1
|
Cué-Sampedro R, Sánchez-Fernández JA. Supramolecular systems and their connection with metal-organic structures. Front Chem 2024; 12:1468916. [PMID: 39564433 PMCID: PMC11573591 DOI: 10.3389/fchem.2024.1468916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/09/2024] [Indexed: 11/21/2024] Open
Abstract
Supramolecular structures with specific applications are a pillar in several areas of science. Thus, from a contemporary point of view, there are several reasons to embrace a systematic order of the supramolecular concept itself. First, the structuring of a supramolecular material seems safer now than it did decades ago. Second, the interactions of metal-organic frameworks (MOFs) and supramolecular chemistry and, conversely, supramolecularity to assemble MOFs and create efficient complex systems in multiple cutting-edge applications are an image to be safeguarded. Third, perhaps we should simply limit ourselves to considering how researchers in these fields have attempted to correlate the notion of supramolecular systems by linking self-assembly considerations. In any case, these topics present advantages to optimize innovative geometries that are useful to highlight significant practical applications. This review covers a general introduction to MOFs and supramolecularity, the key unit of the study presented here, followed by a survey of recent advances in confined space chemistry, the relationships of MOFs with supramolecular structures, and the synthesis electrochemistry of MOFs and switchable MOFs to obtain a greater understanding of structure-property relationships. To conclude, some future perspectives on this promising and plausible field of science will be mentioned.
Collapse
Affiliation(s)
- Rodrigo Cué-Sampedro
- School of Engineering and Sciences, Monterrey Institute of Technology, Monterrey, Nuevo León, Mexico
| | | |
Collapse
|
2
|
Ma D, Li J, Cao Z. CH 4 Carbonylation to Acetic Acid Using H 2O as an Oxidant on a Rh-Functionalized UiO-67 Combined with Oriented External Electric Fields: Selectivity and Mechanistic Insights from DFT Calculations. Inorg Chem 2024; 63:21110-21120. [PMID: 39444298 DOI: 10.1021/acs.inorgchem.4c03309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Acetic acid (CH3COOH), as an industrially important petrochemical product, is predominantly produced via multistep energy-intensive processes. The development of a rhodium single-site heterogeneous catalyst has received considerable attention due to its potential to transform CH4 into CH3COOH in a single step. Herein, the reaction mechanism for the generation of CH3COOH from CH4, CO, and H2O catalyzed by Rh-functionalized metal-organic framework (MOF) UiO-67 and the selectivity of products CH3COOH, formic acid (HCOOH), methanol (CH3OH), and acetaldehyde (CH3CHO) under the oriented external electric fields (OEEFs) were systematically explored by density functional theory (DFT) calculations. The results reveal that the insertion of CO into Rh-CH3 is the rate-determining step with a free energy barrier of 21.0 kcal/mol in CH4 carbonylation to CH3COOH. Upon applying an OEEF of Fx = +0.0050 au along the C-C bond, the rate-determining step shifts toward H2O decomposition with the barrier of 19.6 kcal/mol, significantly improving the selectivity for CH3COOH production, compared to the major competitive HCOOH route. The Brønsted-Evans-Polanyi (BEP) relationships between key transition states, field strength, and NPA charge transfer were established. This study may guide the rational design of atomically dispersed MOF catalysts for the selective coconversion of CH4 and CO to CH3COOH using H2O as the oxidant under the OEEF.
Collapse
Affiliation(s)
- Denghui Ma
- School of New Energy, Ningbo University of Technology, Ningbo 315336, P. R. China
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 360015, P. R. China
| | - Jianming Li
- School of New Energy, Ningbo University of Technology, Ningbo 315336, P. R. China
| | - Zexing Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 360015, P. R. China
| |
Collapse
|
3
|
Liu S, Wang ZR, Lin X, Guo BY, Cai S, Zhang WG, Fan J, Zheng SR. Structural Comparisons, Fluorescence Properties, and Glass-to-Crystal Transformations of Heat-Cooled and Melt-Quenched Zeolitic Imidazolate Framework Glass. Inorg Chem 2024; 63:18574-18580. [PMID: 39303073 DOI: 10.1021/acs.inorgchem.4c01886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
As a representative of zeolitic imidazolate framework glass, agZIF-62 has been reported to be synthesized using a melt-quenching method in which the ZIF-62 crystal is heated to a temperature above the melting point. Interestingly, we unexpectedly found that agZIF-62 can also be synthesized by simple heating at temperatures lower than the melting point, which may be assisted by the release of encapsulated solvent molecules. The structural differences between melt-quenched agZIF-62 (MQ-agZIF-62) and heat-cooled agZIF-62 (HC-agZIF-62) were investigated. The results indicated that MQ-agZIF-62 is closer to the liquid state, while HC-agZIF-62 is closer to the crystal state. Interestingly, their luminescent emissions exhibit significant differences. Compared with the ZIF-62 crystal, MQ-agZIF-62 showed a blue-shift of 14 nm, whereas HC-agZIF-62 showed a red-shift of 9 nm. The emission intensity of agZIF-62 is also significantly stronger than that of ZIF-62; thus, rapid semiquantitative detection of the content of the MOF glass in glass and crystal mixtures can be achieved. In addition, HC-agZIF-62 and MQ-agZIF-62 can transform into ZIF-62 crystals via a solvent-media mechanism. This study provides new insights into ZIF-62 glass.
Collapse
Affiliation(s)
- Shuai Liu
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, and School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Zhi-Rui Wang
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, and School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Xian Lin
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, and School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Bao-Ying Guo
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, and School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Songliang Cai
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, and School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Wei-Guang Zhang
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, and School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Jun Fan
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, and School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Sheng-Run Zheng
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, and School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| |
Collapse
|
4
|
Jiang L, Lin L, Wang Z, Ai H, Jia J, Zhu G. Constructing Isoreticular Metal-Organic Frameworks by Silver-Carbon Bonds. J Am Chem Soc 2024; 146:22930-22936. [PMID: 39115250 DOI: 10.1021/jacs.4c07945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
The incorporation of new coordinate bonds and the development of universal methods for new structures have always been of major interest in metal-organic framework (MOF) research. The poor reversibility makes metal-carbon (M-C) bonds a great challenge to adopt as linkages to construct crystalline MOFs. Herein, three isoreticular microcrystalline MOFs connected by silver-carbon (Ag-C) bonds are presented for the first time and named AgC-MOFs. Their structures contain a double coordination mode (σ and π) between Ag(I) and alkynyl. The three AgC-MOFs all exhibit three-dimensional (3D) frameworks with uniform one-dimensional (1D) hexagonal channels, and the pore width could be tuned from 1.1 to 1.8 nm. The construction of crystalline MOFs using poorly reversible Ag-C coordinate bonds extends the nexuses for the MOF structure and lights up more possibilities for the systematic design of MOFs.
Collapse
Affiliation(s)
- Li Jiang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Lin Lin
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Zihao Wang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Hongyu Ai
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Jiangtao Jia
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Guangshan Zhu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
5
|
Rubio-Gaspar A, Misturini A, Millan R, Almora-Barrios N, Tatay S, Bon V, Bonneau M, Guillerm V, Eddaoudi M, Navalón S, Kaskel S, Armentano D, Martí-Gastaldo C. Translocation and Confinement of Tetraamines in Adaptable Microporous Cavities. Angew Chem Int Ed Engl 2024; 63:e202402973. [PMID: 38644341 DOI: 10.1002/anie.202402973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 04/23/2024]
Abstract
Metal-Organic Frameworks can be grafted with amines by coordination to metal vacancies to create amine-appended solid adsorbents, which are being considered as an alternative to using aqueous amine solutions for CO2 capture. In this study, we propose an alternative mechanism that does not rely on the use of neutral metal vacancies as binding sites but is enabled by the structural adaptability of heterobimetallic Ti2Ca2 clusters. The combination of hard (Ti4+) and soft (Ca2+) metal centers in the inorganic nodes of the framework enables MUV-10 to adapt its pore windows to the presence of triethylenetetramine molecules. This dynamic cluster response facilitates the translocation and binding of tetraamine inside the microporous cavities to enable the formation of bis-coordinate adducts that are stable in water. The extension of this grafting concept from MUV-10 to larger cavities not restrictive to CO2 diffusion will complement other strategies available for the design of molecular sorbents for decarbonization applications.
Collapse
Affiliation(s)
- Ana Rubio-Gaspar
- Functional Inorganic Materials Team, Instituto de Ciencia Molecular (ICMol), Universidad de València, c/Catedrático José Beltrán, 2., Paterna, 46980, Spain
| | - Alechania Misturini
- Functional Inorganic Materials Team, Instituto de Ciencia Molecular (ICMol), Universidad de València, c/Catedrático José Beltrán, 2., Paterna, 46980, Spain
| | - Reisel Millan
- Instituto de Tecnología Química (ITQ), Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (CSIC), Valencia, 46022, Spain
| | - Neyvis Almora-Barrios
- Functional Inorganic Materials Team, Instituto de Ciencia Molecular (ICMol), Universidad de València, c/Catedrático José Beltrán, 2., Paterna, 46980, Spain
| | - Sergio Tatay
- Functional Inorganic Materials Team, Instituto de Ciencia Molecular (ICMol), Universidad de València, c/Catedrático José Beltrán, 2., Paterna, 46980, Spain
| | - Volodymyr Bon
- Technische Universität Dresden, Department of Inorganic Chemistry, Dresden, 01069, Germany
| | - Mickaele Bonneau
- Functional Materials Design, Discovery and Development Research Group, Advanced Membranes and Porous Materials Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Vincent Guillerm
- Functional Materials Design, Discovery and Development Research Group, Advanced Membranes and Porous Materials Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Mohamed Eddaoudi
- Functional Materials Design, Discovery and Development Research Group, Advanced Membranes and Porous Materials Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Sergio Navalón
- Departamento de Química, Universitat Politècnica de València, Valencia, 46022, Spain
| | - Stefan Kaskel
- Technische Universität Dresden, Department of Inorganic Chemistry, Dresden, 01069, Germany
| | - Donatella Armentano
- Dipartimento di Chimica e Tecnologie Chimiche (CTC), Università della Calabria, 87036, Rende, Cosenza, Italy
| | - Carlos Martí-Gastaldo
- Functional Inorganic Materials Team, Instituto de Ciencia Molecular (ICMol), Universidad de València, c/Catedrático José Beltrán, 2., Paterna, 46980, Spain
| |
Collapse
|
6
|
Wu Q, Siddique MS, Wu M, Wang H, Zhang Y, Yang R, Cui L, Ma W, Yan J, Yang Y. Synergistically enhancing the selective adsorption of cationic dyes through copper impregnation and amino functionality into iron-based metal-organic frameworks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171280. [PMID: 38423330 DOI: 10.1016/j.scitotenv.2024.171280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/06/2024] [Accepted: 02/23/2024] [Indexed: 03/02/2024]
Abstract
Dyes contaminating the sewages have seriously threatened the living beings and their separation from wastewater in terms of potential resource recovery is of high value. Herein, both of metal node doping and ligand group grafting were taken into account to enhance the adsorption selectivity of Fe-MOFs towards cationic dyes. The positive correlation between copper doping amount and selective coefficient (∂MOMB) for methylene blue (MB) over methyl orange (MO) within a certain range was mainly attributed to the increased surface negative charges via partial replacement of Fe(III) with Cu(II). Moreover, the amount of surface negative charges was further increased after amino functionalization and there was a synergism between Cu(II) and -NH2 in selectivity enhancement. As a result, Fe0.6Cu0.4-BDC-NH2 exhibited a 22.5-times increase in ∂MOMB and other cationic dyes including malachite green (MG) and rhodamine B (Rh. B) could also be selectively separated from binary and quaternary mixed dye systems. Moreover, Fe0.6Cu0.4-BDC-NH2 showed many superiorities like a wide pH range of 4.0-8.0, strong anti-interference ability over various inorganic ions, good recyclability, and stability. The adsorption kinetics and isotherm suggested that the MB adsorption process was a homogeneous single-layer chemisorption. Additionally, the thermodynamics manifested that the overall process was exothermic and spontaneous. According to the FT-IR and XPS spectra analysis, the electrostatic interaction and hydrogen bonding were determined as the main driving forces, and π-π interaction also contributed to the adsorption process.
Collapse
Affiliation(s)
- Qiangshun Wu
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Muhammad Saboor Siddique
- Institute of Environment and Ecology, Tsinghua-Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Mi Wu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Huijuan Wang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yonghao Zhang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Ruili Yang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Liqiang Cui
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Weixing Ma
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Jinlong Yan
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Yadong Yang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| |
Collapse
|
7
|
Qiu Z, Deng H, Neumann CN. Site-Isolated Rhodium(II) Metalloradicals Catalyze Olefin Hydrofunctionalization. Angew Chem Int Ed Engl 2024; 63:e202401375. [PMID: 38314637 DOI: 10.1002/anie.202401375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/06/2024]
Abstract
Rh(II) porphyrin complexes display pronounced metal-centered radical character and the ability to activate small molecules under mild conditions, but catalysis with Rh(II) porphyrins is extremely rare. In addition to facile dimerization, Rh(II) porphyrins readily engage in kinetically and thermodynamically facile reactions involving two Rh(II) centers to generate stable Rh(III)-X intermediates that obstruct turnover in thermal catalysis. Here we report site isolation of Rh(II) metalloradicals in a MOF host, which not only protects Rh(II) metalloradicals against dimerization, but also allows them to participate in thermal catalysis. Access to PCN-224 or PCN-222 in which the porphyrin linkers are fully metalated by Rh(II) in the absence of any accompanying Rh(0) nanoparticles was achieved via the first direct MOF synthesis with a linker containing a transition-metal alkyl moiety, followed by Rh(III)-C bond photolysis.
Collapse
Affiliation(s)
- Zihang Qiu
- Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Hao Deng
- Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Constanze N Neumann
- Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
8
|
Zhao X, Miao X. Surface-supported metal-organic frameworks with geometric topological diversity via scanning tunneling microscopy. iScience 2024; 27:109392. [PMID: 38500826 PMCID: PMC10946334 DOI: 10.1016/j.isci.2024.109392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024] Open
Abstract
Surface-supported metal-organic frameworks (SMOFs) are long-range ordered periodic 2D lattice layers formed by inorganic metal nodes and organic ligands via coordination bonds on substrate surfaces. The atomic resolution STM lays a solid foundation for the conception and construction of SMOFs with large area, stable structure, and special function. In this review, the cutting-edge research of SMOFs from design strategy, preparation process, and how to accurately achieve structural and functional diversity are reviewed. Furthermore, we focus on the design and construction of novel and fascinating periodic and fractal structures, in which some typical honeycomb structures, Kagome lattice, hexagonal geometry, and Sierpiński triangles are summarized, and the related prospects for designing functional nanoscale systems and architectures are prospected. Finally, the challenges faced in the design and synthesis of SMOFs are denoted, and the application prospect and development trend of SMOFs are forecasted based on the current research status.
Collapse
Affiliation(s)
- Xiaoyang Zhao
- College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, People’s Republic of China
| | - Xinrui Miao
- College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, People’s Republic of China
| |
Collapse
|
9
|
Zhang CH, Zhou BX, Lin X, Mo YH, Cao J, Cai SL, Fan J, Zhang WG, Zheng SR. Iodine Adsorption-Desorption-Induced Structural Transformation and Improved Ag + Turn-On Luminescent Sensing Performance of a Nonporous Eu(III) Metal-Organic Framework. Inorg Chem 2024; 63:4185-4195. [PMID: 38364251 DOI: 10.1021/acs.inorgchem.3c04222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Posttreatment of pristine metal-organic frameworks (MOFs) with suitable vapor may be an effective way to regulate their structures and properties but has been less explored. Herein, we report an interesting example in which a crystalline nonporous Eu(III)-MOF was transferred to a porous amorphous MOF (aMOF) via iodine vapor adsorption-desorption posttreatment, and the resulting aMOF showed improved turn-on sensing properties with respect to Ag+ ions. The crystalline Eu-MOF, namely, Eu-IPDA, was assembled from Eu(III) and 4,4'-{4-[4-(1H-imidazol-1-yl)phenyl]pyridine-2,6-diyl}dibenzoic acid (H2IPDA) and exhibited a two-dimensional (2D) coordination network based on one-dimensional secondary building blocks. The close packing of the 2D networks gives rise to a three-dimensional supramolecular framework without any significant pores. Interestingly, the nonporous Eu-IPDA could absorb iodine molecules when Eu-IPDA crystals were placed in iodine vapor at 85 °C, and the adsorption capacity was 1.90 g/g, which is comparable to those of many MOFs with large BET surfaces. The adsorption of iodine is attributed to the strong interactions among the iodine molecule, the carboxy group, and the N-containing group and leads to the amorphization of the framework. After immersion of the iodine-loaded Eu-IPDA in EtOH, approximately 89.7% of the iodine was removed, resulting in a porous amorphous MOF, denoted as a-Eu-IPDA. In addition, the remaining iodine in the a-Eu-IPDA framework causes strong luminescent quenching in the fluorescence emission region of the Eu(III) center when compared with that in Eu-IPDA. The luminescence intensity of a-Eu-IPDA in water suspensions was significantly enhanced when Ag+ ions were added, with a detection limit of 4.76 × 10-6 M, which is 1000 times that of pristine Eu-IPDA. It also showed strong anti-interference ability over many common competitive metal ions and has the potential to sense Ag+ in natural water bodies and traditional Chinese medicine preparations. A mechanistic study showed that the interactions between Ag+ and the absorbed iodine, the carboxylate group, and the N atoms all contribute to the sensing performance of a-Eu-IPDA.
Collapse
Affiliation(s)
- Chu-Hong Zhang
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, and School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Bing-Xun Zhou
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, and School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Xian Lin
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, and School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Yi-Hong Mo
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, and School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Jun Cao
- School of Materials Science and Hydrogen Energy, Guangdong Key Laboratory for Hydrogen Energy Technologies, Foshan University, Foshan 528000, P. R. China
| | - Song-Liang Cai
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, and School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Jun Fan
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, and School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Wei-Guang Zhang
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, and School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Sheng-Run Zheng
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, and School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| |
Collapse
|
10
|
Yang D, Gates BC. Characterization, Structure, and Reactivity of Hydroxyl Groups on Metal-Oxide Cluster Nodes of Metal-Organic Frameworks: Structural Diversity and Keys to Reactivity and Catalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305611. [PMID: 37660323 DOI: 10.1002/adma.202305611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/22/2023] [Indexed: 09/05/2023]
Abstract
Among the most stable metal-organic frameworks (MOFs) are those incorporating nodes that are metal oxide clusters with frames such as Zr6 O8 . This review is a summary of the structure, bonding, and reactivity of MOF node hydroxyl groups, emphasizing those bonded to nodes containing aluminum and zirconium ions. Hydroxyl groups are often present on these nodes, sometimes balancing the charges of the metal ions. They arise during MOF syntheses in aqueous media or in post-synthesis treatments. They are identified with infrared and 1 H nuclear magnetic resonance spectroscopies and characterized by their reactivities with polar compounds such as alcohols. Terminal OH, paired µ2 -OH, and aqua groups on nodes are catalytic sites in numerous reactions. Relatively unreactive hydroxyl groups (such as isolated µ2 -OH groups) may replace reactive groups and inhibit catalysis; some node hydroxyl groups (e.g., µ3 -OH) are mere spectators in catalysis. There are similarities between MOF node hydroxyl groups and those on the surfaces of bulk metal oxides, zeolites, and enzymes, but the comparisons are mostly inexact, and much remains to be understood about MOF node hydroxyl group chemistry. It is posited that understanding and controlling this chemistry will lead to tailored MOFs and improved adsorbents and catalysts.
Collapse
Affiliation(s)
- Dong Yang
- Department of Chemical Engineering, University of California, Davis, CA, 95616, USA
| | - Bruce C Gates
- Department of Chemical Engineering, University of California, Davis, CA, 95616, USA
| |
Collapse
|
11
|
Dhakshinamoorthy A, Navalón S, Primo A, García H. Selective Gas-Phase Hydrogenation of CO 2 to Methanol Catalysed by Metal-Organic Frameworks. Angew Chem Int Ed Engl 2024; 63:e202311241. [PMID: 37815860 DOI: 10.1002/anie.202311241] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/19/2023] [Accepted: 10/10/2023] [Indexed: 10/11/2023]
Abstract
Large scale production of green CH3 OH obtained from CO2 and green H2 is a highly wanted process due to the role of CH3 OH as H2 /energy carrier and for producing chemicals. Starting with a short summary of the advantages of metal-organic frameworks (MOFs) as catalysts in liquid-phase reactions, the present article highlights the opportunities that MOFs may offer also for some gas-phase reactions, particularly for the selective CO2 hydrogenation to CH3 OH. It is commented that there is a temperature compatibility window that combines the thermal stability of some MOFs with the temperature required in the CO2 hydrogenation to CH3 OH that frequently ranges from 250 to 300 °C. The existing literature in this area is briefly organized according to the role of MOF as providing the active sites or as support of active metal nanoparticles (NPs). Emphasis is made to show how the flexibility in design and synthesis of MOFs can be used to enhance the catalytic activity by adjusting the composition of the nodes and the structure of the linkers. The influence of structural defects and material crystallinity, as well as the role that should play theoretical calculations in models have also been highlighted.
Collapse
Affiliation(s)
- Amarajothi Dhakshinamoorthy
- Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, Valencia, 46022, Spain
- School of Chemistry, Madurai Kamaraj University, Madurai, 625021 Tamil Nadu, India
| | - Sergio Navalón
- Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, Valencia, 46022, Spain
| | - Ana Primo
- Instituto Universitario de Tecnología Química, CSIC-UPV, Universitat Politècnica de València, Camino de Vera s/n, Valencia, 46022, Spain
| | - Hermenegildo García
- Instituto Universitario de Tecnología Química, CSIC-UPV, Universitat Politècnica de València, Camino de Vera s/n, Valencia, 46022, Spain
| |
Collapse
|
12
|
Feng J, Wang X, Luo Y, Wang J, Wang Z, Wei C, Cai G. Transparent-to-Brown-Black Patterned Electrochromic Metal-Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2024; 16:1170-1178. [PMID: 38149966 DOI: 10.1021/acsami.3c16801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Metal-organic frameworks (MOFs) exhibit promising electrochromic (EC) performance owing to their porous structure, regular channel, and tunable component characteristics. However, few reports focus on MOF materials with the EC performance of a transparent to brown-black (neutral colored state) change that is more suitable for smart windows. In this work, we proposed a strategy for synthesizing MOF (named Ni-BPY) EC materials and corresponding films fabricated via a low-cost electrostatic spray deposition technique. The obtained film exhibits excellent EC performance with a neutral color change from transparent to brown-black, a large optical modulation of 70% at 430 nm, and a fast response within 10 s. Benefiting from good electrical and chemical stability, the Ni-BPY film can be cycled over 500 times. Notably, the Ni-BPY MOF film also delivers a stepwise-controlled process during the bleached state due to its porous characteristics. In addition, the unique color variation of the Ni-BPY film derives from the redox reaction of the Ni metal node between Ni2+ and Ni3+, which is verified by the in situ potential-dependent Raman and X-ray photoelectron spectroscopy (XPS) measurement. As a proof of application, the patterned Ni-BPY EC films and devices are additionally constructed to demonstrate their potential application in electronic tags and logo displays.
Collapse
Affiliation(s)
- Jifei Feng
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Xinyi Wang
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Yi Luo
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Jinhui Wang
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Zhuanpei Wang
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Congyuan Wei
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Guofa Cai
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, Henan University, Kaifeng 475004, P. R. China
| |
Collapse
|
13
|
Ma D, Wei X, Li J, Cao Z. Enhancing CO 2 Hydrogenation Using a Heterogeneous Bimetal NiAl-Deposited Metal-Organic Framework NU-1000: Insights from First-Principles Calculations. Inorg Chem 2024; 63:915-922. [PMID: 38152032 DOI: 10.1021/acs.inorgchem.3c04215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
The hydrogenation of CO2 to high-value-added liquid fuels is crucial for greenhouse gas emission reduction and optimal utilization of carbon resources. Developing supported heterogeneous catalysts is a key strategy in this context, as they offer well-defined active sites for in-depth mechanistic studies and improved catalyst design. Here, we conducted extensive first-principles calculations to systematically explore the reaction mechanisms for CO2 hydrogenation on a heterogeneous bimetal NiAl-deposited metal-organic framework (MOF) NU-1000 and its catalytic performance as atomically dispersed catalysts for CO2 hydrogenation to formic acid (HCOOH), formaldehyde (H2CO), and methanol (CH3OH). The present results reveal that the presence of the NiAl-oxo cluster deposited on NU-1000 efficiently activates H2, and the facile heterolysis of H2 on Ni and adjacent O sites serves as a precursor to the hydrogenation of CO2 into various C1 products HCOOH, H2CO, and CH3OH. Generally, H2 activation is the rate-determining step in the entire CO2 hydrogenation process, the corresponding relatively low free energy barriers range from 14.5 to 15.9 kcal/mol, and the desorption of products on NiAl-deposited NU-1000 is relatively facile. Although the Al atom does not directly participate in the reaction, its presence provides exposed oxygen sites that facilitate the heterolytic cleavage of H2 and the hydrogenation of C1 intermediates, which plays an important role in enhancing the catalytic activity of the Ni site. The present study demonstrates that the catalytic performance of NU-1000 can be finely tuned by depositing heterometal-oxo clusters, and the porous MOF should be an attractive platform for the construction of atomically dispersed catalysts.
Collapse
Affiliation(s)
- Denghui Ma
- School of New Energy, Ningbo University of Technology, Ningbo 315336, P. R. China
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 360015, P. R. China
| | - Xin Wei
- School of New Energy, Ningbo University of Technology, Ningbo 315336, P. R. China
| | - Jianming Li
- School of New Energy, Ningbo University of Technology, Ningbo 315336, P. R. China
| | - Zexing Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 360015, P. R. China
| |
Collapse
|
14
|
Hou K, Börgel J, Jiang HZH, SantaLucia DJ, Kwon H, Zhuang H, Chakarawet K, Rohde RC, Taylor JW, Dun C, Paley MV, Turkiewicz AB, Park JG, Mao H, Zhu Z, Alp EE, Zhao J, Hu MY, Lavina B, Peredkov S, Lv X, Oktawiec J, Meihaus KR, Pantazis DA, Vandone M, Colombo V, Bill E, Urban JJ, Britt RD, Grandjean F, Long GJ, DeBeer S, Neese F, Reimer JA, Long JR. Reactive high-spin iron(IV)-oxo sites through dioxygen activation in a metal-organic framework. Science 2023; 382:547-553. [PMID: 37917685 DOI: 10.1126/science.add7417] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/24/2023] [Indexed: 11/04/2023]
Abstract
In nature, nonheme iron enzymes use dioxygen to generate high-spin iron(IV)=O species for a variety of oxygenation reactions. Although synthetic chemists have long sought to mimic this reactivity, the enzyme-like activation of O2 to form high-spin iron(IV) = O species remains an unrealized goal. Here, we report a metal-organic framework featuring iron(II) sites with a local structure similar to that in α-ketoglutarate-dependent dioxygenases. The framework reacts with O2 at low temperatures to form high-spin iron(IV) = O species that are characterized using in situ diffuse reflectance infrared Fourier transform, in situ and variable-field Mössbauer, Fe Kβ x-ray emission, and nuclear resonance vibrational spectroscopies. In the presence of O2, the framework is competent for catalytic oxygenation of cyclohexane and the stoichiometric conversion of ethane to ethanol.
Collapse
Affiliation(s)
- Kaipeng Hou
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jonas Börgel
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Henry Z H Jiang
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Daniel J SantaLucia
- Max Planck Institute for Chemical Energy Conversion, D-45470 Mülheim an der Ruhr, Germany
- Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim an der Ruhr, Germany
| | - Hyunchul Kwon
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Hao Zhuang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
- Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA
| | | | - Rachel C Rohde
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Jordan W Taylor
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Chaochao Dun
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Maria V Paley
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Ari B Turkiewicz
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Jesse G Park
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Haiyan Mao
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - Ziting Zhu
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA
| | - E Ercan Alp
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Jiyong Zhao
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Michael Y Hu
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Barbara Lavina
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, IL 60637, USA
| | - Sergey Peredkov
- Max Planck Institute for Chemical Energy Conversion, D-45470 Mülheim an der Ruhr, Germany
| | - Xudong Lv
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Julia Oktawiec
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Katie R Meihaus
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | | | - Marco Vandone
- Department of Chemistry, University of Milan, 20133 Milan, Italy
| | - Valentina Colombo
- Department of Chemistry, University of Milan, 20133 Milan, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), UdR Milano, Via Golgi 19, 20133 Milano, Italy
| | - Eckhard Bill
- Max Planck Institute for Chemical Energy Conversion, D-45470 Mülheim an der Ruhr, Germany
| | - Jeffrey J Urban
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - R David Britt
- Department of Chemistry, University of California, Davis, CA 95616, USA
- Miller Institute for Basic Research in Science, University of California, Berkeley CA 94720, USA
| | - Fernande Grandjean
- Department of Chemistry, Missouri University of Science and Technology, University of Missouri, Rolla, MO 65409, USA
| | - Gary J Long
- Department of Chemistry, Missouri University of Science and Technology, University of Missouri, Rolla, MO 65409, USA
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, D-45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim an der Ruhr, Germany
| | - Jeffrey A Reimer
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - Jeffrey R Long
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
15
|
Salehipour M, Nikpour S, Rezaei S, Mohammadi S, Rezaei M, Ilbeygi D, Hosseini-Chegeni A, Mogharabi-Manzari M. Safety of metal-organic framework nanoparticles for biomedical applications: An in vitro toxicity assessment. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|