwan Oh
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea; Digital Healthcare Research Center, Institute of Information Technology and Convergence, Pukyong National University, Busan 48513, Republic of Korea; Smart Gym-Based Translational Research Center for Active Senior's Healthcare, Pukyong National University, Busan 48513, Republic of Korea; Ohlabs Corp., Busan 48513, Republic of Korea.
| |
Collapse
|
19
|
Xu L, Chen L, Liu H, Chen X, Zhang S. In vivo targeted-imaging of mitochondrial acidification in an aristolochic acid I-induced nephrotoxicity mouse model by a fluorescent/photoacoustic bimodal probe. Mater Today Bio 2024; 28:101240. [PMID: 39309164 PMCID: PMC11415585 DOI: 10.1016/j.mtbio.2024.101240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 09/25/2024] Open
Abstract
Aristolochic acid I (AAI), a natural compound in aristolochia type Chinese medicinal herb, is generally acknowledged to have nephrotoxicity, which may be associated with mitophagy. Mitophagy is a cellular process with important functions that drive AAI-induced renal injury. Mitochondrial pH is currently measured by fluorescent probes in cell culture, but existing probes do not allow for in situ imaging of AAI-induced mitophagy in vivo. We developed a ratiometric fluorescent/PA dual-modal probe with a silicon rhodamine fluorophore and a pH-sensitive hemicyanine dye covalently linked via a short chain to obtain a FRET type probe. The probe was used to measure AAI-mediated mitochondrial acidification in live cells and in vivo. The Förster resonance energy transfer (FRET)-mediated ratiometric and bimodal method can efficiently eliminate signal variability associated with the commonly used one-emission and single detection mode by ratiometric two channels of the donor and acceptor. The probe has good water-solubility and low molecular weight with two positively charged, facilitating its precise targeting into renal mitochondria, where the fluorescent/PA changes in response to mitochondrial acidification, enabling dynamic and semi-quantitative mapping of subtle changes in mitochondrial pH in AAI-induced nephrotoxicity mouse model for the first time. Also, the joint use of L-carnitine could mitigate the mitophagy in AAI-induced nephrotoxicity.
Collapse
Affiliation(s)
- Li Xu
- Fujian Key Laboratory of Aptamers Technology, Fuzhou General Clinical Medical School (the 900th Hospital), Fujian Medical University, Fuzhou, 350025108, China
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Li Chen
- Fujian Key Laboratory of Aptamers Technology, Fuzhou General Clinical Medical School (the 900th Hospital), Fujian Medical University, Fuzhou, 350025108, China
| | - Hongwen Liu
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
- The School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Xingwang Chen
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Shenghang Zhang
- Fujian Key Laboratory of Aptamers Technology, Fuzhou General Clinical Medical School (the 900th Hospital), Fujian Medical University, Fuzhou, 350025108, China
| |
Collapse
|
20
|
Li J, Niu N, Wang D, Zhu J, Li X, Kong Q, Zhong Tang B, Wang D. As Aggregation-Induced Emission Meets with Noncovalent Conformational Locks: Subtly Regulating NIR-II Molecules for Multimodal Imaging-Navigated Synergistic Therapies. Angew Chem Int Ed Engl 2024:e202413219. [PMID: 39305148 DOI: 10.1002/anie.202413219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Indexed: 11/03/2024]
Abstract
Phototheranostics is growing into a sparking frontier in disease treatment. Developing single molecular species synchronously featured by powerful absorption capacity, superior second near-infrared (NIR-II) fluorescence and prominent photothermal conversion ability is highly desirable for phototheranostics, yet remains formidably challenging. In this work, we propose a molecular design philosophy that the integration of noncovalent conformational locks (NoCLs) with aggregation-induced emission (AIE) in a single formulation is able to boost multiple photophysical properties for efficient phototheranostics. The introduction of NoCLs skeleton with conformation-locking feature in the center of molecular architecture indeed elevates the structural planarity and rigidity, which simultaneously promotes the absorption capacity and bathochromic-shifts the emission wavelength centered in NIR-II region. Meanwhile, the AIE tendency mainly originated from flexibly propeller-like geometry at the ends of molecular architecture eventually endows the molecule with satisfactory emission intensity and photothermal conversion in aggregates. Consequently, by utilizing the optimized molecule, unprecedented performance on NIR-II fluorescence-photoacoustic-photothermal trimodal imaging-guided photothermal-chemo synergistic therapy is demonstrated by the precise tumor diagnosis and complete tumor ablation.
Collapse
Affiliation(s)
- Jiangao Li
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Material Science and Engineering, Shenzhen University, Shenzhen, 518060, China
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Niu Niu
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Material Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Deliang Wang
- Department of Materials Chemistry, Huzhou University, Huzhou, Zhejiang 313000, China
| | - Jun Zhu
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Material Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xue Li
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Material Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Qiyu Kong
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Ben Zhong Tang
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Material Science and Engineering, Shenzhen University, Shenzhen, 518060, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172, China
| | - Dong Wang
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Material Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
21
|
Xue SS, Zhu W, Li Y, Pan W, Li N, Tang B. Dual-stimuli responsive theranostic agents based on small molecules. Chem Commun (Camb) 2024; 60:9860-9870. [PMID: 39157895 DOI: 10.1039/d4cc02565b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Stimuli-responsive theranostic agents represent a class of molecules that integrate therapeutic and diagnostic functions, offering the capability to respond to disease-associated biomarkers. Dual-stimuli responsive agents, particularly those based on small molecules, have shown considerable promise for precise imaging-guided therapeutic applications. In this Highlight, we summarize the progress of dual-stimuli responsive theranostic agents based on small molecules, for diagnostic and therapeutic studies in biological systems. The Highlight focuses on comparing different responsive groups and chemical structures of these dual-stimuli responsive theranostic agents towards different biomarkers. The potential future directions of the agents for further applications in biological systems are also discussed.
Collapse
Affiliation(s)
- Shan-Shan Xue
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Wanqi Zhu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Yuanyuan Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
- Laoshan Laboratory, Qingdao 266237, P. R. China
| |
Collapse
|
22
|
Duan X, Wang P, He L, He Z, Wang S, Yang F, Gao C, Ren W, Lin J, Chen T, Xu C, Li J, Wu A. Peptide-Functionalized Inorganic Oxide Nanomaterials for Solid Cancer Imaging and Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311548. [PMID: 38333964 DOI: 10.1002/adma.202311548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/15/2024] [Indexed: 02/10/2024]
Abstract
The diagnosis and treatment of solid tumors have undergone significant advancements marked by a trend toward increased specificity and integration of imaging and therapeutic functions. The multifaceted nature of inorganic oxide nanomaterials (IONs), which boast optical, magnetic, ultrasonic, and biochemical modulatory properties, makes them ideal building blocks for developing multifunctional nanoplatforms. A promising class of materials that have emerged in this context are peptide-functionalized inorganic oxide nanomaterials (PFIONs), which have demonstrated excellent performance in multifunctional imaging and therapy, making them potential candidates for advancing solid tumor diagnosis and treatment. Owing to the functionalities of peptides in tumor targeting, penetration, responsiveness, and therapy, well-designed PFIONs can specifically accumulate and release therapeutic or imaging agents at the solid tumor sites, enabling precise imaging and effective treatment. This review provides an overview of the recent advances in the use of PFIONs for the imaging and treatment of solid tumors, highlighting the superiority of imaging and therapeutic integration as well as synergistic treatment. Moreover, the review discusses the challenges and prospects of PFIONs in depth, aiming to promote the intersection of the interdisciplinary to facilitate their clinical translation and the development of personalized diagnostic and therapeutic systems by optimizing the material systems.
Collapse
Affiliation(s)
- Xiaolin Duan
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pin Wang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lulu He
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Zhen He
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shiwei Wang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fang Yang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Changyong Gao
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Wenzhi Ren
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Jie Lin
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Tianxiang Chen
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Chen Xu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Juan Li
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Aiguo Wu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| |
Collapse
|
23
|
Wang S, Huang W, Lin Q, Feng Y, Wei Q, Xu J, Wang R, Luo Z. Design and synthesis of a novel chiral photoacoustic probe and accurate imaging detection of hydrogen peroxide in vivo. Anal Bioanal Chem 2024; 416:5205-5214. [PMID: 39078455 DOI: 10.1007/s00216-024-05463-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 07/31/2024]
Abstract
Nanocatalytic medicine, which aims to accurately target and effectively treat tumors through intratumoral in situ catalytic reactions triggered by tumor-specific environments or markers, is an emerging technology. However, the relative lack of catalytic activity of nanoenzymes in the tumor microenvironment (TME) has hampered their use in biomedical applications. Therefore, it is crucial to develop a highly sensitive probe that specifically responds to the TME or disease markers in the TME for precision diagnosis and treatment of diseases. In this work, a chiral photoacoustic (PA) nanoprobe (D/L-Ce@MoO3) based on the H2O2-catalyzed TME activation reaction was constructed in a one-step method using D-cysteine (D-Cys) or L-cysteine (L-Cys), polymolybdate, and cerium nitrate as raw materials. The designed and synthesized D/L-Ce@MoO3 chiral nanoprobe can perform in situ, non-invasive, and precise imaging of pharmacological acute liver injury. In vivo and in vitro experiments have shown that the D/L-Ce@MoO3 probe had chiral properties, the CD signal decreased upon reaction with H2O2, and the absorption and PA signals increased with increasing H2O2 concentration. This is because of the catalytic reaction between Ce ions doped in the nanoenzyme and the high expression of H2O2 caused by drug-induced liver injury to produce ·OH, which has a strong oxidizing property to kill tumor cells and destroy the Mo-S bond in the probe, thus converting the chiral probe into an achiral polyoxometalate (POM) with PA signal.
Collapse
Affiliation(s)
- Shulong Wang
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin Normal University, Yulin, 537000, China
| | - Wenfang Huang
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin Normal University, Yulin, 537000, China
| | - Qingyan Lin
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin Normal University, Yulin, 537000, China
| | - Yinyin Feng
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin Normal University, Yulin, 537000, China
| | - Qingmin Wei
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin Normal University, Yulin, 537000, China
| | - Jiayao Xu
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin Normal University, Yulin, 537000, China.
| | - Rong Wang
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin Normal University, Yulin, 537000, China.
| | - Zhihui Luo
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin Normal University, Yulin, 537000, China.
| |
Collapse
|
24
|
Liu D, Liang M, Tao Y, Liu H, Liu Q, Bing W, Li W, Qi J. Hypoxia-accelerating pyroptosis nanoinducers for promoting image-guided cancer immunotherapy. Biomaterials 2024; 309:122610. [PMID: 38749307 DOI: 10.1016/j.biomaterials.2024.122610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 06/03/2024]
Abstract
Precise image-guided cancer immunotherapy holds immense potential in revolutionizing cancer treatment. The strategies facilitating activatable imaging and controlled therapeutics are highly desired yet to be developed. Herein, we report a new pyroptosis nanoinducer that integrates aggregation-induced emission luminogen (AIEgen) and DNA methyltransferase inhibitor with hypoxia-responsive covalent organic frameworks (COFs) for advanced image-guided cancer immunotherapy. We first synthesize and compare three donor-acceptor type AIEgens featuring varying numbers of electron-withdrawing units, and find that the incorporation of two acceptors yields the longest response wavelength and most effective photodynamic therapy (PDT) property, surpassing the performance of analogs with one or three acceptor groups. A COF-based nanoplatform containing AIEgen and pyroptosis drug is successfully constructed via the one-pot method. The intra-COF energy transfer significantly quenches AIEgen, in which both fluorescence and PDT properties greatly enhance upon hypoxia-triggered COF degradation. Moreover, the photodynamic process exacerbates hypoxia, accelerating pyroptosis drug release. The nanoagent enables sensitive delineation of tumor site through in situ activatable fluorescence signature. Thanks to the exceptional ROS production capabilities and hypoxia-accelerating drug release, the nanoagent not only inhibits primary tumor growth but also impedes the progression of distant tumors in 4T1 tumor-bearing mice through potent pyroptosis-mediated immune response. This research introduces a novel strategy for achieving activatable phototheranostics and self-accelerating drug release for synergetic cancer immunotherapy.
Collapse
Affiliation(s)
- Dongfang Liu
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022, China; School of Chemistry and Life Science, Changchun University of Technology, Changchun, 130012, China
| | - Mengyun Liang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yongyou Tao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Hanwen Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Qian Liu
- Department of Urology, Tianjin First Central Hospital, Tianjin, 300192, China
| | - Wei Bing
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022, China; School of Chemistry and Life Science, Changchun University of Technology, Changchun, 130012, China.
| | - Wen Li
- Tianjin Key Laboratory of Biomedical Materials and Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China.
| | - Ji Qi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
25
|
Cabello MC, Chen G, Melville MJ, Osman R, Kumar GD, Domaille DW, Lippert AR. Ex Tenebris Lux: Illuminating Reactive Oxygen and Nitrogen Species with Small Molecule Probes. Chem Rev 2024; 124:9225-9375. [PMID: 39137397 DOI: 10.1021/acs.chemrev.3c00892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Reactive oxygen and nitrogen species are small reactive molecules derived from elements in the air─oxygen and nitrogen. They are produced in biological systems to mediate fundamental aspects of cellular signaling but must be very tightly balanced to prevent indiscriminate damage to biological molecules. Small molecule probes can transmute the specific nature of each reactive oxygen and nitrogen species into an observable luminescent signal (or even an acoustic wave) to offer sensitive and selective imaging in living cells and whole animals. This review focuses specifically on small molecule probes for superoxide, hydrogen peroxide, hypochlorite, nitric oxide, and peroxynitrite that provide a luminescent or photoacoustic signal. Important background information on general photophysical phenomena, common probe designs, mechanisms, and imaging modalities will be provided, and then, probes for each analyte will be thoroughly evaluated. A discussion of the successes of the field will be presented, followed by recommendations for improvement and a future outlook of emerging trends. Our objectives are to provide an informative, useful, and thorough field guide to small molecule probes for reactive oxygen and nitrogen species as well as important context to compare the ecosystem of chemistries and molecular scaffolds that has manifested within the field.
Collapse
Affiliation(s)
- Maidileyvis C Cabello
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Gen Chen
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Michael J Melville
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Rokia Osman
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - G Dinesh Kumar
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Dylan W Domaille
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Alexander R Lippert
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| |
Collapse
|
26
|
Chen J, Luo R, Li S, Shao J, Wang T, Xie S, Xu L, You Q, Feng S, Feng G. A novel NIR fluorescent probe for copper(ii) imaging in Parkinson's disease mouse brain. Chem Sci 2024; 15:13082-13089. [PMID: 39148792 PMCID: PMC11323298 DOI: 10.1039/d4sc03445g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/12/2024] [Indexed: 08/17/2024] Open
Abstract
Abnormal copper ion (Cu2+) levels are considered to be one of the pathological factors of Parkinson's disease (PD), but the internal relationship between Cu2+ and PD progression remains elusive. Visualizing Cu2+ in the brain will be pivotal for comprehending the underlying pathophysiological processes of PD. In this work, a near-infrared (NIR) fluorescent probe, DDAO-Cu, capable of detecting Cu2+ with exceptional sensitivity (about 1.8 nM of detection limit) and selectivity, rapid response (<3 min), and deep tissue penetration, was designed for quantification and visualization of the Cu2+ level. It could detect not only Cu2+ in cells but also the changes in the Cu2+ level in the rotenone-induced cell and zebrafish PD models. Moreover, DDAO-Cu can cross the blood-brain barrier to image Cu2+ in the brain of PD model mice. The imaging result showed a significant increase in Cu2+ levels in brain regions of PD model mice, including the cerebral cortex, hippocampus, and striatum. Meanwhile, Cu2+ levels in the substantia nigra region were significantly reduced in PD model mice. It revealed the nuanced relationship of Cu2+ levels in different brain regions in the disease and indicated the pathological complexity of PD. Overall, DDAO-Cu represents a novel and practical tool for investigating Cu2+-related physiological and pathological processes underlying Parkinson's disease.
Collapse
Affiliation(s)
- Jianmei Chen
- School of Pharmacy, Hubei University of Chinese Medicine Wuhan 430065 China
| | - Rongqing Luo
- School of Pharmacy, Hubei University of Chinese Medicine Wuhan 430065 China
| | - Shuang Li
- School of Pharmacy, Hubei University of Chinese Medicine Wuhan 430065 China
| | - Jinping Shao
- School of Pharmacy, Hubei University of Chinese Medicine Wuhan 430065 China
| | - Ting Wang
- School of Pharmacy, Hubei University of Chinese Medicine Wuhan 430065 China
| | - Shumei Xie
- School of Pharmacy, Hubei University of Chinese Medicine Wuhan 430065 China
| | - Li Xu
- School of Pharmacy, Hubei University of Chinese Medicine Wuhan 430065 China
- Hubei Shizhen Laboratory, Hubei University of Chinese Medicine Wuhan 430065 China
| | - Qiuyun You
- School of Pharmacy, Hubei University of Chinese Medicine Wuhan 430065 China
- Hubei Shizhen Laboratory, Hubei University of Chinese Medicine Wuhan 430065 China
- Engineering Research Center of TCM Protection Technology and New Product Development for the Elderly Brain Health, Ministry of Education Wuhan 430065 China
| | - Shumin Feng
- School of Pharmacy, Hubei University of Chinese Medicine Wuhan 430065 China
- Hubei Shizhen Laboratory, Hubei University of Chinese Medicine Wuhan 430065 China
| | - Guoqiang Feng
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University 152 Luoyu Road Wuhan 430079 PR China
| |
Collapse
|
27
|
Wang J, Liu M, Zhang X, Wang X, Xiong M, Luo D. Stimuli-responsive linkers and their application in molecular imaging. EXPLORATION (BEIJING, CHINA) 2024; 4:20230027. [PMID: 39175888 PMCID: PMC11335469 DOI: 10.1002/exp.20230027] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/16/2023] [Indexed: 08/24/2024]
Abstract
Molecular imaging is a non-invasive imaging method that is widely used for visualization and detection of biological events at cellular or molecular levels. Stimuli-responsive linkers that can be selectively cleaved by specific biomarkers at desired sites to release or activate imaging agents are appealing tools to improve the specificity, sensitivity, and efficacy of molecular imaging. This review summarizes the recent advances of stimuli-responsive linkers and their application in molecular imaging, highlighting the potential of these linkers in the design of activatable molecular imaging probes. It is hoped that this review could inspire more research interests in the development of responsive linkers and associated imaging applications.
Collapse
Affiliation(s)
- Jing Wang
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhouP. R. China
| | - Meng Liu
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhouP. R. China
| | - Xinyue Zhang
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhouP. R. China
| | - Xinning Wang
- Department of Biomedical EngineeringCase Western Reserve UniversityClevelandOhioUSA
| | - Menghua Xiong
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhouP. R. China
- National Engineering Research Centre for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhouP. R. China
| | - Dong Luo
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhouP. R. China
| |
Collapse
|
28
|
Wang R, Hua S, Xing Y, Wang R, Wang H, Jiang T, Yu F. Organic dye-based photosensitizers for fluorescence imaging-guided cancer phototheranostics. Coord Chem Rev 2024; 513:215866. [DOI: 10.1016/j.ccr.2024.215866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
|
29
|
Wen X, Zhang C, Tian Y, Miao Y, Liu S, Xu JJ, Ye D, He J. Smart Molecular Imaging and Theranostic Probes by Enzymatic Molecular In Situ Self-Assembly. JACS AU 2024; 4:2426-2450. [PMID: 39055152 PMCID: PMC11267545 DOI: 10.1021/jacsau.4c00392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024]
Abstract
Enzymatic molecular in situ self-assembly (E-MISA) that enables the synthesis of high-order nanostructures from synthetic small molecules inside a living subject has emerged as a promising strategy for molecular imaging and theranostics. This strategy leverages the catalytic activity of an enzyme to trigger probe substrate conversion and assembly in situ, permitting prolonging retention and congregating many molecules of probes in the targeted cells or tissues. Enhanced imaging signals or therapeutic functions can be achieved by responding to a specific enzyme. This E-MISA strategy has been successfully applied for the development of enzyme-activated smart molecular imaging or theranostic probes for in vivo applications. In this Perspective, we discuss the general principle of controlling in situ self-assembly of synthetic small molecules by an enzyme and then discuss the applications for the construction of "smart" imaging and theranostic probes against cancers and bacteria. Finally, we discuss the current challenges and perspectives in utilizing the E-MISA strategy for disease diagnoses and therapies, particularly for clinical translation.
Collapse
Affiliation(s)
- Xidan Wen
- Department
of Nuclear Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital
of Medical School, Nanjing University, Nanjing 210008, China
- State
Key Laboratory of Analytical Chemistry for Life Science, Chemistry
and Biomedicine Innovation Center (ChemBIC), School of Chemistry and
Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Chao Zhang
- Department
of Neurosurgery, Zhujiang Hospital, Southern
Medical University, Guangzhou 510282, China
| | - Yuyang Tian
- State
Key Laboratory of Analytical Chemistry for Life Science, Chemistry
and Biomedicine Innovation Center (ChemBIC), School of Chemistry and
Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Yinxing Miao
- State
Key Laboratory of Analytical Chemistry for Life Science, Chemistry
and Biomedicine Innovation Center (ChemBIC), School of Chemistry and
Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Shaohai Liu
- State
Key Laboratory of Analytical Chemistry for Life Science, Chemistry
and Biomedicine Innovation Center (ChemBIC), School of Chemistry and
Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Jing-Juan Xu
- State
Key Laboratory of Analytical Chemistry for Life Science, Chemistry
and Biomedicine Innovation Center (ChemBIC), School of Chemistry and
Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Deju Ye
- State
Key Laboratory of Analytical Chemistry for Life Science, Chemistry
and Biomedicine Innovation Center (ChemBIC), School of Chemistry and
Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Jian He
- Department
of Nuclear Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital
of Medical School, Nanjing University, Nanjing 210008, China
| |
Collapse
|
30
|
Chen SH, Liu H, Huang B, Zheng J, Zhang ZL, Pang DW, Huang P, Cui R. Biosynthesis of NIR-II Ag 2Se Quantum Dots with Bacterial Catalase for Photoacoustic Imaging and Alleviating-Hypoxia Photothermal Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310795. [PMID: 38501992 DOI: 10.1002/smll.202310795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/07/2024] [Indexed: 03/20/2024]
Abstract
Developing the second near-infrared (NIR-II) photoacoustic (PA) agent is of great interest in bioimaging. Ag2Se quantum dots (QDs) are one kind of potential probe for applications in NIR-II photoacoustic imaging (PAI). However, the surfaces with excess anions of Ag2Se QDs, which increase the probability of nonradiative transitions of excitons benefiting PA imaging, are not conducive to binding electron donor ligands for potential biolabeling and imaging. In this study, Staphylococcus aureus (S. aureus) cells are driven for the biosynthesis of Ag2Se QDs with catalase (CAT). Biosynthesized Ag2Se (bio-Ag2Se-CAT) QDs are produced in Se-enriched environment of S. aureus and have a high Se-rich surface. The photothermal conversion efficiency of bio-Ag2Se-CAT QDs at 808 and 1064 nm is calculated as 75.3% and 51.7%, respectively. Additionally, the PA signal responsiveness of bio-Ag2Se-CAT QDs is ≈10 times that of the commercial PA contrast agent indocyanine green. In particular, the bacterial CAT is naturally attached to bio-Ag2Se-CAT QDs surface, which can effectively relieve tumor hypoxia. The bio-Ag2Se-CAT QDs can relieve heat-initiated oxidative stress while undergoing effective photothermal therapy (PTT). Such biosynthesis method of NIR-II bio-Ag2Se-CAT QDs opens a new avenue for developing multifunctional nanomaterials, showing great promise for PAI, hypoxia alleviation, and PTT.
Collapse
Affiliation(s)
- Shi-Hui Chen
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Hengke Liu
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, P. R. China
| | - Biao Huang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Jie Zheng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Zhi-Ling Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, P. R. China
| | - Ran Cui
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
- Hubei Jiangxia Laboratory, Wuhan, 430200, P. R. China
| |
Collapse
|
31
|
Liu Y, Lu R, Li M, Cheng D, Wang F, Ouyang X, Zhang Y, Zhang Q, Li J, Peng S. Dual-enzyme decorated semiconducting polymer nanoagents for second near-infrared photoactivatable ferroptosis-immunotherapy. MATERIALS HORIZONS 2024; 11:2406-2419. [PMID: 38440840 DOI: 10.1039/d3mh01844j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Enzymes provide a class of potential options to treat cancer, while the precise regulation of enzyme activities for effective and safe therapeutic actions has been poorly reported. Dual-enzyme decorated semiconducting polymer nanoagents for second near-infrared (NIR-II) photoactivatable ferroptosis-immunotherapy are reported in this study. Such nanoagents (termed SPHGA) consist of hemoglobin (Hb)-based semiconducting polymer (SP@Hb), adenosine deaminase (ADA) and glucose oxidase (GOx) with loadings in a thermal-responsive nanoparticle shell. NIR-II photoactivation of SPHGA results in the generation of heat to trigger on-demand releases of two enzymes (ADA and GOx) via destroying the thermal-responsive nanoparticle shells. In the tumor microenvironment, GOx oxidizes glucose to form hydrogen peroxide (H2O2), which promotes the Fenton reaction of iron in SP@Hb, resulting in an enhanced ferroptosis effect and immunogenic cell death (ICD). In addition, ADA degrades high-level adenosine to reverse the immunosuppressive microenvironment, thus amplifying antitumor immune responses. Via NIR-II photoactivatable ferroptosis-immunotherapy, SPHGA shows an improved effect to absolutely remove bilateral tumors and effectively suppress tumor metastases in subcutaneous 4T1 breast cancer models. This study presents a dual-enzyme-based nanoagent with controllable therapeutic actions for effective and precise cancer therapy.
Collapse
Affiliation(s)
- Yue Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Renjie Lu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Meng Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Danling Cheng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Fengshuo Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Xumei Ouyang
- Zhuhai Institute of Translational Medicine, Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital affiliated with Jinan University), Zhuhai, Guangdong 519000, China.
| | - Yitian Zhang
- Zhuhai Institute of Translational Medicine, Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital affiliated with Jinan University), Zhuhai, Guangdong 519000, China.
| | - Qin Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China.
| | - Jingchao Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Shaojun Peng
- Zhuhai Institute of Translational Medicine, Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital affiliated with Jinan University), Zhuhai, Guangdong 519000, China.
| |
Collapse
|
32
|
Chen Y, Yang H, Luo Y, Niu Y, Yu M, Deng S, Wang X, Deng H, Chen H, Gao L, Li X, Xu P, Xue F, Miao J, Shi SH, Zhong Y, Ma C, Lei B. Photoacoustic Tomography with Temporal Encoding Reconstruction (PATTERN) for cross-modal individual analysis of the whole brain. Nat Commun 2024; 15:4228. [PMID: 38762498 PMCID: PMC11102525 DOI: 10.1038/s41467-024-48393-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 04/26/2024] [Indexed: 05/20/2024] Open
Abstract
Cross-modal analysis of the same whole brain is an ideal strategy to uncover brain function and dysfunction. However, it remains challenging due to the slow speed and destructiveness of traditional whole-brain optical imaging techniques. Here we develop a new platform, termed Photoacoustic Tomography with Temporal Encoding Reconstruction (PATTERN), for non-destructive, high-speed, 3D imaging of ex vivo rodent, ferret, and non-human primate brains. Using an optimally designed image acquisition scheme and an accompanying machine-learning algorithm, PATTERN extracts signals of genetically-encoded probes from photobleaching-based temporal modulation and enables reliable visualization of neural projection in the whole central nervous system with 3D isotropic resolution. Without structural and biological perturbation to the sample, PATTERN can be combined with other whole-brain imaging modalities to acquire the whole-brain image with both high resolution and morphological fidelity. Furthermore, cross-modal transcriptome analysis of an individual brain is achieved by PATTERN imaging. Together, PATTERN provides a compatible and versatile strategy for brain-wide cross-modal analysis at the individual level.
Collapse
Affiliation(s)
- Yuwen Chen
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, 100084, PR China
- Institute for Intelligent Healthcare, Tsinghua University, Beijing, 100084, PR China
| | - Haoyu Yang
- School of Life Sciences, Tsinghua University, Beijing, 100084, PR China
- IDG/McGovern Institute of Brain Research, Beijing, 100084, PR China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, PR China
| | - Yan Luo
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, 100084, PR China
- Institute for Intelligent Healthcare, Tsinghua University, Beijing, 100084, PR China
| | - Yijun Niu
- School of Life Sciences, Tsinghua University, Beijing, 100084, PR China
- IDG/McGovern Institute of Brain Research, Beijing, 100084, PR China
| | - Muzhou Yu
- School of Computer Science, Xi'an Jiaotong University, Xi'an, 713599, PR China
| | - Shanjun Deng
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Xuanhao Wang
- Research Center for Humanoid Sensing, Zhejiang Laboratory, Hangzhou, 311100, PR China
| | - Handi Deng
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, 100084, PR China
- Institute for Intelligent Healthcare, Tsinghua University, Beijing, 100084, PR China
| | - Haichao Chen
- School of Medicine, Tsinghua University, Beijing, 100084, PR China
| | - Lixia Gao
- Department of Neurology of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, 310029, PR China
| | - Xinjian Li
- Department of Neurology of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, 310029, PR China
| | - Pingyong Xu
- Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, PR China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Fudong Xue
- Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Jing Miao
- Canterbury School, New Milford, CT, 06776, USA
| | - Song-Hai Shi
- School of Life Sciences, Tsinghua University, Beijing, 100084, PR China
- IDG/McGovern Institute of Brain Research, Beijing, 100084, PR China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, PR China
| | - Yi Zhong
- School of Life Sciences, Tsinghua University, Beijing, 100084, PR China
- IDG/McGovern Institute of Brain Research, Beijing, 100084, PR China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, PR China
| | - Cheng Ma
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, 100084, PR China.
- Institute for Intelligent Healthcare, Tsinghua University, Beijing, 100084, PR China.
| | - Bo Lei
- School of Life Sciences, Tsinghua University, Beijing, 100084, PR China.
- IDG/McGovern Institute of Brain Research, Beijing, 100084, PR China.
- Beijing Academy of Artificial Intelligence, Beijing, 100084, PR China.
| |
Collapse
|
33
|
Wei HL, Zhang Q, Deng Z, Guan G, Dong Z, Cao H, Liang P, Lu D, Liu S, Yin X, Song G, Huan S, Zhang XB. Lanthanide Inorganic Nanoparticles Enhance Semiconducting Polymer Nanoparticles Afterglow Luminescence for In Vivo Afterglow/Magnetic Resonance Imaging. Anal Chem 2024; 96:7697-7705. [PMID: 38697043 DOI: 10.1021/acs.analchem.4c00747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
Dual/multimodal imaging strategies are increasingly recognized for their potential to provide comprehensive diagnostic insights in cancer imaging by harnessing complementary data. This study presents an innovative probe that capitalizes on the synergistic benefits of afterglow luminescence and magnetic resonance imaging (MRI), effectively eliminating autofluorescence interference and delivering a superior signal-to-noise ratio. Additionally, it facilitates deep tissue penetration and enables noninvasive imaging. Despite the advantages, only a limited number of probes have demonstrated the capability to simultaneously enhance afterglow luminescence and achieve high-resolution MRI and afterglow imaging. Herein, we introduce a cutting-edge imaging platform based on semiconducting polymer nanoparticles (PFODBT) integrated with NaYF4@NaGdF4 (Y@Gd@PFO-SPNs), which can directly amplify afterglow luminescence and generate MRI and afterglow signals in tumor tissues. The proposed mechanism involves lanthanide nanoparticles producing singlet oxygen (1O2) upon white light irradiation, which subsequently oxidizes PFODBT, thereby intensifying afterglow luminescence. This innovative platform paves the way for the development of high signal-to-background ratio imaging modalities, promising noninvasive diagnostics for cancer.
Collapse
Affiliation(s)
- Han-Lin Wei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Qingpeng Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Zhiming Deng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Guoqiang Guan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Zhe Dong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Hui Cao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Peng Liang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Dingyou Lu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Sulai Liu
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410082, People's Republic of China
| | - Xia Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Guosheng Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Shuangyan Huan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| |
Collapse
|
34
|
Xu M, Sun Q, Wang X, Gao H, Liu Z. Near-Infrared Absorbing BODIPY-Xanthene Hybrids for Multiplexed Photoacoustic Imaging. Org Lett 2024; 26:3750-3755. [PMID: 38667340 DOI: 10.1021/acs.orglett.4c00842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
We report a series of ethenylene-bridged D-π-A BODIPY-xanthene hybrid dyes with precisely regulated absorption bands ranging from the far-red to the near-infrared region (NIR, 700-1000 nm) through rational molecular design. These dyes have excellent photoacoustic properties, and their biocompatibility can be significantly improved by facilely introducing water-soluble groups. In vivo two-channel multiplexed photoacoustic imaging demonstrated their high-resolution imaging capabilities, making them promising candidates for future NIR bioimaging applications.
Collapse
Affiliation(s)
- Mohan Xu
- College of Materials Science and Engineering, College of Science, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Qian Sun
- College of Materials Science and Engineering, College of Science, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People's Republic of China
| | - Xiaoqing Wang
- College of Materials Science and Engineering, College of Science, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Hu Gao
- College of Materials Science and Engineering, College of Science, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Zhipeng Liu
- College of Materials Science and Engineering, College of Science, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| |
Collapse
|
35
|
Mo X, Zhang Z, Song J, Wang Y, Yu Z. Self-assembly of peptides in living cells for disease theranostics. J Mater Chem B 2024; 12:4289-4306. [PMID: 38595070 DOI: 10.1039/d4tb00365a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
The past few decades have witnessed substantial progress in biomedical materials for addressing health concerns and improving disease therapeutic and diagnostic efficacy. Conventional biomedical materials are typically created through an ex vivo approach and are usually utilized under physiological environments via transfer from preparative media. This transfer potentially gives rise to challenges for the efficient preservation of the bioactivity and implementation of theranostic goals on site. To overcome these issues, the in situ synthesis of biomedical materials on site has attracted great attention in the past few years. Peptides, which exhibit remarkable biocompability and reliable noncovalent interactions, can be tailored via tunable assembly to precisely create biomedical materials. In this review, we summarize the progress in the self-assembly of peptides in living cells for disease diagnosis and therapy. After a brief introduction to the basic design principles of peptide assembly systems in living cells, the applications of peptide assemblies for bioimaging and disease treatment are highlighted. The challenges in the field of peptide self-assembly in living cells and the prospects for novel peptide assembly systems towards next-generation biomaterials are also discussed, which will hopefully help elucidate the great potential of peptide assembly in living cells for future healthcare applications.
Collapse
Affiliation(s)
- Xiaowei Mo
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China.
| | - Zeyu Zhang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China.
| | - Jinyan Song
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China.
| | - Yushi Wang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China.
| | - Zhilin Yu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China.
- Haihe Laboratory of Synthetic Biology, 21 West 15th Avenue, Tianjin 300308, China
| |
Collapse
|
36
|
Li L, Zhang Z, Zhou L, Ge H, Zhao Y, Gong Y, Mao GJ, Liu H. NIR Fluorescent/Photoacoustic Bimodal Imaging of Ferroptosis in Pancreatic Cancer Using Biothiols-Activable Probes. Anal Chem 2024; 96:7248-7256. [PMID: 38655839 DOI: 10.1021/acs.analchem.4c00922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Ferroptosis modulation is a powerful therapeutic option for pancreatic ductal adenocarcinoma (PDAC) with a low 5-year survival rate and lack of effective treatment methods. However, due to the dual role of ferroptosis in promoting and inhibiting pancreatic tumorigenesis, regulating the degree of ferroptosis is very important to obtain the best therapeutic effect of PDAC. Biothiols are suitable as biomarkers of imaging ferroptosis due to the dramatic decreases of biothiol levels in ferroptosis caused by the inhibited synthesis pathway of glutathione (GSH) and the depletion of biothiol by reactive oxygen species. Moreover, a very recent study reported that cysteine (Cys) depletion can lead to pancreatic tumor ferroptosis in mice and may be employed as an effective therapeutic strategy for PDAC. Therefore, visualization of biothiols in ferroptosis of PDAC will be helpful for regulating the degree of ferroptosis, understanding the mechanism of Cys depletion-induced pancreatic tumor ferroptosis, and further promoting the study and treatment of PDAC. Herein, two biothiol-activable near-infrared (NIR) fluorescent/photoacoustic bimodal imaging probes (HYD-BX and HYD-DX) for imaging of pancreatic tumor ferroptosis were reported. These two probes show excellent bimodal response performances for biothiols in solution, cells, and tumors. Subsequently, they have been employed successfully for real-time visualization of changes in concentration levels of biothiols during the ferroptosis process in PDAC cells and HepG2 cells. Most importantly, they have been further applied for bimodal imaging of ferroptosis in pancreatic cancer in mice, with satisfactory results. The development of these two probes provides new tools for monitoring changes in concentration levels of biothiols in ferroptosis and will have a positive impact on understanding the mechanism of Cys depletion-induced pancreatic tumor ferroptosis and further promoting the study and treatment of PDAC.
Collapse
Affiliation(s)
- Lingyun Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Zhipengjun Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Lei Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Hunan Normal University, Changsha 410005, P. R. China
| | - Haifeng Ge
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Yixing Zhao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Yijun Gong
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Guo-Jiang Mao
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Hongwen Liu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Hunan Normal University, Changsha 410005, P. R. China
| |
Collapse
|
37
|
Jiang Z, Zhang C, Sun Q, Wang X, Chen Y, He W, Guo Z, Liu Z. A NIR-II Photoacoustic Probe for High Spatial Quantitative Imaging of Tumor Nitric Oxide in Vivo. Angew Chem Int Ed Engl 2024; 63:e202320072. [PMID: 38466238 DOI: 10.1002/anie.202320072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/27/2024] [Accepted: 03/11/2024] [Indexed: 03/12/2024]
Abstract
Nitric oxide (NO) exhibits both pro- and anti-tumor effects. Therefore, real-time in vivo imaging and quantification of tumor NO dynamics are essential for understanding the conflicting roles of NO played in pathophysiology. The current molecular probes, however, cannot provide high-resolution imaging in deep tissues, making them unsuitable for these purposes. Herein, we designed a photoacoustic probe with an absorption maximum beyond 1000 nm for high spatial quantitative imaging of in vivo tumor NO dynamics. The probe exhibits remarkable sensitivity, selective ratiometric response behavior, and good tumor-targeting abilities, facilitating ratiometric imaging of tumor NO throughout tumor progression in a micron-resolution level. Using the probe as the imaging agent, we successfully quantified NO dynamics in tumor, liver and kidney. We have pinpointed an essential concentration threshold of around 80 nmol/cm3 for NO, which plays a crucial role in the "double-edged-sword" function of NO in tumors. Furthermore, we revealed a reciprocal relationship between the NO concentration in tumors and that in the liver, providing initial insights into the possible NO-mediated communication between tumor and the liver. We believe that the probe will help resolve conflicting aspects of NO biology and guide the design of imaging agents for tumor diagnosis and anti-cancer drug screening.
Collapse
Affiliation(s)
- Zhiyong Jiang
- College of Materials Science and Engineering, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Changli Zhang
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, 211171, China
| | - Qian Sun
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Xiaoqing Wang
- College of Materials Science and Engineering, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
- College of Science, Nanjing Forestry University, Nanjing, 210037, China
| | - Yuncong Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Weijiang He
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Zhipeng Liu
- College of Materials Science and Engineering, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
38
|
Zhang W, Chan C, Zhang K, Qin H, Yu BY, Xue Z, Zheng X, Tian J. Discovering a New Drug Against Acute Kidney Injury by Using a Tailored Photoacoustic Imaging Probe. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311397. [PMID: 38221651 DOI: 10.1002/adma.202311397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/29/2023] [Indexed: 01/16/2024]
Abstract
Acute kidney injury (AKI) has become an increasing concern for patients due to the widespread clinical use of nephrotoxic drugs. Currently, the early diagnosis of AKI is still challenging and the available therapeutic drugs cannot meet the clinical demand. Herein, this work has investigated the key redox couple involved in AKI and develops a tailored photoacoustic (PA) imaging probe (AB-DiOH) which can reversibly respond to hypochlorite (ClO-)/glutathione (GSH) with high specificity and sensitivity. This probe enables the real-time monitoring of AKI by noninvasive PA imaging, with better detection sensitivity than the blood test. Furthermore, this probe is utilized for screening nephroprotective drugs among natural products. For the first time, astragalin is discovered to be a potential new drug for the treatment of AKI. After oral administration, astragalin can be efficiently absorbed by the animal body, alleviate kidney injury, and meanwhile induce no damage to other normal tissues. The treatment mechanism of astragalin has also been revealed to be the simultaneous inhibition of oxidative stress, ferroptosis, and cuproposis. The developed PA imaging probe and the discovered drug candidate provide a promising new tool and strategy for the early diagnosis and effective treatment of AKI.
Collapse
Affiliation(s)
- Wangning Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Chenming Chan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Kaiyu Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Haifeng Qin
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Bo-Yang Yu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Zhaoli Xue
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Xianchuang Zheng
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Jiangwei Tian
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| |
Collapse
|
39
|
Xu Y, Chen J, Zhang Y, Zhang P. Recent Progress in Peptide-Based Molecular Probes for Disease Bioimaging. Biomacromolecules 2024; 25:2222-2242. [PMID: 38437161 DOI: 10.1021/acs.biomac.3c01413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Recent strides in molecular pathology have unveiled distinctive alterations at the molecular level throughout the onset and progression of diseases. Enhancing the in vivo visualization of these biomarkers is crucial for advancing disease classification, staging, and treatment strategies. Peptide-based molecular probes (PMPs) have emerged as versatile tools due to their exceptional ability to discern these molecular changes with unparalleled specificity and precision. In this Perspective, we first summarize the methodologies for crafting innovative functional peptides, emphasizing recent advancements in both peptide library technologies and computer-assisted peptide design approaches. Furthermore, we offer an overview of the latest advances in PMPs within the realm of biological imaging, showcasing their varied applications in diagnostic and therapeutic modalities. We also briefly address current challenges and potential future directions in this dynamic field.
Collapse
Affiliation(s)
- Ying Xu
- School of Biomedical Engineering and State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Junfan Chen
- School of Biomedical Engineering and State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Yuan Zhang
- Department of Pulmonary and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Pengcheng Zhang
- School of Biomedical Engineering and State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
40
|
Sun X, Xu L, Xu HD, Xie L, Wang R, Yang Z, Zhan W, Shen S, Liang G. Intracellular Nitroreductase-Triggered "On" and "Enhanced" Photoacoustic Signals for Sensitive Imaging of Tumor Hypoxia. Adv Healthc Mater 2024; 13:e2303472. [PMID: 37985951 DOI: 10.1002/adhm.202303472] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/04/2023] [Indexed: 11/22/2023]
Abstract
Current molecular photoacoustic (PA) probes are designed with either stimulus-turned "on" or assembly-enhanced signals to trace biological analytes/events. PA probes based on the nature-derived click reaction between 2-cyano-6-aminobenzothiazole (CBT) and cysteine (Cys) (i.e., CBT-Cys click reaction) possess both "turn-on" and "enhanced" PA signals; and thus, should have higher sensitivity. Nevertheless, such PA probes, particularly those for sensitive imaging of tumor hypoxia, remain scarce. Herein, a PA probe NI-Cys(StBu)-Dap(IR780)-CBT (NI-C-CBT) is rationally designed, which after being internalized by hypoxic tumor cells, is cleaved by nitroreductase under the reduction condition to yield cyclic dimer C-CBT-Dimer to turn the PA signal "ON" and subsequently assembled into nanoparticles C-CBT-NPs with additionally enhanced PA signal ("Enhanced"). NI-C-CBT exhibits 1.7-fold "ON" and 3.2-fold overall "Enhanced" PA signals in vitro. Moreover, it provides 1.9-fold and 2.8-fold overall enhanced PA signals for tumor hypoxia imaging in HeLa cells and HeLa tumor-bearing mice, respectively. This strategy is expected to be widely applied to design more "smart" PA probes for sensitive imaging of important biological events in vivo in near future.
Collapse
Affiliation(s)
- Xianbao Sun
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Lingling Xu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Hai-Dong Xu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Limin Xie
- Oncology and Hematology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, Zhejiang, 325027, China
| | - Rui Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Zhimou Yang
- Oncology and Hematology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, Zhejiang, 325027, China
| | - Wenjun Zhan
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Shurong Shen
- Oncology and Hematology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, Zhejiang, 325027, China
| | - Gaolin Liang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| |
Collapse
|
41
|
Jiang Z, Zhang C, Wang X, Ling Z, Chen Y, Guo Z, Liu Z. A Small-Molecule Ratiometric Photoacoustic Probe for the High-Spatiotemporal-Resolution Imaging of Copper(II) Dynamics in the Mouse Brain. Angew Chem Int Ed Engl 2024; 63:e202318340. [PMID: 38303099 DOI: 10.1002/anie.202318340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/22/2024] [Accepted: 02/01/2024] [Indexed: 02/03/2024]
Abstract
Copper dysmetabolism is associated with various neurodegenerative disorders, making high-spatiotemporal-resolution imaging of Cu2+ in the brain essential for understanding the underlying pathophysiological processes. Nevertheless, the current probes encounter obstacles in crossing the blood-brain barrier (BBB) and providing high-spatial-resolution in deep tissues. Herein, we present a photoacoustic probe capable of imaging Cu2+ dynamics in the mouse brain with high-spatiotemporal-resolution. The probe demonstrates selective ratiometric and reversible responses to Cu2+ , while also efficiently crossing the BBB. Using the probe as the imaging agent, we successfully visualized Cu2+ in the brain of Parkinson's disease (PD) model mouse with a remarkable micron-level resolution. The imaging results revealed a significant increase in Cu2+ levels in the cerebral cortex as PD progresses, highlighting the close association between Cu2+ alternations in the region and the disease. We also demonstrated that the probe can be used to monitor changes in Cu2+ distribution in the PD model mouse brain during L-dopa intervention. Mechanism studies suggest that the copper dyshomeostasis in the PD mouse brain was dominated by the expression levels of divalent metal transporter 1. The application of our probe in imaging Cu2+ dynamics in the mouse brain offers valuable insights into the copper-related molecular mechanisms underlying neurodegenerative diseases.
Collapse
Affiliation(s)
- Zhiyong Jiang
- College of Materials Science and Engineering, College of Science, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Changli Zhang
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, 211171, China
| | - Xiaoqing Wang
- College of Materials Science and Engineering, College of Science, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Zongxin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, the, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Yuncong Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Zhipeng Liu
- College of Materials Science and Engineering, College of Science, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
42
|
Zhang R, Thoröe-Boveleth S, Chigrin DN, Kiessling F, Lammers T, Pallares RM. Nanoscale engineering of gold nanostars for enhanced photoacoustic imaging. J Nanobiotechnology 2024; 22:115. [PMID: 38493118 PMCID: PMC10943878 DOI: 10.1186/s12951-024-02379-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/28/2024] [Indexed: 03/18/2024] Open
Abstract
Photoacoustic (PA) imaging is a diagnostic modality that combines the high contrast resolution of optical imaging with the high tissue penetration of ultrasound. While certain endogenous chromophores can be visualized via PA imaging, many diagnostic assessments require the administration of external probes. Anisotropic gold nanoparticles are particularly valued as contrast agents, since they produce strong PA signals and do not photobleach. However, the synthesis of anisotropic nanoparticles typically requires cytotoxic reagents, which can hinder their biological application. In this work, we developed new PA probes based on nanostar cores and polymeric shells. These AuNS were obtained through one-pot synthesis with biocompatible Good's buffers, and were subsequently functionalized with polyethylene glycol, chitosan or melanin, three coatings widely used in (pre)clinical research. Notably, the structural features of the nanostar cores strongly affected the PA signal. For instance, despite displaying similar sizes (i.e. 45 nm), AuNS obtained with MOPS buffer generated between 2 and 3-fold greater signal intensities in the region between 700 and 800 nm than nanostars obtained with HEPES and EPPS buffers, and up to 25-fold stronger signals than spherical gold nanoparticles. A point source analytical model demonstrated that AuNS synthesized with MOPS displayed greater absorption coefficients than the other particles, corroborating the stronger PA responses. Furthermore, the AuNS shell not only improved the biocompatibility of the nanoconstructs but also affected their performance, with melanin coating enhancing the signal more than 4-fold, due to its own PA capacity, as demonstrated by both in vitro and ex vivo imaging. Taken together, these results highlight the strengths of gold nanoconstructs as PA probes and offer insights into the design rules for the nanoengineering of new nanodiagnostic agents.
Collapse
Affiliation(s)
- Rui Zhang
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Sven Thoröe-Boveleth
- Institute for Occupational, Social and Environmental Medicine, Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany
| | - Dmitry N Chigrin
- Institute of Physics (1A), RWTH Aachen University, 52056, Aachen, Germany
- DWI - Leibniz Institute for Interactive Materials, 52076, Aachen, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Roger M Pallares
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, 52074, Aachen, Germany.
| |
Collapse
|
43
|
Wang L, Xiong Z, Zhi Sun J, Huang F, Zhang H, Zhong Tang B. How the Length of Through-Space Conjugation Influences the Clusteroluminescence of Oligo(Phenylene Methylene)s. Angew Chem Int Ed Engl 2024; 63:e202318245. [PMID: 38165147 DOI: 10.1002/anie.202318245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/21/2023] [Accepted: 01/02/2024] [Indexed: 01/03/2024]
Abstract
The length and mode of conjugation directly affect the molecular electronic structure, which has been extensively studied in through-bond conjugation (TBC) systems. Corresponding research greatly promotes the development of TBC-based luminophores. However, how the length and mode of through-space conjugation (TSC), one kind of weak interaction, influence the photophysical properties of non-conjugated luminophores remains a relatively unexplored field. Here, we unveil a non-linear relationship between TSC length and emission characteristics in non-conjugated systems, in contrast to the reported proportional correlation in TBC systems. More specifically, oligo(phenylene methylene)s (OPM[4]-OPM[7]) exhibit stronger TSC and prominent blue clusteroluminescence (CL) (≈440 nm) compared to shorter counterparts (OPM[2] and OPM[3]). OPM[6] demonstrates the highest solid-state quantum yield (40 %), emphasizing the importance of balancing flexibility and rigidity. Further theoretical calculations confirmed that CL of these oligo(phenylene methylene)s was determined by stable TSC derived from the inner rigid Diphenylmethane (DPM) segments within the oligomers instead of the outer ones. This discovery challenges previous assumptions and adds a new dimension to the understanding of TSC-based luminophores in non-conjugated systems.
Collapse
Affiliation(s)
- Lei Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Zuping Xiong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
- Centre of Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing, 312000, China
| | - Jing Zhi Sun
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- Centre of Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing, 312000, China
| | - Feihe Huang
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Haoke Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
- Centre of Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing, 312000, China
| | - Ben Zhong Tang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172, China
| |
Collapse
|
44
|
Xiao H, Wu GL, Tan S, Tan X, Yang Q. Recent Progress on Tumor Microenvironment-Activated NIR-II Phototheranostic Agents with Simultaneous Activation for Diagnosis and Treatment. Chem Asian J 2024; 19:e202301036. [PMID: 38230541 DOI: 10.1002/asia.202301036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/18/2024]
Abstract
Malignant tumors seriously threaten human life and well-being. Emerging Near-infrared II (NIR-II, 1000-1700 nm) phototheranostic nanotechnology integrates diagnostic and treatment modalities, offering merits including improved tissue penetration and enhanced spatiotemporal resolution. This remarkable progress has opened promising avenues for advancing tumor theranostic research. The tumor microenvironment (TME) differs from normal tissues, exhibiting distinct attributes such as hypoxia, acidosis, overexpressed hydrogen peroxide, excess glutathione, and other factors. Capitalizing on these attributes, researchers have developed TME-activatable NIR-II phototheranostic agents with diagnostic and therapeutic attributes concurrently. Therefore, developing TME-activatable NIR-II phototheranostic agents with diagnostic and therapeutic activation holds significant research importance. Currently, research on TME-activatable NIR-II phototheranostic agents is still in its preliminary stages. This review examines the recent advances in developing dual-functional NIR-II activatable phototheranostic agents over the past years. It systematically presents NIR-II phototheranostic agents activated by various TME factors such as acidity (pH), hydrogen peroxide (H2 O2 ), glutathione (GSH), hydrogen sulfide (H2 S), enzymes, and their hybrid. This encompasses NIR-II fluorescence and photoacoustic imaging diagnostics, along with therapeutic modalities, including photothermal, photodynamic, chemodynamic, and gas therapies triggered by these TME factors. Lastly, the difficulties and opportunities confronting NIR-II activatable phototheranostic agents in the simultaneous diagnosis and treatment field are highlighted.
Collapse
Affiliation(s)
- Hao Xiao
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28, West Changsheng Road, Hengyang City, Hunan Province, 421001, China
- MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, University of South China, 28, West Changsheng Road, Hengyang City, Hunan Province, 421001, China
| | - Gui-Long Wu
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28, West Changsheng Road, Hengyang City, Hunan Province, 421001, China
- MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, University of South China, 28, West Changsheng Road, Hengyang City, Hunan Province, 421001, China
| | - Senyou Tan
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28, West Changsheng Road, Hengyang City, Hunan Province, 421001, China
- MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, University of South China, 28, West Changsheng Road, Hengyang City, Hunan Province, 421001, China
| | - Xiaofeng Tan
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28, West Changsheng Road, Hengyang City, Hunan Province, 421001, China
- MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, University of South China, 28, West Changsheng Road, Hengyang City, Hunan Province, 421001, China
- National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, 53 Xiangchun Road, Changsha City, Hunan Province, 410008, China
| | - Qinglai Yang
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28, West Changsheng Road, Hengyang City, Hunan Province, 421001, China
- MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, University of South China, 28, West Changsheng Road, Hengyang City, Hunan Province, 421001, China
- National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, 53 Xiangchun Road, Changsha City, Hunan Province, 410008, China
| |
Collapse
|
45
|
Zhou Y, Xu L, Sun X, Zhan W, Liang G. In situ peptide assemblies for bacterial infection imaging and treatment. NANOSCALE 2024; 16:3211-3225. [PMID: 38288668 DOI: 10.1039/d3nr05557d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Bacterial infections, especially antibiotic-resistant ones, remain a major threat to human health. Advances in nanotechnology have led to the development of numerous antimicrobial nanomaterials. Among them, in situ peptide assemblies, formed by biomarker-triggered self-assembly of peptide-based building blocks, have received increasing attention due to their unique merits of good spatiotemporal controllability and excellent disease accumulation and retention. In recent years, a variety of "turn on" imaging probes and activatable antibacterial agents based on in situ peptide assemblies have been developed, providing promising alternatives for the treatment and diagnosis of bacterial infections. In this review, we introduce representative design strategies for in situ peptide assemblies and highlight the bacterial infection imaging and treatment applications of these supramolecular materials. Besides, current challenges in this field are proposed.
Collapse
Affiliation(s)
- Yanyan Zhou
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing 210093, China
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Lingling Xu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou, Nanjing, Jiangsu 210096, China.
| | - Xianbao Sun
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou, Nanjing, Jiangsu 210096, China.
| | - Wenjun Zhan
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou, Nanjing, Jiangsu 210096, China.
| | - Gaolin Liang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou, Nanjing, Jiangsu 210096, China.
| |
Collapse
|
46
|
Wang Y, Zhang Y, Li M, Gao X, Su D. An Efficient Strategy for Constructing Fluorescent Nanoprobes for Prolonged and Accurate Tumor Imaging. Anal Chem 2024; 96:2481-2490. [PMID: 38293931 DOI: 10.1021/acs.analchem.3c04495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Activatable near-infrared (NIR) fluorescent probes possess advantages of high selectivity, sensitivity, and deep imaging depth, holding great potential in the early diagnosis and prognosis assessment of tumors. However, small-molecule fluorescent probes are largely limited due to the rapid diffusion and metabolic clearance of activated fluorophores in vivo. Herein, we propose an efficient and reproducible novel strategy to construct activatable fluorescent nanoprobes through bioorthogonal reactions and the strong gold-sulfur (Au-S) interactions to achieve an enhanced permeability and retention (EPR) effect, thereby achieving prolonged and high-contrast tumor imaging in vivo. To demonstrate the merits of this strategy, we prepared an activatable nanoprobe, hCy-ALP@AuNP, for imaging alkaline phosphatase (ALP) activity in vivo, whose nanoscale properties facilitate accumulation and long-term retention in tumor lesions. Tumor-overexpressed ALP significantly increased the fluorescence signal of hCy-ALP@AuNP in the NIR region. More importantly, compared with the small-molecule probe hCy-ALP-N3, the nanoprobe hCy-ALP@AuNP significantly improved the distribution and retention time in the tumor, thus improving the imaging window and accuracy. Therefore, this nanoprobe platform has great potential in the efficient construction of biomarker-responsive fluorescent nanoprobes to realize precise tumor diagnosis in vivo.
Collapse
Affiliation(s)
- Yaling Wang
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, 100124 Beijing, P. R. China
| | - Yong Zhang
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, 100124 Beijing, P. R. China
| | - Mingrui Li
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, 100124 Beijing, P. R. China
| | - Xueyun Gao
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, 100124 Beijing, P. R. China
| | - Dongdong Su
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, 100124 Beijing, P. R. China
| |
Collapse
|
47
|
MacCuaig WM, Wickizer C, Van RS, Buabeng ER, Lerner MR, Grizzle WE, Shao Y, Henary M, McNally LR. Influence of structural moieties in squaraine dyes on optoacoustic signal shape and intensity. Chem 2024; 10:713-729. [PMID: 38738169 PMCID: PMC11087056 DOI: 10.1016/j.chempr.2023.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Optoacoustic imaging has grown in clinical relevance due to inherent advantages in sensitivity, resolution, and imaging depth, but the development of contrast agents is lacking. This study assesses the influence of structural features of squaraine dyes on optoacoustic activity through computational models, in vitro testing, and in vivo experimentation. The squaraine scaffold was decorated with halogens and side-chain extensions. Extension of side chains and heavy halogenation of squaraines both increased optoacoustic signals individually, although they had a more significant effect in tandem. Density functional theory models suggest that the origin of the increased optoacoustic signal is the increase in transition dipole moment and vibrational entropy, which manifested as increased absorbance in near-infrared region (NIR) wavelengths and decreased fluorescence quantum yield. This study provides insight into the structure-function relationships that will lead guiding principles for optimizing optoacoustic contrast agents. Further developments of squaraines and other agents will further increase the relevance of optoacoustic imaging in a clinical setting.
Collapse
Affiliation(s)
- William M. MacCuaig
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA
- Department of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Carly Wickizer
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| | - Richard S. Van
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| | | | - Megan R. Lerner
- Department of Surgery, University of Oklahoma, Oklahoma City, OK 73104, USA
| | - William E. Grizzle
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Yihan Shao
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| | - Maged Henary
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
- Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Lacey R. McNally
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA
- Department of Surgery, University of Oklahoma, Oklahoma City, OK 73104, USA
- Lead contact
| |
Collapse
|
48
|
Nogita K, Sugahara T, Miki K, Mu H, Kobayashi M, Harada H, Ohe K. A reductively convertible nickel phthalocyanine precursor as a biological thiol-responsive turn-on photoacoustic contrast agent. Chem Commun (Camb) 2024; 60:1472-1475. [PMID: 38224167 DOI: 10.1039/d3cc05628g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
A nickel phthalocyanine precursor bearing poly(ethylene glycol) as a turn-on contrast agent for photoacoustic imaging was prepared. The water-soluble polymeric chains were smoothly eliminated through thiol-mediated reductive aromatization in cancer cells, enabling the detection of endogenous biological thiols in vitro and in vivo.
Collapse
Affiliation(s)
- Kohei Nogita
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| | - Takaya Sugahara
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| | - Koji Miki
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| | - Huiying Mu
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| | - Minoru Kobayashi
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroshi Harada
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kouichi Ohe
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| |
Collapse
|
49
|
Wang G, Wang W, Chen Z, Hu T, Tu L, Wang X, Hu W, Li S, Wang Z. Photothermal microneedle patch loaded with antimicrobial peptide/MnO2 hybrid nanoparticles for chronic wound healing. CHEMICAL ENGINEERING JOURNAL 2024; 482:148938. [DOI: 10.1016/j.cej.2024.148938] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
|
50
|
Ye M, Yu X, Yuan Y, He M, Zhuang J, Xiong S, Li J, Wang Y, Li C, Xiong X, Deng H. Design a dual-response two-photon fluorescent probe for simultaneous imaging of mitochondrial viscosity and peroxynitrite in a thrombosis model. Anal Chim Acta 2024; 1287:342088. [PMID: 38182381 DOI: 10.1016/j.aca.2023.342088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/13/2023] [Accepted: 11/28/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Venous thromboembolism is a sudden cardiovascular disease that can lead to death, and its pathologic development is closely related to vascular viscosity and inflammation. However, direct evidence from in vivo is really scarce. The key limitation is that the combined probes cannot detect multiple markers simultaneously, which may lead to unreliable results. Therefore, to develop a single probe that can simultaneously monitor the variations of viscosity in the vascular microenvironment as well as inflammation level during venous thrombosis. RESULTS A dual-responsive two-photon fluorescent probe, Cou-ONOO, was designed and synthesized. Cou-ONOO provides a visualization tool for monitoring the viscosity of the vascular as well as the inflammatory marker ONOO‾ during thromboembolism via dual-channel simultaneous imaging. As a single probe that can recognize dual targets, Cou-ONOO effectively avoids the problems from unreliable results caused by complex synthesis and differences in intracellular localization, diffusion, and metabolism of different dyes as using combinatorial probes. Using Cou-ONOO, simultaneous imaging the variations of viscosity and ONOO‾at the cellular and tissue levels was successfully performed. In addition, Cou-ONOO also successfully visualized and tracked the viscosity of the vascular microenvironment and ONOO‾ during venous embolism in mice. SIGNIFICANCE Experimental results show that both viscosity and inflammation are abnormally overexpressed in the microenvironment at the thrombus site during venous thrombosis. An intuitive visualization tool to elucidate the variations of viscosity as well as inflammation level in the vascular microenvironment during thrombosis was provided, which will facilitate a better clinical understanding of the pathological process of thrombosis.
Collapse
Affiliation(s)
- Miantai Ye
- Department of Vascular Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Material Science, South-central Minzu University, Wuhan, 430074, China
| | - Xiaohui Yu
- Department of Vascular Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yan Yuan
- Department of Vascular Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Meng He
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Material Science, South-central Minzu University, Wuhan, 430074, China
| | - Junli Zhuang
- Department of Vascular Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Sizheng Xiong
- Department of Vascular Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jie Li
- Department of Vascular Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yanying Wang
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Material Science, South-central Minzu University, Wuhan, 430074, China
| | - Chunya Li
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Material Science, South-central Minzu University, Wuhan, 430074, China.
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Hongping Deng
- Department of Vascular Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|