1
|
Liu Y, Luo Y, Zhang M, Zhang A, Wang L. The Emerging Strategy of Symmetry Breaking for Enhancing Energy Conversion and Storage Performance. SMALL METHODS 2024:e2401067. [PMID: 39449238 DOI: 10.1002/smtd.202401067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/09/2024] [Indexed: 10/26/2024]
Abstract
Symmetry breaking has emerged as a novel strategy to enhance energy conversion and storage performance, which refers to changes in the atomic configurations within a material reducing its internal symmetry. According to the location of the symmetry breaking, it can be classified into spontaneous symmetry breaking within the material, local symmetry breaking on the surface of the material, and symmetry breaking caused by external fields outside the material. However, there are currently few summaries in this field, so it is necessary to summarize how symmetry breaking improves energy conversion and storage performance. In this review, the fundamentals of symmetry breaking are first introduced, which allows for a deeper understanding of its meaning. Then the applications of symmetry breaking in energy conversion and storage are systematically summarized, providing various mechanisms in energy conversion and storage, as well as how to improve energy conversion performance and storage efficiency. Last but not least, the current applications of symmetry breaking are summarized and provide an outlook on its future development. It is hoped that this review can provide new insights into the applications of symmetry breaking and promote its further development.
Collapse
Affiliation(s)
- Yongqi Liu
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications (NJUPT), 9 Wenyuan, Nanjing, 210023, P. R. China
| | - Yixiang Luo
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications (NJUPT), 9 Wenyuan, Nanjing, 210023, P. R. China
| | - Mengyang Zhang
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications (NJUPT), 9 Wenyuan, Nanjing, 210023, P. R. China
| | - Anlei Zhang
- College of Science, Nanjing University of Posts and Telecommunications (NJUPT), 9 Wenyuan, Nanjing, 210023, P. R. China
| | - Longlu Wang
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications (NJUPT), 9 Wenyuan, Nanjing, 210023, P. R. China
| |
Collapse
|
2
|
Zhang X, Gong X, Abou-Hamad E, Zhou H, You X, Gascon J, Dutta Chowdhury A. Selectivity Descriptors of Methanol-to-Aromatics Process over 3-Dimensional Zeolites. Angew Chem Int Ed Engl 2024; 63:e202411197. [PMID: 38935406 DOI: 10.1002/anie.202411197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 06/28/2024]
Abstract
The zeolite-catalyzed methanol-to-aromatics (MTA) process is a promising avenue for industrial decarbonization. This process predominantly utilizes 3-dimensional 10-member ring (10-MR) zeolites like ZSM-5 and ZSM-11, chosen for their confinement effect essential for aromatization. Current research mainly focuses on enhancing selectivity and mitigating catalyst deactivation by modulating zeolites' physicochemical properties. Despite the potential, the MTA technology is at a low Technology Readiness Level, hindered by mechanistic complexities in achieving the desired selectivity towards liquid aromatics. To bridge this knowledge gap, this study proposes a roadmap for MTA catalysis by strategically combining controlled catalytic experiments with advanced characterization methods (including operando conditions and "mobility-dependent" solid-state NMR spectroscopy). It identifies the descriptor-role of Koch-carbonylated intermediates, longer-chain hydrocarbons, and the zeolites' intersectional cavities in yielding preferential liquid aromatics selectivity. Understanding these selectivity descriptors and architectural impacts is vital, potentially advancing other zeolite-catalyzed emerging technologies.
Collapse
Affiliation(s)
- Xin Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, Hubei, P. R., China
| | - Xuan Gong
- College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, Hubei, P. R., China
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), 23955, Thuwal, Saudi Arabia
| | - Edy Abou-Hamad
- Imaging and Characterization Department, KAUST Core Labs, King Abdullah University of Science and Technology (KAUST), 23955, Thuwal, Saudi Arabia
| | - Hexun Zhou
- College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, Hubei, P. R., China
| | - Xinyu You
- College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, Hubei, P. R., China
| | - Jorge Gascon
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), 23955, Thuwal, Saudi Arabia
| | - Abhishek Dutta Chowdhury
- College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, Hubei, P. R., China
| |
Collapse
|
3
|
Cai W, Wang C, Chu Y, Hu M, Wang Q, Xu J, Deng F. Unveiling the Brønsted acid mechanism for Meerwein-Ponndorf-Verley reduction in methanol conversion over ZSM-5. Nat Commun 2024; 15:8736. [PMID: 39384793 PMCID: PMC11464788 DOI: 10.1038/s41467-024-52999-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/27/2024] [Indexed: 10/11/2024] Open
Abstract
The conversion of methanol over zeolites offers a sustainable alternative for fuels and chemicals production. However, a complete understanding of the competing reaction pathways, particularly those leading to C-C bond formation, remains elusive. This work presents a novel mechanism for selective methanol conversion in ZSM-5 zeolites, involving a Brønsted acid site (BAS)-mediated Meerwein-Ponndorf-Verley (MPV) reduction pathway. Employing a multidimensional solid-state NMR spectroscopy combined with isotopic labeling and theoretical calculations, we identify this pathway for acetaldehyde reduction with methanol, directly contributing to ethene formation. This mechanism, involving carbenium ion intermediates like 1-hydroxyethane or 1-methoxyethane ions, contrasts with the well-established Lewis acid-catalyzed MPV process. Based on reactant adsorption modes, we propose two distinct reaction routes for BAS-MPV reduction, bridging the gap between direct and hydrocarbon pool mechanisms in methanol conversion. We further demonstrate the applicability of this pathway to acetone, highlighting its broader role in the early stages of the reaction.
Collapse
Affiliation(s)
- Wenjin Cai
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Wang
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Yueying Chu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Min Hu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiang Wang
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Jun Xu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Feng Deng
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| |
Collapse
|
4
|
Chen W, Liu Z, Yi X, Zheng A. Confinement-Driven Dimethyl Ether Carbonylation in Mordenite Zeolite as an Ultramicroscopic Reactor. Acc Chem Res 2024; 57:2804-2815. [PMID: 39189337 DOI: 10.1021/acs.accounts.4c00389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
ConspectusThe conversion of C1 molecules to methyl acetate through the carbonylation of dimethyl ether in mordenite zeolite is an appealing reaction and a crucial step in the industrial coal-to-ethanol process. Mordenite zeolite has large 12-membered-ring (12MR) channels (7.0 × 6.5 Å2) and small 8MR channels (5.7 × 2.6 Å2) connected by a side pocket (4.8 × 3.4 Å2), and this unique pore architecture supplies its high catalytic activity to the key step of carbonylation. However, the reaction mechanism of carbonylation in mordenite zeolite is not thoroughly established in that it is able to explain all experimental phenomena and improve its industrial applications, and the classical potential energy surface exerted by static density function theory calculations cannot reflect the reaction kinetics under realistic conditions because the diffusion kinetics of bulk DME (kinetic dimeter: 4.5 Å) and methyl acetate (MA, kinetic dimeter: 5.5 Å) were not well considered and their restricted diffusion in the narrow side pocket and 8MR channels may greatly alter the integrated kinetics of DME carbonylation in mordenite zeolite. Moreover, the precise illustration of the dynamic behaviors of the ketene intermediate and its derivatives (surface acetate and acylium ion) confined within various voids in mordenite has not been effectively portrayed.Advanced ab initio molecular dynamics (AIMD) simulations with or without the acceleration of enhanced sampling methods provide tremendous opportunities for operando modeling of both reaction and diffusion processes and further identify the geometrical structure and chemical properties of the reactants, intermediates, and products in the different confined voids of mordenite under realistic reaction conditions, which enables high consistency between computations and experiments.In this Account, the carbonylation process in mordenite is comprehensively described by the results of decades of continuous research and newly acquired knowledge from both multiscale simulations and in-(ex-)situ spectroscopic experiments. Three primary steps (DME demethylation to surface methoxy species (SMS), carbon-carbon bond coupling between SMS and CO to acetyl species, and methyl acetate formation by acetyl species and methanol/DME) have been respectively studied with a careful consideration of different molecular factors (reactant distribution, concentration, and attack mode). By utilizing the free-energy surface of diffusion and reaction obtained from AIMD simulations, a comprehensive reaction/diffusion kinetic model was formulated for the first time, illustrating the entire zeolite catalytic process. In this context, a comprehensive and informative analysis of the reaction kinetics of carbonylation in mordenite, including the function of the 12MR channels, 8MR channels, and side pockets in the adsorption, diffusion, and reaction of DME carbonylation, was performed. The different channels of mordenite play different roles in all ordered reaction steps, illustrating a highly organized ultramicroscopic reactor that is encompassed.
Collapse
Affiliation(s)
- Wei Chen
- Center for Molecular Modeling (CMM), Ghent University, Technologiepark-Zwijnaarde 46, Zwijnaarde 9052, Belgium
| | - Zhiqiang Liu
- Interdisciplinary Institute of NMR and Molecular Sciences, Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Xianfeng Yi
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Anmin Zheng
- Interdisciplinary Institute of NMR and Molecular Sciences, Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| |
Collapse
|
5
|
Ma P, Zhou H, Li Y, Wang M, Nastase SAF, Zhu M, Cui J, Cavallo L, Cheng K, Dutta Chowdhury A. Selectivity descriptors of the catalytic n-hexane cracking process over 10-membered ring zeolites. Chem Sci 2024; 15:11937-11945. [PMID: 39092105 PMCID: PMC11290429 DOI: 10.1039/d4sc00603h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/21/2024] [Indexed: 08/04/2024] Open
Abstract
Zeolite-mediated catalytic cracking of alkanes is pivotal in the petrochemical and refining industry, breaking down heavier hydrocarbon feedstocks into fuels and chemicals. Its relevance also extends to emerging technologies such as biomass and plastic valorization. Zeolite catalysts, with shape selectivity and selective adsorption capabilities, enhance efficiency and sustainability due to their well-defined network of pores, dimensionality, cages/cavities, and channels. This study focuses on the alkane cracking over 10-membered ring (10-MR) zeolites under industrially relevant conditions. Through a series of characterizations, including operando UV-vis spectroscopy and solid-state NMR spectroscopy, we intend to address mechanistic debates about the alkane cracking mechanism, aiming to understand the dependence of product selectivity on zeolite topologies. The findings highlight topology-dependent mechanisms, particularly the role of intersectional void spaces in zeolite ZSM-5, influencing aromatic-based product selectivity. This work provides a unique understanding of zeolite-catalyzed hydrocarbon conversion, linking alkane activation steps to the traditional hydrocarbon pool mechanism, contributing to the fundamental knowledge of this crucial industrial process.
Collapse
Affiliation(s)
- Pandong Ma
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 Hubei PR China
| | - Hexun Zhou
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 Hubei PR China
| | - Yubing Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 PR China
| | - Mengheng Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 PR China
| | - Stefan Adrian F Nastase
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST) Thuwal 23955 Saudi Arabia
| | - Mengsi Zhu
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) Xiamen 361005 PR China
| | - Jiale Cui
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 PR China
| | - Luigi Cavallo
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST) Thuwal 23955 Saudi Arabia
| | - Kang Cheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 PR China
| | | |
Collapse
|
6
|
Liu K, Shoinkhorova T, You X, Gong X, Zhang X, Chung SH, Ruiz-Martínez J, Gascon J, Dutta Chowdhury A. The synergistic interplay of hierarchy, crystal size, and Ga-promotion in the methanol-to-aromatics process over ZSM-5 zeolites. Dalton Trans 2024; 53:11344-11353. [PMID: 38899920 DOI: 10.1039/d4dt00793j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
In the context of advancing social modernization, the projected shortfall in the demand for renewable aromatic hydrocarbons is expected to widen, influenced by industries like high-end materials, pharmaceuticals, and consumer goods. Sustainable methods for aromatic production from alternative sources, particularly the methanol-to-aromatics (MTA) process using zeolite ZSM-5 and associated with the "methanol economy", have garnered widespread attention. To facilitate this transition, our project consolidates conventional strategies that impact aromatics selectivity-such as using hierarchical zeolites, metallic promoters, or altering zeolite physicochemical properties-into a unified study. Our findings demonstrate the beneficial impact of elongated crystal size and heightened zeolite hierarchy on preferential aromatics selectivity, albeit through distinct mechanisms involving the consumption of shorter olefins. While metallic promoters enhance MTA performance, crystal size, and hierarchy remain pivotal in achieving the maximized aromatics selectivity. This study contributes to a deeper understanding of achieving superior aromatics selectivity through physicochemical modifications in zeolite ZSM-5 during MTA catalysis, thereby advancing the field's comprehension of structure-reactivity relationships.
Collapse
Affiliation(s)
- Kun Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, PR China.
| | - Tuiana Shoinkhorova
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia.
| | - Xinyu You
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, PR China.
| | - Xuan Gong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, PR China.
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia.
| | - Xin Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, PR China.
| | - Sang-Ho Chung
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia.
| | - Javier Ruiz-Martínez
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia.
| | - Jorge Gascon
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia.
| | | |
Collapse
|
7
|
Zheng M, Chu Y, Wang Q, Wang Y, Xu J, Deng F. Advanced solid-state NMR spectroscopy and its applications in zeolite chemistry. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2024; 140-141:1-41. [PMID: 38705634 DOI: 10.1016/j.pnmrs.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 05/07/2024]
Abstract
Solid-state NMR spectroscopy (ssNMR) can provide details about the structure, host-guest/guest-guest interactions and dynamic behavior of materials at atomic length scales. A crucial use of ssNMR is for the characterization of zeolite catalysts that are extensively employed in industrial catalytic processes. This review aims to spotlight the recent advancements in ssNMR spectroscopy and its application to zeolite chemistry. We first review the current ssNMR methods and techniques that are relevant to characterize zeolite catalysts, including advanced multinuclear and multidimensional experiments, in situ NMR techniques and hyperpolarization methods. Of these, the methodology development on half-integer quadrupolar nuclei is emphasized, which represent about two-thirds of stable NMR-active nuclei and are widely present in catalytic materials. Subsequently, we introduce the recent progress in understanding zeolite chemistry with the aid of these ssNMR methods and techniques, with a specific focus on the investigation of zeolite framework structures, zeolite crystallization mechanisms, surface active/acidic sites, host-guest/guest-guest interactions, and catalytic reaction mechanisms.
Collapse
Affiliation(s)
- Mingji Zheng
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yueying Chu
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Qiang Wang
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Yongxiang Wang
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Xu
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Feng Deng
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China.
| |
Collapse
|
8
|
Wang C, Zheng M, Hu M, Cai W, Chu Y, Wang Q, Xu J, Deng F. Unraveling Spatially Dependent Hydrophilicity and Reactivity of Confined Carbocation Intermediates during Methanol Conversion over ZSM-5 Zeolite. J Am Chem Soc 2024; 146:8688-8696. [PMID: 38482699 DOI: 10.1021/jacs.4c01155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Carbocations play a pivotal role as reactive intermediates in zeolite-catalyzed methanol-to-hydrocarbon (MTH) transformations. However, the interaction between carbocations and water vapor and its subsequent effects on catalytic performance remain poorly understood. Using micro-magnetic resonance imaging (μMRI) and solid-state NMR techniques, this work investigates the hydrophilic behavior of cyclopentenyl cations within ZSM-5 pores under vapor conditions. We show that the polar cationic center of cyclopentenyl cations readily initiates water nucleus formation through water molecule capture. This leads to an inhomogeneous water adsorption gradient along the axial positions of zeolite, correlating with the spatial distribution of carbocation concentrations. The adsorbed water promotes deprotonation and aromatization of cyclopentenyl cations, significantly enhancing the aromatic product selectivity in MTH catalysis. These results reveal the important influence of adsorbed water in modulating the carbocation reactivity within confined zeolite pores.
Collapse
Affiliation(s)
- Chao Wang
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Mingji Zheng
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Min Hu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wenjin Cai
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yueying Chu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Qiang Wang
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jun Xu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Feng Deng
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
9
|
Zhou H, Gong X, Abou-Hamad E, Ye Y, Zhang X, Ma P, Gascon J, Chowdhury AD. Tracking the Impact of Koch-Carbonylated Organics During the Zeolite ZSM-5 Catalyzed Methanol-to-Hydrocarbons Process. Angew Chem Int Ed Engl 2024; 63:e202318250. [PMID: 38253820 DOI: 10.1002/anie.202318250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 01/24/2024]
Abstract
A methanol-based economy offers an efficient solution to current energy transition challenges, where the zeolite-catalyzed methanol-to-hydrocarbons (MTH) process would be a key enabler in yielding synthetic fuels/chemicals from renewable sources. Despite its original discovery over half a century ago over the zeolite ZSM-5, the practical application of this process in a CO2 -neutral scenario has faced several obstacles. One prominent challenge has been the intricate mechanistic complexities inherent in the MTH process over the zeolite ZSM-5, impeding its widespread adoption. This work takes a significant step forward by providing critical insights that bridge the gap in our understanding of the MTH process. It accomplishes this by connecting the (Koch-carbonylation-led) direct and dual cycle mechanisms, which operate during the early and steady-state phases of MTH catalysis, respectively. To unravel these mechanistic intricacies, we have performed catalytic and operando (i.e., UV/Vis coupled with an online mass spectrometer) and solid-state NMR spectroscopic-based investigations on the MTH process, involving co-feeding methanol and acetone (cf. a key Koch-carbonylated species), including selective isotope-labeling studies. Our iterative research approach revealed that (Koch-)carbonyl group selectively promotes the side-chain mechanism within the arene cycle of the dual cycle mechanism, impacting the preferential formation of BTX fraction (i.e., benzene-toluene-xylene) primarily.
Collapse
Affiliation(s)
- Hexun Zhou
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Xuan Gong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Edy Abou-Hamad
- Imaging and Characterization Department, KAUST Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Yiru Ye
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Xin Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Pandong Ma
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Jorge Gascon
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Abhishek Dutta Chowdhury
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| |
Collapse
|
10
|
Filez M, Walke P, Le-The H, Toyouchi S, Peeters W, Tomkins P, Eijkel JCT, De Feyter S, Detavernier C, De Vos DE, Uji-I H, Roeffaers MBJ. Nanoscale Chemical Diversity of Coke Deposits on Nanoprinted Metal Catalysts Visualized by Tip-Enhanced Raman Spectroscopy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305984. [PMID: 37938141 DOI: 10.1002/adma.202305984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/31/2023] [Indexed: 11/09/2023]
Abstract
Coke formation is the prime cause of catalyst deactivation, where undesired carbon wastes block the catalyst surface and hinder further reaction in a broad gamut of industrial chemical processes. Yet, the origins of coke formation and their distribution across the catalyst remain elusive, obstructing the design of coke-resistant catalysts. Here, the first-time application of tip-enhanced Raman spectroscopy (TERS) is demonstrated as a nanoscale chemical probe to localize and identify coke deposits on a post-mortem metal nanocatalyst. Monitoring coke at the nanoscale circumvents bulk averaging and reveals the local nature of coke with unmatched detail. The nature of coke is chemically diverse and ranges from nanocrystalline graphite to disordered and polymeric coke, even on a single nanoscale location of a top-down nanoprinted SiO2 -supported Pt catalyst. Surprisingly, not all Pt is an equal producer of coke, where clear isolated coke "hotspots" are present non-homogeneously on Pt which generate large amounts of disordered coke. After their formation, coke shifts to the support and undergoes long-range transport on the surrounding SiO2 surface, where it becomes more graphitic. The presented results provide novel guidelines to selectively free-up the coked metal surface at more mild rejuvenation conditions, thus securing the long-term catalyst stability.
Collapse
Affiliation(s)
- Matthias Filez
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
- Conformal Coating of Nanomaterials (CoCooN), Department of Solid State Sciences, Ghent University, Krijgslaan 281/S1, Ghent, 9000, Belgium
| | - Peter Walke
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | - Hai Le-The
- BIOS Lab-on-a-Chip Group, MESA+ Institute, University of Twente, Enschede, NB, 7522, The Netherlands
| | - Shuichi Toyouchi
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | - Wannes Peeters
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | - Patrick Tomkins
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | - Jan C T Eijkel
- BIOS Lab-on-a-Chip Group, MESA+ Institute, University of Twente, Enschede, NB, 7522, The Netherlands
| | - Steven De Feyter
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | - Christophe Detavernier
- Conformal Coating of Nanomaterials (CoCooN), Department of Solid State Sciences, Ghent University, Krijgslaan 281/S1, Ghent, 9000, Belgium
| | - Dirk E De Vos
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | - Hiroshi Uji-I
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
- Research Institute for Electronic Science (RIES), Hokkaido University, Sapporo, Hokkaido, 001-0020, Japan
- Division of Information Science and Technology, Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Hokkaido, 060-0814, Japan
| | - Maarten B J Roeffaers
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| |
Collapse
|
11
|
Gomes GJ, Zalazar MF, Padilha JC, Costa MB, Bazzi CL, Arroyo PA. Unveiling the mechanisms of carboxylic acid esterification on acid zeolites for biomass-to-energy: A review of the catalytic process through experimental and computational studies. CHEMOSPHERE 2024; 349:140879. [PMID: 38061565 DOI: 10.1016/j.chemosphere.2023.140879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/19/2023] [Accepted: 12/01/2023] [Indexed: 01/10/2024]
Abstract
In recent years, there has been significant interest from industrial and academic areas in the esterification of carboxylic acids catalyzed by acidic zeolites, as it represents a sustainable and economically viable approach to producing a wide range of high-value-added products. However, there is a lack of comprehensive reviews that address the intricate reaction mechanisms occurring at the catalyst interface at both the experimental and atomistic levels. Therefore, in this review, we provide an overview of the esterification reaction on acidic zeolites based on experimental and theoretical studies. The combination of infrared spectroscopy with atomistic calculations and experimental strategies using modulation excitation spectroscopy techniques combined with phase-sensitive detection is presented as an approach to detecting short-lived intermediates at the interface of zeolitic frameworks under realistic reaction conditions. To achieve this goal, this review has been divided into four sections: The first is a brief introduction highlighting the distinctive features of this review. The second addresses questions about the topology and activity of different zeolitic systems, since these properties are closely correlated in the esterification process. The third section deals with the mechanisms proposed in the literature. The fourth section presents advances in IR techniques and theoretical calculations that can be applied to gain new insights into reaction mechanisms. Finally, this review concludes with a subtle approach, highlighting the main aspects and perspectives of combining experimental and theoretical techniques to elucidate different reaction mechanisms in zeolitic systems.
Collapse
Affiliation(s)
- Glaucio José Gomes
- Laboratorio de Estructura Molecular y Propiedades (LEMyP), Instituto de Química Básica y Aplicada Del Nordeste Argentino, (IQUIBA-NEA), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional Del Nordeste (CONICET-UNNE), Avenida Libertad 5460, 3400, Corrientes, Argentina; Laboratório de Catálise Heterogênea e Biodiesel (LCHBio), Universidade Estadual de Maringá (UEM), Avenida Colombo, 5790, (87020-900), Maringá, Paraná, Brazil; Programa de Pós-Graduação Interdisciplinar Em Energia e Sustentabilidade, Universidade Federal da Integração Latino-Americana (UNILA), Avenida Presidente Tancredo Neves, 3838, (85870-650), Foz Do Iguaçu, Paraná, Brazil.
| | - María Fernanda Zalazar
- Laboratorio de Estructura Molecular y Propiedades (LEMyP), Instituto de Química Básica y Aplicada Del Nordeste Argentino, (IQUIBA-NEA), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional Del Nordeste (CONICET-UNNE), Avenida Libertad 5460, 3400, Corrientes, Argentina.
| | - Janine Carvalho Padilha
- Programa de Pós-Graduação Interdisciplinar Em Energia e Sustentabilidade, Universidade Federal da Integração Latino-Americana (UNILA), Avenida Presidente Tancredo Neves, 3838, (85870-650), Foz Do Iguaçu, Paraná, Brazil
| | - Michelle Budke Costa
- Universidade Tecnológica Federal Do Paraná (UTFPR), Avenida Brasil 4232, (85884-000), Medianeira, Brazil
| | - Claudio Leones Bazzi
- Universidade Tecnológica Federal Do Paraná (UTFPR), Avenida Brasil 4232, (85884-000), Medianeira, Brazil
| | - Pedro Augusto Arroyo
- Laboratório de Catálise Heterogênea e Biodiesel (LCHBio), Universidade Estadual de Maringá (UEM), Avenida Colombo, 5790, (87020-900), Maringá, Paraná, Brazil
| |
Collapse
|
12
|
Azizova LR, Kulik TV, Palianytsia BB, Ilchenko MM, Telbiz GM, Balu AM, Tarnavskiy S, Luque R, Roldan A, Kartel MT. The Role of Surface Complexes in Ketene Formation from Fatty Acids via Pyrolysis over Silica: from Platform Molecules to Waste Biomass. J Am Chem Soc 2023; 145:26592-26610. [PMID: 38047620 PMCID: PMC10722514 DOI: 10.1021/jacs.3c06966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 12/05/2023]
Abstract
Fatty acids (FA) are the main constituents of lipids and oil crop waste, considered to be a promising 2G biomass that can be converted into ketenes via catalytic pyrolysis. Ketenes are appraised as promising synthons for the pharmaceutical, polymer, and chemical industries. Progress in the thermal conversion of short- and long-chain fatty acids into ketenes requires a deep understanding of their interaction mechanisms with the nanoscale oxide catalysts. In this work, the interactions of fatty acids with silica are investigated using a wide range of experimental and computational techniques (TPD MS, DFT, FTIR, in situ IR, equilibrium adsorption, and thermogravimetry). The adsorption isotherms of linear and branched fatty acids C1-C6 on the silica surface from aqueous solution have been obtained. The relative quantities of different types of surface complexes, as well as kinetic parameters of their decomposition, were calculated. The formation of surface complexes with a coordination bond between the carbonyl oxygens and silicon atoms in the surface-active center, which becomes pentacoordinate, was confirmed by DFT calculations, in good agreement with the IR feature at ∼1680 cm 1. Interestingly, ketenes release relate to these complexes' decomposition as confirmed by the thermal evolution of the absorption band (1680 cm-1) synchronously with the TPD peak of the ketene molecular ion. The established regularities of the ketenezation are also observed for the silica-induced pyrolysis of glyceryl trimyristate and real waste, rapeseed meals.
Collapse
Affiliation(s)
- Liana R. Azizova
- School
of Dentistry, Cardiff University, Heath Park, Cardiff CF14 4XY, U.K.
- Chuiko
Institute of Surface Chemistry, National
Academy of Science of Ukraine, Kyiv 03164, Ukraine
| | - Tetiana V. Kulik
- Chuiko
Institute of Surface Chemistry, National
Academy of Science of Ukraine, Kyiv 03164, Ukraine
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K.
| | - Borys B. Palianytsia
- Chuiko
Institute of Surface Chemistry, National
Academy of Science of Ukraine, Kyiv 03164, Ukraine
- Departamento
de Química Orgánica, Universidad
de Córdoba, Campus de Rabanales, Edificio Marie Curie (C-3), Ctra Nnal IV-A,
Km 396, Cordoba E14014, Spain
| | - Mykola M. Ilchenko
- Institute
of Molecular Biology and Genetics, National Academy of Science of
Ukraine, 150 Zabolotnogo Str., Kyiv 03680, Ukraine
| | - German M. Telbiz
- National
Academy of Science of Ukraine, L. V. Pisarzhevsky
Institute of Physical Chemistry, Nauky Av. 31, Kyiv 03039, Ukraine
| | - Alina M. Balu
- Departamento
de Química Orgánica, Universidad
de Córdoba, Campus de Rabanales, Edificio Marie Curie (C-3), Ctra Nnal IV-A,
Km 396, Cordoba E14014, Spain
| | - Sergiy Tarnavskiy
- Institute
of Molecular Biology and Genetics, National Academy of Science of
Ukraine, 150 Zabolotnogo Str., Kyiv 03680, Ukraine
| | - Rafael Luque
- Universitá
degli studi Mediterranea di Reggio Calabria (UNIRC), DICEAM, Via Zehender
(giá via Graziella), Loc. Feo di Vito, I89122 Reggio Calabria, Italy
- Universidad
ECOTEC, Km. 13.5 Samborondón, Samborondón EC092302, Ecuador
| | - Alberto Roldan
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K.
| | - Mykola T. Kartel
- Chuiko
Institute of Surface Chemistry, National
Academy of Science of Ukraine, Kyiv 03164, Ukraine
| |
Collapse
|
13
|
Hemberger P, Pan Z, Wu X, Zhang Z, Kanayama K, Bodi A. Photoion Mass-Selected Threshold Photoelectron Spectroscopy to Detect Reactive Intermediates in Catalysis: From Instrumentation and Examples to Peculiarities and a Database. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:16751-16763. [PMID: 37670794 PMCID: PMC10476201 DOI: 10.1021/acs.jpcc.3c03120] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/04/2023] [Indexed: 09/07/2023]
Abstract
Photoion mass-selected threshold photoelectron spectroscopy (ms-TPES) is a synchrotron-based, universal, sensitive, and multiplexed detection tool applied in the areas of catalysis, combustion, and gas-phase reactions. Isomer-selective vibrational fingerprints in the ms-TPES of stable and reactive intermediates allow for unequivocal assignment of spectral carriers. Case studies are presented on heterogeneous catalysis, revealing the role of ketenes in the methanol-to-olefins process, the catalytic pyrolysis mechanism of lignin model compounds, and the radical chemistry upon C-H activation in oxyhalogenation. These studies demonstrate the potential of ms-TPES as an analytical technique for elucidating complex reaction mechanisms. We examine the robustness of ms-TPES assignments and address sampling effects, especially the temperature dependence of ms-TPES due to rovibrational broadening. Data acquisition approaches and the Stark shift from the extraction field are also considered to arrive at general recommendations. Finally, the PhotoElectron PhotoIon Spectral Compendium (https://pepisco.psi.ch), a spectral database hosted at Paul Scherrer Institute to support assignment, is introduced.
Collapse
Affiliation(s)
| | - Zeyou Pan
- Paul
Scherrer Institute, Villigen 5232, Switzerland
| | - Xiangkun Wu
- Paul
Scherrer Institute, Villigen 5232, Switzerland
| | - Zihao Zhang
- Paul
Scherrer Institute, Villigen 5232, Switzerland
| | - Keisuke Kanayama
- Paul
Scherrer Institute, Villigen 5232, Switzerland
- Institute
of Fluid Science, Tohoku University 2-1-1 Katahira, Aoba, Sendai 980-8577, Miyagi, Japan
- Graduate
School of Engineering, Tohoku University, 6-6 Aramaki Aza Aoba, Aoba, Sendai 980-8579, Miyagi, Japan
| | - Andras Bodi
- Paul
Scherrer Institute, Villigen 5232, Switzerland
| |
Collapse
|
14
|
Pan Z, Puente-Urbina A, Batool SR, Bodi A, Wu X, Zhang Z, van Bokhoven JA, Hemberger P. Tuning the zeolite acidity enables selectivity control by suppressing ketene formation in lignin catalytic pyrolysis. Nat Commun 2023; 14:4512. [PMID: 37500623 PMCID: PMC10374901 DOI: 10.1038/s41467-023-40179-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/12/2023] [Indexed: 07/29/2023] Open
Abstract
Unveiling catalytic mechanisms at a molecular level aids rational catalyst design and selectivity control for process optimization. In this study, we find that the Brønsted acid site density of the zeolite catalyst efficiently controls the guaiacol catalytic pyrolysis mechanism. Guaiacol demethylation to catechol initiates the reaction, as evidenced by the detected methyl radicals. The mechanism branches to form either fulvenone (c-C5H4 = C = O), a reactive ketene intermediate, by catechol dehydration, or phenol by acid-catalyzed dehydroxylation. At high Brønsted acid site density, fulvenone formation is inhibited due to surface coordination configuration of its precursor, catechol. By quantifying reactive intermediates and products utilizing operando photoelectron photoion coincidence spectroscopy, we find evidence that ketene suppression is responsible for the fivefold phenol selectivity increase. Complementary fulvenone reaction pathway calculations, along with 29Si NMR-MAS spectroscopy results corroborate the mechanism. The proposed, flexible operando approach is applicable to a broad variety of heterogeneous catalytic reactions.
Collapse
Affiliation(s)
- Zeyou Pan
- Paul Scherrer Institute, Forschungsstrasse 111, CH-5232, Villigen PSI, Switzerland
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Allen Puente-Urbina
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Syeda Rabia Batool
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Andras Bodi
- Paul Scherrer Institute, Forschungsstrasse 111, CH-5232, Villigen PSI, Switzerland
| | - Xiangkun Wu
- Paul Scherrer Institute, Forschungsstrasse 111, CH-5232, Villigen PSI, Switzerland
| | - Zihao Zhang
- Paul Scherrer Institute, Forschungsstrasse 111, CH-5232, Villigen PSI, Switzerland
| | - Jeroen A van Bokhoven
- Paul Scherrer Institute, Forschungsstrasse 111, CH-5232, Villigen PSI, Switzerland.
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland.
| | - Patrick Hemberger
- Paul Scherrer Institute, Forschungsstrasse 111, CH-5232, Villigen PSI, Switzerland.
| |
Collapse
|
15
|
Wu X, Wei Y, Liu Z. Dynamic Catalytic Mechanism of the Methanol-to-Hydrocarbons Reaction over Zeolites. Acc Chem Res 2023. [PMID: 37402692 DOI: 10.1021/acs.accounts.3c00187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
ConspectusThe methanol-to-hydrocarbons (MTH) process has provided a new route to obtaining basic chemicals without relying on an oil resource. Acidity and shape selectivity endow the zeolite with a decisive role in MTH catalysis. However, the inherent reaction characteristics of the MTH reaction over zeolites, such as the complexity of catalytic reaction kinetics, the diversity of catalytic reaction modes, and even the limitations of catalytic and diffusive decoupling, have all confused people with respect to obtaining a comprehensive mechanistic understanding. By examining the zeolite-catalyzed MTH reaction from the perspective of chemical bonding, one would realize that this reaction reflects the dynamic assembly process of C-C bonds from C1 components to multicarbon products. The key to understanding the MTH reaction lies in the mechanism by which C-C bonds are formed and rearranged in the confined microenvironment of the channel or cage structures of zeolite catalysts to achieve shape-selective production.The applications of advanced in situ spectroscopy as well as computational chemistry provide tremendous opportunities for capturing and identifying the details of the structure and properties of reactants, intermediates, and products in the confined reaction space of zeolite channels or cages, observing the real-time dynamic evolution of the catalytic surface, and modeling the elementary reaction steps at the molecular and atomic levels.In this Account, the dynamic catalytic mechanism of the zeolite-catalyzed MTH reaction will be outlined based on decades of continuous research and in-depth understanding. The combination of advanced in situ spectroscopy and theoretical methods allowed us to observe and simulate the formation, growth, and aging process on the working catalyst surface and thus map the dynamical evolution of active sites from a Brønsted acid site (BAS) to an organic-inorganic hybrid supramolecule (OIHS) in the MTH reaction. Moreover, the ever-evolving dynamic succession of the OIHS from surface methoxy species (SMS) to active ion-pair complexes (AIPC) to inert complexes (IC) guided the dynamic autocatalytic process from initiation to sustaining and then to termination, resulting in a complex interlaced hypercycle reaction network. The concept of dynamic catalysis will provide deep insight into the complex catalytic mechanisms as well as the structure-activity relationships in MTH chemistry. More importantly, we are now getting closer to the nature of zeolite catalysis beyond the traditional view of BAS catalysis.
Collapse
Affiliation(s)
- Xinqiang Wu
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
| | - Yingxu Wei
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
| | - Zhongmin Liu
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Guerra JVS, Alves LFG, Bourissou D, Lopes-de-Oliveira PS, Szalóki G. Cavity Characterization in Supramolecular Cages. J Chem Inf Model 2023. [PMID: 37129917 DOI: 10.1021/acs.jcim.3c00328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Confining molecular guests within artificial hosts has provided a major driving force in the rational design of supramolecular cages with tailored properties. Over the last 30 years, a set of design strategies have been developed that enabled the controlled synthesis of a myriad of cages. Recently, there has been a growing interest in involving in silico methods in this toolbox. Cavity shape and size are important parameters that can be easily accessed by inexpensive geometric algorithms. Although these algorithms are well developed for the detection of nonartificial cavities (e.g., enzymes), they are not routinely used for the rational design of supramolecular cages. In order to test the capabilities of this tool, we have evaluated the performance and characteristics of seven different cavity characterization software in the context of 22 analogues of well-known supramolecular cages. Among the tested software, KVFinder project and Fpocket proved to be the most software to characterize supramolecular cavities. With the results of this work, we aim to popularize this underused technique within the supramolecular community.
Collapse
Affiliation(s)
- João V S Guerra
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biosciences National Laboratory (LNBio), Rua Giuseppe Máximo Scolfaro, 10000, Bosque Das Palmeiras, Campinas, SP 13083-100, Brazil
| | - Luiz F G Alves
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biosciences National Laboratory (LNBio), Rua Giuseppe Máximo Scolfaro, 10000, Bosque Das Palmeiras, Campinas, SP 13083-100, Brazil
| | - Didier Bourissou
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA, UMR 5069), CNRS, Université Toulouse III─Paul Sabatier, 118 Route de Narbonne, Toulouse 31062, Cedex 09, France
| | - Paulo S Lopes-de-Oliveira
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biosciences National Laboratory (LNBio), Rua Giuseppe Máximo Scolfaro, 10000, Bosque Das Palmeiras, Campinas, SP 13083-100, Brazil
| | - György Szalóki
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA, UMR 5069), CNRS, Université Toulouse III─Paul Sabatier, 118 Route de Narbonne, Toulouse 31062, Cedex 09, France
| |
Collapse
|
17
|
Chizallet C, Bouchy C, Larmier K, Pirngruber G. Molecular Views on Mechanisms of Brønsted Acid-Catalyzed Reactions in Zeolites. Chem Rev 2023; 123:6107-6196. [PMID: 36996355 DOI: 10.1021/acs.chemrev.2c00896] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
The Brønsted acidity of proton-exchanged zeolites has historically led to the most impactful applications of these materials in heterogeneous catalysis, mainly in the fields of transformations of hydrocarbons and oxygenates. Unravelling the mechanisms at the atomic scale of these transformations has been the object of tremendous efforts in the last decades. Such investigations have extended our fundamental knowledge about the respective roles of acidity and confinement in the catalytic properties of proton exchanged zeolites. The emerging concepts are of general relevance at the crossroad of heterogeneous catalysis and molecular chemistry. In the present review, emphasis is given to molecular views on the mechanism of generic transformations catalyzed by Brønsted acid sites of zeolites, combining the information gained from advanced kinetic analysis, in situ, and operando spectroscopies, and quantum chemistry calculations. After reviewing the current knowledge on the nature of the Brønsted acid sites themselves, and the key parameters in catalysis by zeolites, a focus is made on reactions undergone by alkenes, alkanes, aromatic molecules, alcohols, and polyhydroxy molecules. Elementary events of C-C, C-H, and C-O bond breaking and formation are at the core of these reactions. Outlooks are given to take up the future challenges in the field, aiming at getting ever more accurate views on these mechanisms, and as the ultimate goal, to provide rational tools for the design of improved zeolite-based Brønsted acid catalysts.
Collapse
Affiliation(s)
- Céline Chizallet
- IFP Energies nouvelles, Rond-Point de l'Echangeur de Solaize, BP 3, Solaize 69360, France
| | - Christophe Bouchy
- IFP Energies nouvelles, Rond-Point de l'Echangeur de Solaize, BP 3, Solaize 69360, France
| | - Kim Larmier
- IFP Energies nouvelles, Rond-Point de l'Echangeur de Solaize, BP 3, Solaize 69360, France
| | - Gerhard Pirngruber
- IFP Energies nouvelles, Rond-Point de l'Echangeur de Solaize, BP 3, Solaize 69360, France
| |
Collapse
|
18
|
Çağlayan M, Nassereddine A, Nastase SAF, Aguilar-Tapia A, Dikhtiarenko A, Chung SH, Shterk G, Shoinkhorova T, Hazemann JL, Ruiz-Martinez J, Cavallo L, Ould-Chikh S, Gascon J. Understanding W/H-ZSM-5 catalysts for the dehydroaromatization of methane. Catal Sci Technol 2023. [DOI: 10.1039/d3cy00103b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Tungsten is the most interesting and promising metal to replace molybdenum in methane dehydroaromatization (MDA) catalysis.
Collapse
|
19
|
Huber P, Plessow PN. A computational investigation of the decomposition of acetic acid in H-SSZ-13 and its role in the initiation of the MTO process. Catal Sci Technol 2023. [DOI: 10.1039/d2cy01779b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
The zeolite-catalyzed reaction of acetic acid is important in the direct utilization of biomass and also plays a role in the reactivity of oxygenates in the methanol-to-olefins (MTO) process.
Collapse
Affiliation(s)
- Philipp Huber
- Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
| | - Philipp N. Plessow
- Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
| |
Collapse
|
20
|
Gong X, Ye Y, Chowdhury AD. Evaluating the Role of Descriptor- and Spectator-Type Reaction Intermediates During the Early Phases of Zeolite Catalysis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Xuan Gong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei People’s Republic of China
| | - Yiru Ye
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei People’s Republic of China
| | - Abhishek Dutta Chowdhury
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei People’s Republic of China
| |
Collapse
|
21
|
Dong Z, Chen W, Xu K, Liu Y, Wu J, Zhang F. Understanding the Structure–Activity Relationships in Catalytic Conversion of Polyolefin Plastics by Zeolite-Based Catalysts: A Critical Review. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Zhongwen Dong
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, People’s Republic of China
| | - Wenjun Chen
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, People’s Republic of China
| | - Keqing Xu
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, People’s Republic of China
| | - Yue Liu
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, People’s Republic of China
| | - Jing Wu
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, People’s Republic of China
| | - Fan Zhang
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, People’s Republic of China
| |
Collapse
|
22
|
Chen W, Tarach KA, Yi X, Liu Z, Tang X, Góra-Marek K, Zheng A. Charge-separation driven mechanism via acylium ion intermediate migration during catalytic carbonylation in mordenite zeolite. Nat Commun 2022; 13:7106. [DOI: 10.1038/s41467-022-34708-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 11/02/2022] [Indexed: 11/21/2022] Open
Abstract
AbstractBy employing ab initio molecular dynamic simulations, solid-state NMR spectroscopy, and two-dimensional correlation analysis of rapid scan Fourier transform infrared spectroscopy data, a new pathway is proposed for the formation of methyl acetate (MA) via the acylium ion (i.e.,CH3 − C ≡ O+) in 12-membered ring (MR) channel of mordenite by an integrated reaction/diffusion kinetics model, and this route is kinetically and thermodynamically more favorable than the traditional viewpoint in 8MR channel. From perspective of the complete catalytic cycle, the separation of these two reaction zones, i.e., the C-C bond coupling in 8MR channel and MA formation in 12MR channel, effectively avoids aggregation of highly active acetyl species or ketene, thereby reducing undesired carbon deposit production. The synergistic effect of different channels appears to account for the high carbonylation activity in mordenite that has thus far not been fully explained, and this paradigm may rationalize the observed catalytic activity of other reactions.
Collapse
|
23
|
Bocus M, Van Speybroeck V. Insights into the Mechanism and Reactivity of Zeolite-Catalyzed Alkylphenol Dealkylation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Massimo Bocus
- Center for Molecular Modeling, Ghent University, Technologiepark 46, 9052Zwijnaarde, Belgium
| | | |
Collapse
|