1
|
Hu Y, Ribbe MW. NifEN: a versatile player in nitrogenase assembly, catalysis and evolution. J Biol Inorg Chem 2024:10.1007/s00775-024-02086-6. [PMID: 39663240 DOI: 10.1007/s00775-024-02086-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 11/13/2024] [Indexed: 12/13/2024]
Abstract
The Mo-nitrogenase catalyzes the reduction of N2 to NH3 at the cofactor of its catalytic NifDK component. NifEN shares considerable homology with NifDK in primary sequence, tertiary structure and associated metallocenters. Better known for its biosynthetic function to convert an all-iron precursor (L-cluster; [Fe8S9C]) to a mature cofactor (M-cluster; [(R-homocitrate) MoFe7S9C]), NifEN also mimics NifDK in catalyzing substrate reduction at ambient conditions. The recently discovered ability of NifEN to reduce N2 to NH3 is particularly interesting, as it points to NifEN as a plausible, prototype ancient nitrogenase during evolution. Moreover, the dual function of NifEN in assembly and catalysis makes it a great template to reconstruct the functional variants or equivalents of NifDK, which could facilitate the mechanistic investigation and heterologous synthesis of nitrogenase. This perspective provides an overview of our recent studies of NifEN, with a focus on the implications of its functional versatility for nitrogenase assembly, catalysis and evolution.
Collapse
Affiliation(s)
- Yilin Hu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697-3900, USA.
| | - Markus W Ribbe
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697-3900, USA.
- Department of Chemistry, University of California, Irvine, CA, 92697-2025, USA.
| |
Collapse
|
2
|
Oehlmann NN, Schmidt FV, Herzog M, Goldman AL, Rebelein JG. The iron nitrogenase reduces carbon dioxide to formate and methane under physiological conditions: A route to feedstock chemicals. SCIENCE ADVANCES 2024; 10:eado7729. [PMID: 39141735 PMCID: PMC11323892 DOI: 10.1126/sciadv.ado7729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/09/2024] [Indexed: 08/16/2024]
Abstract
Nitrogenases are the only known enzymes that reduce molecular nitrogen (N2) to ammonia. Recent findings have demonstrated that nitrogenases also reduce the greenhouse gas carbon dioxide (CO2), suggesting CO2 to be a competitor of N2. However, the impact of omnipresent CO2 on N2 fixation has not been investigated to date. Here, we study the competing reduction of CO2 and N2 by the two nitrogenases of Rhodobacter capsulatus, the molybdenum and the iron nitrogenase. The iron nitrogenase is almost threefold more efficient in CO2 reduction and profoundly less selective for N2 than the molybdenum isoform under mixtures of N2 and CO2. Correspondingly, the growth rate of diazotrophically grown R. capsulatus strains relying on the iron nitrogenase notably decreased after adding CO2. The in vivo CO2 activity of the iron nitrogenase facilitates the light-driven extracellular accumulation of formate and methane, one-carbon substrates for other microbes, and feedstock chemicals for a circular economy.
Collapse
Affiliation(s)
- Niels N. Oehlmann
- Research Group Microbial Metalloenzymes, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Frederik V. Schmidt
- Research Group Microbial Metalloenzymes, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Marcello Herzog
- Research Group Microbial Metalloenzymes, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Annelise L. Goldman
- Research Group Microbial Metalloenzymes, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Johannes G. Rebelein
- Research Group Microbial Metalloenzymes, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Philipps University Marburg, 35043 Marburg, Germany
| |
Collapse
|
3
|
Lee CC, Górecki K, Stang M, Ribbe MW, Hu Y. Cofactor maturase NifEN: A prototype ancient nitrogenase? SCIENCE ADVANCES 2024; 10:eado6169. [PMID: 38865457 PMCID: PMC11168457 DOI: 10.1126/sciadv.ado6169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 05/07/2024] [Indexed: 06/14/2024]
Abstract
Nitrogenase plays a key role in the global nitrogen cycle; yet, the evolutionary history of nitrogenase and, particularly, the sequence of appearance between the homologous, yet distinct NifDK (the catalytic component) and NifEN (the cofactor maturase) of the extant molybdenum nitrogenase, remains elusive. Here, we report the ability of NifEN to reduce N2 at its surface-exposed L-cluster ([Fe8S9C]), a structural/functional homolog of the M-cluster (or cofactor; [(R-homocitrate)MoFe7S9C]) of NifDK. Furthermore, we demonstrate the ability of the L-cluster-bound NifDK to mimic its NifEN counterpart and enable N2 reduction. These observations, coupled with phylogenetic, ecological, and mechanistic considerations, lead to the proposal of a NifEN-like, L-cluster-carrying protein as an ancient nitrogenase, the exploration of which could shed crucial light on the evolutionary origin of nitrogenase and related enzymes.
Collapse
Affiliation(s)
- Chi Chung Lee
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697- 3900, USA
| | - Kamil Górecki
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697- 3900, USA
| | - Martin Stang
- Department of Chemistry, University of California, Irvine, CA 92697-2025, USA
| | - Markus W. Ribbe
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697- 3900, USA
- Department of Chemistry, University of California, Irvine, CA 92697-2025, USA
| | - Yilin Hu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697- 3900, USA
| |
Collapse
|
4
|
Chuai H, Yang H, Zhang S. Boosting Electrochemical CO 2 Reduction to CO by Regulating the Porous Structure of Carbon Membrane. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38709644 DOI: 10.1021/acsami.4c04318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Ni single-atom-decorated nitrogen-doped carbon materials (Ni-Nx-C) have demonstrated high efficiency in the electrochemical reduction of CO2 (CO2RR) to CO. In this study, Ni-Nx-C active sites were embedded within a carbon membrane via an electrospinning and pyrolysis process. The resulting self-supported carbon membrane hosting Ni-Nx-C sites could be directly utilized as an electrode for the CO2RR. To enhance the CO2RR performance of the carbon membrane, the porous structure of the carbon membrane was fine-tuned by incorporating a pore-forming agent. The optimized porous carbon membrane electrode, K0.66-Ni-NC, achieved an impressive CO faradaic efficiency (FECO) of over 90% within a wide potential range from -0.8 to -1.6 V vs RHE for CO2RR. Additionally, it maintained an FECO of above 90% at -0.8 V vs RHE throughout a 30 h durability test in an H-cell. Further analysis has revealed that the porous structure of the carbon membrane not only facilitates the mass transport of CO2 but also increases the level of exposure of active sites during the CO2RR.
Collapse
Affiliation(s)
- Hongyuan Chuai
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Haibei Yang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Sheng Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
5
|
Addison H, Glatter T, K. A. Hochberg G, Rebelein JG. Two distinct ferredoxins are essential for nitrogen fixation by the iron nitrogenase in Rhodobacter capsulatus. mBio 2024; 15:e0331423. [PMID: 38377621 PMCID: PMC10936413 DOI: 10.1128/mbio.03314-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/29/2024] [Indexed: 02/22/2024] Open
Abstract
Nitrogenases are the only enzymes able to fix gaseous nitrogen into bioavailable ammonia and hence are essential for sustaining life. Catalysis by nitrogenases requires both a large amount of ATP and electrons donated by strongly reducing ferredoxins or flavodoxins. Our knowledge about the mechanisms of electron transfer to nitrogenase enzymes is limited: The electron transport to the iron (Fe)-nitrogenase has hardly been investigated. Here, we characterized the electron transfer pathway to the Fe-nitrogenase in Rhodobacter capsulatus via proteome analyses, genetic deletions, complementation studies, and phylogenetics. Proteome analyses revealed an upregulation of four ferredoxins under nitrogen-fixing conditions reliant on the Fe-nitrogenase in a molybdenum nitrogenase knockout strain, compared to non-nitrogen-fixing conditions. Based on these findings, R. capsulatus strains with deletions of ferredoxin (fdx) and flavodoxin (fld, nifF) genes were constructed to investigate their roles in nitrogen fixation by the Fe-nitrogenase. R. capsulatus deletion strains were characterized by monitoring diazotrophic growth and Fe-nitrogenase activity in vivo. Only deletions of fdxC or fdxN resulted in slower growth and reduced Fe-nitrogenase activity, whereas the double deletion of both fdxC and fdxN abolished diazotrophic growth. Differences in the proteomes of ∆fdxC and ∆fdxN strains, in conjunction with differing plasmid complementation behaviors of fdxC and fdxN, indicate that the two Fds likely possess different roles and functions. These findings will guide future engineering of the electron transport systems to nitrogenase enzymes, with the aim of increased electron flux and product formation.IMPORTANCENitrogenases are essential for biological nitrogen fixation, converting atmospheric nitrogen gas to bioavailable ammonia. The production of ammonia by diazotrophic organisms, harboring nitrogenases, is essential for sustaining plant growth. Hence, there is a large scientific interest in understanding the cellular mechanisms for nitrogen fixation via nitrogenases. Nitrogenases rely on highly reduced electrons to power catalysis, although we lack knowledge as to which proteins shuttle the electrons to nitrogenases within cells. Here, we characterized the electron transport to the iron (Fe)-nitrogenase in the model diazotroph Rhodobacter capsulatus, showing that two distinct ferredoxins are very important for nitrogen fixation despite having different redox centers. In addition, our research expands upon the debate on whether ferredoxins have functional redundancy or perform distinct roles within cells. Here, we observe that both essential ferredoxins likely have distinct roles based on differential proteome shifts of deletion strains and different complementation behaviors.
Collapse
Affiliation(s)
- Holly Addison
- Microbial Metalloenzymes Research Group, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Timo Glatter
- Core Facility for Mass Spectrometry & Proteomics, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Georg K. A. Hochberg
- Evolutionary Biochemistry Research Group, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Philipps University Marburg, Marburg, Germany
| | - Johannes G. Rebelein
- Microbial Metalloenzymes Research Group, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Philipps University Marburg, Marburg, Germany
| |
Collapse
|
6
|
Schmidt FV, Schulz L, Zarzycki J, Prinz S, Oehlmann NN, Erb TJ, Rebelein JG. Structural insights into the iron nitrogenase complex. Nat Struct Mol Biol 2024; 31:150-158. [PMID: 38062208 PMCID: PMC10803253 DOI: 10.1038/s41594-023-01124-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/12/2023] [Indexed: 01/24/2024]
Abstract
Nitrogenases are best known for catalyzing the reduction of dinitrogen to ammonia at a complex metallic cofactor. Recently, nitrogenases were shown to reduce carbon dioxide (CO2) and carbon monoxide to hydrocarbons, offering a pathway to recycle carbon waste into hydrocarbon products. Among the three nitrogenase isozymes, the iron nitrogenase has the highest wild-type activity for the reduction of CO2, but the molecular architecture facilitating these activities has remained unknown. Here, we report a 2.35-Å cryogenic electron microscopy structure of the ADP·AlF3-stabilized iron nitrogenase complex from Rhodobacter capsulatus, revealing an [Fe8S9C-(R)-homocitrate] cluster in the active site. The enzyme complex suggests that the iron nitrogenase G subunit is involved in cluster stabilization and substrate channeling and confers specificity between nitrogenase reductase and catalytic component proteins. Moreover, the structure highlights a different interface between the two catalytic halves of the iron and the molybdenum nitrogenase, potentially influencing the intrasubunit 'communication' and thus the nitrogenase mechanism.
Collapse
Affiliation(s)
- Frederik V Schmidt
- Microbial Metalloenzymes Research Group, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Luca Schulz
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Jan Zarzycki
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Simone Prinz
- Central Electron Microscopy Facility, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Niels N Oehlmann
- Microbial Metalloenzymes Research Group, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Tobias J Erb
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Johannes G Rebelein
- Microbial Metalloenzymes Research Group, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
| |
Collapse
|
7
|
Solomon JB, Liu YA, Górecki K, Quechol R, Lee CC, Jasniewski AJ, Hu Y, Ribbe MW. Heterologous expression of a fully active Azotobacter vinelandii nitrogenase Fe protein in Escherichia coli. mBio 2023; 14:e0257223. [PMID: 37909748 PMCID: PMC10746259 DOI: 10.1128/mbio.02572-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 09/27/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE The heterologous expression of a fully active Azotobacter vinelandii Fe protein (AvNifH) has never been accomplished. Given the functional importance of this protein in nitrogenase catalysis and assembly, the successful expression of AvNifH in Escherichia coli as reported herein supplies a key element for the further development of heterologous expression systems that explore the catalytic versatility of the Fe protein, either on its own or as a key component of nitrogenase, for nitrogenase-based biotechnological applications in the future. Moreover, the "clean" genetic background of the heterologous expression host allows for an unambiguous assessment of the effect of certain nif-encoded protein factors, such as AvNifM described in this work, in the maturation of AvNifH, highlighting the utility of this heterologous expression system in further advancing our understanding of the complex biosynthetic mechanism of nitrogenase.
Collapse
Affiliation(s)
- Joseph B. Solomon
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
- Department of Chemistry, University of California, Irvine, California, USA
| | - Yiling A. Liu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
| | - Kamil Górecki
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
| | - Robert Quechol
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
| | - Chi Chung Lee
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
| | - Andrew J. Jasniewski
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
| | - Yilin Hu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
| | - Markus W. Ribbe
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
- Department of Chemistry, University of California, Irvine, California, USA
| |
Collapse
|
8
|
Quechol R, Solomon JB, Liu YA, Lee CC, Jasniewski AJ, Górecki K, Oyala P, Hedman B, Hodgson KO, Ribbe MW, Hu Y. Heterologous synthesis of the complex homometallic cores of nitrogenase P- and M-clusters in Escherichia coli. Proc Natl Acad Sci U S A 2023; 120:e2314788120. [PMID: 37871225 PMCID: PMC10622910 DOI: 10.1073/pnas.2314788120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 09/28/2023] [Indexed: 10/25/2023] Open
Abstract
Nitrogenase is an active target of heterologous expression because of its importance for areas related to agronomy, energy, and environment. One major hurdle for expressing an active Mo-nitrogenase in Escherichia coli is to generate the complex metalloclusters (P- and M-clusters) within this enzyme, which involves some highly unique bioinorganic chemistry/metalloenzyme biochemistry that is not generally dealt with in the heterologous expression of proteins via synthetic biology; in particular, the heterologous synthesis of the homometallic P-cluster ([Fe8S7]) and M-cluster core (or L-cluster; [Fe8S9C]) on their respective protein scaffolds, which represents two crucial checkpoints along the biosynthetic pathway of a complete nitrogenase, has yet to be demonstrated by biochemical and spectroscopic analyses of purified metalloproteins. Here, we report the heterologous formation of a P-cluster-containing NifDK protein upon coexpression of Azotobacter vinelandii nifD, nifK, nifH, nifM, and nifZ genes, and that of an L-cluster-containing NifB protein upon coexpression of Methanosarcina acetivorans nifB, nifS, and nifU genes alongside the A. vinelandii fdxN gene, in E. coli. Our metal content, activity, EPR, and XAS/EXAFS data provide conclusive evidence for the successful synthesis of P- and L-clusters in a nondiazotrophic host, thereby highlighting the effectiveness of our metallocentric, divide-and-conquer approach that individually tackles the key events of nitrogenase biosynthesis prior to piecing them together into a complete pathway for the heterologous expression of nitrogenase. As such, this work paves the way for the transgenic expression of an active nitrogenase while providing an effective tool for further tackling the biosynthetic mechanism of this important metalloenzyme.
Collapse
Affiliation(s)
- Robert Quechol
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA92697-3900
| | - Joseph B. Solomon
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA92697-3900
- Department of Chemistry, University of California, Irvine, CA92697-2025
| | - Yiling A. Liu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA92697-3900
| | - Chi Chung Lee
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA92697-3900
| | - Andrew J. Jasniewski
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA92697-3900
| | - Kamil Górecki
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA92697-3900
| | - Paul Oyala
- Department of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA91125
| | - Britt Hedman
- Stanford Synchrotron Radiation Lightsource, Stanford Linear Accelerator Center National Accelerator Laboratory, Stanford University, Menlo Park, CA94025
| | - Keith O. Hodgson
- Stanford Synchrotron Radiation Lightsource, Stanford Linear Accelerator Center National Accelerator Laboratory, Stanford University, Menlo Park, CA94025
- Department of Chemistry, Stanford University, Stanford, CA94305
| | - Markus W. Ribbe
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA92697-3900
- Department of Chemistry, University of California, Irvine, CA92697-2025
| | - Yilin Hu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA92697-3900
| |
Collapse
|