1
|
Green JA, Brey D, Razgatlioglu LP, Ali B, Błasiak B, Burghardt I. Internal Conversion Cascade in a Carbon Nanobelt: A Multiconfigurational Quantum Dynamical Study. J Chem Theory Comput 2024. [PMID: 39259675 DOI: 10.1021/acs.jctc.4c00841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Carbon nanobelts feature intriguing photophysical properties, due to their high symmetry and structural rigidity. Here, we consider a (6,6) armchair carbon nanobelt, i.e., the very first carbon nanobelt to be synthesized [Povie et al., Science 2017, 356, 172] and characterize the internal conversion dynamics using multiconfigurational quantum dynamics via the multi-layer multiconfiguration time-dependent Hartree (ML-MCTDH) method. A symmetry-adapted linear vibronic coupling Hamiltonian for 26 electronic states and 210 vibrational modes is employed. Electronic excitations are found to decay through a dense manifold of excited states, which interact via multiple conical intersections, while inducing minimal geometry change. It is shown that a rapid coherent decay, exhibiting a nonvanishing quantum flux on a time scale of less than 50 fs, transitions toward a slower, decoherent decay at longer times. As previously suggested in the literature, electronic relaxation is hindered by phonon bottlenecks such that a stepwise internal conversion cascade is observed. The computed vibronic absorption spectrum is shown to be in good agreement with the experimental spectrum.
Collapse
Affiliation(s)
- James A Green
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt, Germany
| | - Dominik Brey
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt, Germany
| | - Leyla P Razgatlioglu
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt, Germany
| | - Badria Ali
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt, Germany
| | - Bartosz Błasiak
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt, Germany
| | - Irene Burghardt
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt, Germany
| |
Collapse
|
2
|
Lu H, Peng G, Zou J, Cao L, Xie Y, Zhang L, You S, Gao F. Complexes Based on Zinc and Cadmium for Visible Light-Driven Hydrogen Production. Inorg Chem 2024; 63:16243-16250. [PMID: 39159300 DOI: 10.1021/acs.inorgchem.4c02118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Photocatalytic water decomposition using solar energy is one of the most effective hydrogen production technologies. The development of a structurally stable photocatalyst for hydrogen production without cocatalysts and photosensitizers remains a great challenge. In this paper, complex photocatalyst compounds 1 and 2 with different crystal structures were designed and obtained by connecting the 4'-(2,4-disulfophenyl)-4,2':6',4″-terpyridine organic ligands with Zn(Ac)2·2H2O and CdCO3. These products were used for photocatalytic hydrogen production separately, and the hydrogen production rates of compounds 1 and 2 were 0.66 mol·mol-1·h-1 and 0.12 mol·mol-1·h-1, respectively, without the addition of any cocatalysts and photosensitizers, and their charge separation and transfer processes were verified by PL, time-resolved PL, and photocurrent. Compound 1 was tested in 6 cycles over 18 h and showed high stability and reproducibility.
Collapse
Affiliation(s)
- Hengliang Lu
- School of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, PR China
| | - Guixiang Peng
- Yichun Lithium Industry Research Institute, Yichun 336000, PR China
| | - Jiyong Zou
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, PR China
| | - Lihua Cao
- School of Electical Engineering, Nanchang Institute of Technology, Nanchang 330099, PR China
| | - Yu Xie
- School of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Li Zhang
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, PR China
| | - Shengyong You
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, PR China
| | - Fei Gao
- School of Physics and Materials, Nanchang University, Nanchang 330031, PR China
| |
Collapse
|
3
|
Li G, Shi Z, Huang L, Wang L. Multiconfigurational Surface Hopping: a Time-Dependent Variational Approach with Momentum-Jump Trajectories. J Chem Theory Comput 2024. [PMID: 39215702 DOI: 10.1021/acs.jctc.4c00842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The Ehrenfest mean field dynamics and trajectory surface hopping have been widely used in nonadiabatic dynamics simulations. Based on the time-dependent variational principle (TDVP), the multiconfigurational Ehrenfest (MCE) method has also been developed and can be regarded as a multiconfigurational extension of the traditional Ehrenfest dynamics. However, it is not straightforward to apply the TDVP to surface hopping trajectories because there exists momentum jump during surface hops. To solve this problem, we here propose a multiconfigurational surface hopping (MCSH) method, where continuous momenta are obtained by linear interpolation and the interpolated trajectories are used to construct the basis functions for TDVP in a postprocessing manner. As demonstrated in a series of representative spin-boson models, MCSH achieves high accuracy with only several hundred trajectory bases and can uniformly improve the performance of surface hopping. In principle, MCSH can be combined with all kinds of mixed quantum-classical trajectories and thus has the potential to properly describe general nonadiabatic dynamics.
Collapse
Affiliation(s)
- Guijie Li
- Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Zhecun Shi
- Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Lei Huang
- Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Linjun Wang
- Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
4
|
Nguyen H, Lima RLS, Neto NMB, Araujo PT. What is the significance of the chloroform stabilizer C 5H 10 and its association with MeOH in concentration-dependent polymeric solutions? SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 310:123886. [PMID: 38245968 DOI: 10.1016/j.saa.2024.123886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/10/2023] [Accepted: 01/10/2024] [Indexed: 01/23/2024]
Abstract
The understanding of excitonic transitions associated with polymeric aggregates is fundamental, as such transitions have implications on coherence lengths, coherence numbers and inter- and intra-chain binding parameters. In this context, the investigation of efficient solvents and other ways to control polymer aggregate formation is key for their consolidation as materials for new technologies. In this manuscript, we use Poly(3-hexothiophene) (P3HT) as a probe to investigate the significance of amylene (C5H10) and its association with methanol (MeOH) in both pure and C5H10-stabilized chloroform (CHCl3)-based polymeric solutions. Using the intensity ratio between the first and second vibronic transitions of the P3HT H-aggregates formed, values for their exciton bandwidths and interchain interactions are obtained and correlated with the presence of C5H10 and MeOH as agents determining the CHCl3 quality.
Collapse
Affiliation(s)
- Huan Nguyen
- Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL, USA
| | - Ruan L S Lima
- Institute of Natural Sciences, Federal University of Para, Belem, PA, Brazil
| | | | - Paulo T Araujo
- Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL, USA.
| |
Collapse
|
5
|
Aarabi M, Aranda D, Gholami S, Meena SK, Lerouge F, Bretonniere Y, Gürol I, Baldeck P, Parola S, Dumoulin F, Cerezo J, Garavelli M, Santoro F, Rivalta I. Quantum-Classical Protocol for Efficient Characterization of Absorption Lineshape and Fluorescence Quenching upon Aggregation: The Case of Zinc Phthalocyanine Dyes. J Chem Theory Comput 2023; 19:5938-5957. [PMID: 37641958 PMCID: PMC10500990 DOI: 10.1021/acs.jctc.3c00446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Indexed: 08/31/2023]
Abstract
A quantum-classical protocol that incorporates Jahn-Teller vibronic coupling effects and cluster analysis of molecular dynamics simulations is reported, providing a tool for simulations of absorption spectra and ultrafast nonadiabatic dynamics in large molecular photosystems undergoing aggregation in solution. Employing zinc phthalocyanine dyes as target systems, we demonstrated that the proposed protocol provided fundamental information on vibronic, electronic couplings and thermal dynamical effects that mostly contribute to the absorption spectra lineshape and the fluorescence quenching processes upon dye aggregation. Decomposing the various effects arising upon dimer formation, the structure-property relations associated with their optical responses have been deciphered at atomistic resolution.
Collapse
Affiliation(s)
- Mohammad Aarabi
- Dipartimento
di Chimica Industriale “Toso Montanari”, Universitá degli Studi di Bologna, Viale del Risorgimento 4, I-40136 Bologna, Italy
| | - Daniel Aranda
- Consiglio
Nazionale delle Ricerche, Istituto di Chimica
dei Composti Organo Metallici (ICCOM-CNR), I-56124 Pisa, Italy
- Instituto
de Ciencia Molecular (ICMol), Universidad
de Valencia, Catedrático
J. Beltrán 2, 46980 Paterna, Valencia, Spain
| | - Samira Gholami
- Dipartimento
di Chimica Industriale “Toso Montanari”, Universitá degli Studi di Bologna, Viale del Risorgimento 4, I-40136 Bologna, Italy
| | - Santosh Kumar Meena
- Department
of Chemical Engineering, Indian Institute
of Technology Ropar, Rupnagar, 140001 Punjab, India
| | - Frederic Lerouge
- ENSL,
CNRS, Laboratoire de Chimie UMR 5182, 46 Allée d’Italie, 69364 Lyon, France
| | - Yann Bretonniere
- ENSL,
CNRS, Laboratoire de Chimie UMR 5182, 46 Allée d’Italie, 69364 Lyon, France
| | - Ilke Gürol
- TÜBITAK
Marmara Research Center, Materials Technologies, Gebze, 41470 Kocaeli, Türkiye
| | - Patrice Baldeck
- ENSL,
CNRS, Laboratoire de Chimie UMR 5182, 46 Allée d’Italie, 69364 Lyon, France
| | - Stephane Parola
- ENSL,
CNRS, Laboratoire de Chimie UMR 5182, 46 Allée d’Italie, 69364 Lyon, France
| | - Fabienne Dumoulin
- Department
of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Türkiye
| | - Javier Cerezo
- Consiglio
Nazionale delle Ricerche, Istituto di Chimica
dei Composti Organo Metallici (ICCOM-CNR), I-56124 Pisa, Italy
- Departamento
de Química and Institute for Advanced Research in Chemical
Sciences (IAdChem), Universidad Autónoma
de Madrid, 28049 Madrid, Spain
| | - Marco Garavelli
- Dipartimento
di Chimica Industriale “Toso Montanari”, Universitá degli Studi di Bologna, Viale del Risorgimento 4, I-40136 Bologna, Italy
| | - Fabrizio Santoro
- Consiglio
Nazionale delle Ricerche, Istituto di Chimica
dei Composti Organo Metallici (ICCOM-CNR), I-56124 Pisa, Italy
| | - Ivan Rivalta
- Dipartimento
di Chimica Industriale “Toso Montanari”, Universitá degli Studi di Bologna, Viale del Risorgimento 4, I-40136 Bologna, Italy
- ENSL,
CNRS, Laboratoire de Chimie UMR 5182, 46 Allée d’Italie, 69364 Lyon, France
| |
Collapse
|
6
|
Rappoport D, Bekoe S, Mohanam LN, Le S, George N, Shen Z, Furche F. Libkrylov: A modular open-source software library for extremely large on-the-fly matrix computations. J Comput Chem 2023; 44:1105-1118. [PMID: 36636945 DOI: 10.1002/jcc.27068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 12/27/2022] [Indexed: 01/14/2023]
Abstract
We present the design and implementation of libkrylov, an open-source library for solving matrix-free eigenvalue, linear, and shifted linear equations using Krylov subspace methods. The primary objectives of libkrylov are flexible API design and modular structure, which enables integration with specialized matrix-vector evaluation "engines." Libkrylov features pluggable preconditioning, orthonormalization, and tunable convergence control. Diagonal (conjugate gradient, CG), Davidson, and Jacobi-Davidson preconditioners are available, along with orthonormal and nonorthonormal (nKs) schemes. All functionality of libkrylov is exposed via Fortran and C application programming interfaces (APIs). We illustrate the performance of libkrylov for eigenvalue calculations arising in time-dependent density functional theory (TDDFT) in the Tamm-Dancoff approximation (TDA) and discuss the convergence behavior as a function of preconditioning and orthonormalization methods.
Collapse
Affiliation(s)
- Dmitrij Rappoport
- Department of Chemistry, University of California Irvine, Irvine, California, USA
| | - Samuel Bekoe
- Department of Chemistry, University of California Irvine, Irvine, California, USA
| | - Luke Nambi Mohanam
- Department of Chemistry, University of California Irvine, Irvine, California, USA
- Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts, USA
| | - Scott Le
- Department of Chemistry, University of California Irvine, Irvine, California, USA
| | - Naje' George
- Department of Chemistry, University of California Irvine, Irvine, California, USA
| | - Ziyue Shen
- Department of Chemistry, University of California Irvine, Irvine, California, USA
- STA Pharmaceutical, San Diego, California, USA
| | - Filipp Furche
- Department of Chemistry, University of California Irvine, Irvine, California, USA
| |
Collapse
|
7
|
Bhati M, Ivanov SA, Senftle TP, Tretiak S, Ghosh D. How structural and vibrational features affect optoelectronic properties of non-stoichiometric quantum dots: computational insights. NANOSCALE 2023; 15:7176-7185. [PMID: 37013402 DOI: 10.1039/d2nr06785d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
While stoichiometric quantum dots (QDs) have been well studied, a significant knowledge gap remains in the atomistic understanding of the non-stoichiometric ones, which are predominantly present during the experimental synthesis. Here, we investigate the effect of thermal fluctuations on structural and vibrational properties of non-stoichiometric cadmium selenide (CdSe) nanoclusters: anion-rich (Se-rich) and cation-rich (Cd-rich) using ab initio molecular dynamics (AIMD) simulations. While the excess atoms on the surface fluctuate more for a given QD type, the optical phonon modes are mostly composed of Se atoms dynamics, irrespective of the composition. Moreover, Se-rich QDs have higher bandgap fluctuations compared to Cd-rich QDs, suggesting poor optical properties of Se-rich QDs. Additionally, non-adiabatic molecular dynamics (NAMD) suggests faster non-radiative recombination for Cd-rich QDs. Altogether, this work provides insights into the dynamic electronic properties of non-stoichiometric QDs and proposes a rationale for the observed optical stability and superiority of cation-rich candidates for light emission applications.
Collapse
Affiliation(s)
- Manav Bhati
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, Houston, TX 77005-1892, USA
| | - Sergei A Ivanov
- Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Thomas P Senftle
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, Houston, TX 77005-1892, USA
| | - Sergei Tretiak
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Dibyajyoti Ghosh
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
- Department of Materials Science and Engineering and Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
8
|
Xie RF, Zhang JB, Wu Y, Li L, Liu XY, Cui G. Non-negligible roles of charge transfer excitons in ultrafast excitation energy transfer dynamics of a double-walled carbon nanotube. J Chem Phys 2023; 158:054108. [PMID: 36754819 DOI: 10.1063/5.0134353] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Herein, we employed a developed linear response time dependent density functional theory-based nonadiabatic dynamics simulation method that explicitly takes into account the excitonic effects to investigate photoinduced excitation energy transfer dynamics of a double-walled carbon nanotube (CNT) model with different excitation energies. The E11 excitation of the outer CNT will generate a local excitation (LE) |out*〉 exciton due to its low energy, which does not induce any charge separation. In contrast, the E11 excitation of the inner CNT can generate four kinds of excitons with the LE exciton |in*〉 dominates. In the 500-fs dynamics simulation, the LE exciton |in*〉 and charge transfer (CT) excitons |out-in+〉 and |out+in-〉 are all gradually converted to the |out*〉 exciton, corresponding to a photoinduced excitation energy transfer, which is consistent with experimental studies. Finally, when the excitation energy is close to the E22 state of the outer CNT (∼1.05 eV), a mixed population of different excitons, with the |out*〉 exciton dominated, is generated. Then, photoinduced energy transfer from the outer to inner CNTs occurs in the first 50 fs, which is followed by an inner to outer excitation energy transfer that is completed in 400 fs. The present work not only sheds important light on the mechanistic details of wavelength-dependent excitation energy transfer of a double-walled CNT model but also demonstrates the roles and importance of CT excitons in photoinduced excitation energy transfer. It also emphasized that explicitly including the excitonic effects in electronic structure calculations and nonadiabatic dynamics simulations is significant for correct understanding/rational design of optoelectronic properties of periodically extended systems.
Collapse
Affiliation(s)
- Rui-Fang Xie
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Jing-Bin Zhang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Yang Wu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Laicai Li
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Xiang-Yang Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
9
|
Forde A, Lystrom L, Sun W, Kilin D, Kilina S. Improving Near-Infrared Emission of meso-Aryldipyrrin Indium(III) Complexes via Annulation Bridging: Excited-State Dynamics. J Phys Chem Lett 2022; 13:9210-9220. [PMID: 36170557 DOI: 10.1021/acs.jpclett.2c02115] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Using non-adiabatic dynamics and Redfield theory, we predicted the optical spectra, radiative and nonradiative decay rates, and photoluminescence quantum yields (PLQYs) for In(III) dipyrrin-based complexes (i) with electron-withdrawing (EW) or electron-donating (ED) substituents on the meso-phenyl group and (ii) upon fusing the pyrrin and phenyl rings via saturated or unsaturated bridging to increase structural rigidity. The ED groups lead to a primary π,π* character with a minor intraligand charge transfer (ILCT) contribution to the emissive state, while EW groups increase the ILCT contribution and red-shift the luminescence to ∼1.5 eV. Saturated annulation enhances the PLQYs for complexes with primary π,π* character compared to those of the non-annulated and unsaturated-annulated complexes, while both unsaturated and saturated annulation decrease the PLQYs for complexes with primary ILCT character. We found that PLQY improvement goes beyond a simple concept of structural rigidity. In contrast, the charge transfer character of excitonic states is a key parameter for engineering the NIR emission of In(III) dipyrrin complexes.
Collapse
Affiliation(s)
- Aaron Forde
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108, United States
- Materials and Nanotechnology Program, North Dakota State University, Fargo, North Dakota 58108, United States
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Levi Lystrom
- Shock and Detonation Physics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Wenfang Sun
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Dmitri Kilin
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Svetlana Kilina
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108, United States
| |
Collapse
|
10
|
Liu B, Yang X, Jabed M, Kilina S, Yang Z, Sun W. Water-soluble dinuclear iridium(III) and ruthenium(II) bis-terdentate complexes: photophysics and electrochemiluminescence. Dalton Trans 2022; 51:13858-13866. [PMID: 36040117 DOI: 10.1039/d2dt02104h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis, photophysics, and electrochemiluminescence (ECL) of four water-soluble dinuclear Ir(III) and Ru(II) complexes (1-4) terminally-capped by 4'-phenyl-2,2':6',2''-terpyridine (tpy) or 1,3-di(pyrid-2-yl)-4,6-dimethylbenzene (N^C^N) ligands and linked by a 2,7-bis(2,2':6',2''-terpyridyl)fluorene with oligoether chains on C9 are reported. The impact of the tpy or N^C^N ligands and metal centers on the photophysical properties of 1-4 was assessed by spectroscopic methods including UV-vis absorption, emission, and transient absorption, and by time-dependent density functional theory (TDDFT) calculations. These complexes exhibited distinct singlet and triplet excited-state properties upon variation of the terminal-capping terdentate ligands and the metal centers. The ECL properties of complexes 1-3 with better water solubility were investigated in neutral phosphate buffer solutions (PBS) by adding tripropylamine (TPA) as a co-reactant, and the observed ECL intensity followed the descending order of 3 > 1 > 2. Complex 3 bearing the [Ru(tpy)2]2+ units displayed more pronounced ECL signals, giving its analogues great potential for further ECL study.
Collapse
Affiliation(s)
- Bingqing Liu
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108-6050, USA.
| | - Xin Yang
- School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China.
| | - Mohammed Jabed
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108-6050, USA.
| | - Svetlana Kilina
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108-6050, USA.
| | - Zhengchun Yang
- School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China.
| | - Wenfang Sun
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108-6050, USA.
| |
Collapse
|
11
|
Mocci F, de Villiers Engelbrecht L, Olla C, Cappai A, Casula MF, Melis C, Stagi L, Laaksonen A, Carbonaro CM. Carbon Nanodots from an In Silico Perspective. Chem Rev 2022; 122:13709-13799. [PMID: 35948072 PMCID: PMC9413235 DOI: 10.1021/acs.chemrev.1c00864] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Carbon nanodots (CNDs) are the latest and most shining rising stars among photoluminescent (PL) nanomaterials. These carbon-based surface-passivated nanostructures compete with other related PL materials, including traditional semiconductor quantum dots and organic dyes, with a long list of benefits and emerging applications. Advantages of CNDs include tunable inherent optical properties and high photostability, rich possibilities for surface functionalization and doping, dispersibility, low toxicity, and viable synthesis (top-down and bottom-up) from organic materials. CNDs can be applied to biomedicine including imaging and sensing, drug-delivery, photodynamic therapy, photocatalysis but also to energy harvesting in solar cells and as LEDs. More applications are reported continuously, making this already a research field of its own. Understanding of the properties of CNDs requires one to go to the levels of electrons, atoms, molecules, and nanostructures at different scales using modern molecular modeling and to correlate it tightly with experiments. This review highlights different in silico techniques and studies, from quantum chemistry to the mesoscale, with particular reference to carbon nanodots, carbonaceous nanoparticles whose structural and photophysical properties are not fully elucidated. The role of experimental investigation is also presented. Hereby, we hope to encourage the reader to investigate CNDs and to apply virtual chemistry to obtain further insights needed to customize these amazing systems for novel prospective applications.
Collapse
Affiliation(s)
- Francesca Mocci
- Department
of Chemical and Geological Sciences, University
of Cagliari, I-09042 Monserrato, Italy,
| | | | - Chiara Olla
- Department
of Physics, University of Cagliari, I-09042 Monserrato, Italy
| | - Antonio Cappai
- Department
of Physics, University of Cagliari, I-09042 Monserrato, Italy
| | - Maria Francesca Casula
- Department
of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, IT 09123 Cagliari, Italy
| | - Claudio Melis
- Department
of Physics, University of Cagliari, I-09042 Monserrato, Italy
| | - Luigi Stagi
- Department
of Chemistry and Pharmacy, Laboratory of Materials Science and Nanotechnology, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Aatto Laaksonen
- Department
of Chemical and Geological Sciences, University
of Cagliari, I-09042 Monserrato, Italy,Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden,State Key
Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China,Centre
of Advanced Research in Bionanoconjugates and Biopolymers, PetruPoni Institute of Macromolecular Chemistry, Aleea Grigore Ghica-Voda 41A, 700487 Iasi, Romania,Division
of Energy Science, Energy Engineering, Luleå
University of Technology, Luleå 97187, Sweden,
| | | |
Collapse
|
12
|
Segalina A, Aranda D, Green JA, Cristino V, Caramori S, Prampolini G, Pastore M, Santoro F. How the Interplay among Conformational Disorder, Solvation, Local, and Charge-Transfer Excitations Affects the Absorption Spectrum and Photoinduced Dynamics of Perylene Diimide Dimers: A Molecular Dynamics/Quantum Vibronic Approach. J Chem Theory Comput 2022; 18:3718-3736. [PMID: 35377648 PMCID: PMC9202308 DOI: 10.1021/acs.jctc.2c00063] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Indexed: 12/12/2022]
Abstract
In this contribution we present a mixed quantum-classical dynamical approach for the computation of vibronic absorption spectra of molecular aggregates and their nonadiabatic dynamics, taking into account the coupling between local excitations (LE) and charge-transfer (CT) states. The approach is based on an adiabatic (Ad) separation between the soft degrees of freedom (DoFs) of the system and the stiff vibrations, which are described by the quantum dynamics (QD) of wave packets (WPs) moving on the coupled potential energy surfaces (PESs) of the LE and CT states. These PESs are described with a linear vibronic coupling (LVC) Hamiltonian, parameterized by an overlap-based diabatization on the grounds of time-dependent density functional theory computations. The WPs time evolution is computed with the multiconfiguration time-dependent Hartree method, using effective modes defined through a hierarchical representation of the LVC Hamiltonian. The soft DoFs are sampled with classical molecular dynamics (MD), and the coupling between the slow and fast DoFs is included by recomputing the key parameters of the LVC Hamiltonians, specifically for each MD configuration. This method, named Ad-MD|gLVC, is applied to a perylene diimide (PDI) dimer in acetonitrile and water solutions, and it is shown to accurately reproduce the change in the vibronic features of the absorption spectrum upon aggregation. Moreover, the microscopic insight offered by the MD trajectories allows for a detailed understanding of the role played by the fluctuation of the aggregate structure on the shape of the vibronic spectrum and on the population of LE and CT states. The nonadiabatic QD predicts an extremely fast (∼50 fs) energy transfer between the two LEs. CT states have only a moderate effect on the absorption spectrum, despite the fact that after photoexcitation they are shown to acquire a fast and non-negligible population, highlighting their relevance in dictating the charge separation and transport in PDI-based optical devices.
Collapse
Affiliation(s)
- Alekos Segalina
- Université
de Lorraine and CNRS, LPCT, UMR 7019, F-54000 Nancy, France
| | - Daniel Aranda
- Instituto
de Ciencia Molecular (ICMol), Universidad
de Valencia, Catedrático J. Beltrán 2, 46980 Paterna, Valencia, Spain
| | - James A. Green
- Consiglio
Nazionale delle Ricerche, Istituto di Biostrutture
e Bioimmagini (IBB-CNR), via Mezzocannone 16, I-80136 Napoli, Italy
| | - Vito Cristino
- Dipartimento
di Scienze Chimiche, Farmaceutiche ed Agrarie, Via Fossato di Mortara 17, 44121 Ferrara, Italy
| | - Stefano Caramori
- Dipartimento
di Scienze Chimiche, Farmaceutiche ed Agrarie, Via Fossato di Mortara 17, 44121 Ferrara, Italy
| | - Giacomo Prampolini
- Istituto
di Chimica dei Composti Organo Metallici, Consiglio Nazionale delle Ricerche, (ICCOM-CNR), SS di Pisa, Area della Ricerca, via G. Moruzzi
1, I-56124 Pisa, Italy
| | | | - Fabrizio Santoro
- Istituto
di Chimica dei Composti Organo Metallici, Consiglio Nazionale delle Ricerche, (ICCOM-CNR), SS di Pisa, Area della Ricerca, via G. Moruzzi
1, I-56124 Pisa, Italy
| |
Collapse
|
13
|
Erickson M, Han Y, Rasulev B, Kilin D. Molecular Dynamics Study of the Photodegradation of Polymeric Chains. J Phys Chem Lett 2022; 13:4374-4380. [PMID: 35544382 DOI: 10.1021/acs.jpclett.2c00802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The development of reusable polymeric materials inspires an attempt to combine renewable biomass with upcycling to form a biorenewable closed system. It has been reported that 2,5-furandicarboxylic acid (FDCA) can be recovered for recycling when incorporated as monomers into photodegradable polymeric systems. Here, we conduct density functional theory (DFT) studies with periodic boundary conditions on microscopic structures involved in the photodegradation of polymeric chains incorporating FDCA and 2-nitro-1,3-benzenedimethanol. The photodegradation process of polymeric chains is studied using time-dependent excited-state molecular dynamics (TDESMD) in vacuum and aqueous environments. Changes in the photophysical properties for reaction intermediates are characterized by ground-state observables. The distribution of reaction intermediates and products is obtained from TDESMD trajectories using cheminformatics techniques. Results show that a higher degree of polymeric chain degradation is achieved in the vacuum environment. Additionally, one finds that the FDCA molecule is recoverable in the aqueous environment, in qualitative agreement with experimental findings.
Collapse
Affiliation(s)
- Meade Erickson
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Yulun Han
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Bakhtiyor Rasulev
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Dmitri Kilin
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108, United States
| |
Collapse
|
14
|
Xie H, Xu X, Wang L, Zhuang W. Surface hopping dynamics in periodic solid-state materials with a linear vibronic coupling model. J Chem Phys 2022; 156:154116. [PMID: 35459287 DOI: 10.1063/5.0085759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We report a surface hopping approach in which the implemented linear vibronic coupling Hamiltonian is constructed and the electronic wavefunction is propagated in the reciprocal space. The parameters of the linear vibronic coupling model, including onsite energies, phonon frequencies, and electron-phonon couplings, are calculated with density-functional theory and density-functional perturbation theory and interpolated in fine sampling points of the Brillouin zone with maximally localized Wannier functions. Using this approach, we studied the relaxation dynamics of the photo-excited hot carrier in a one-dimensional periodic carbon chain. The results show that the completeness of the number of Hilbert space k points and the number of phonon q points plays an important role in the hot carrier relaxation processes. By calculating the relaxation times of hot carriers under different reciprocal space sampling and extrapolating with the stretched-compressed exponential function, the relaxation times of hot electrons and holes in the quasi-continuous energy band are obtained. By considering the feedback effect in the hopping processes and analyzing the time-dependent phonon energy in different normal modes, we found that the long-wave longitudinal optical phonons play a major role in the relaxation dynamics of hot electrons and holes. We, therefore, provided herein an efficient and accurate approach for modeling the photophysical processes in periodic solid-state material systems.
Collapse
Affiliation(s)
- Hua Xie
- Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences, School of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaoliang Xu
- Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences, School of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Linjun Wang
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Wei Zhuang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| |
Collapse
|
15
|
Vazhappilly TJ, Han Y, Kilin DS, Micha DA. Electronic Relaxation of Photoexcited Open and Closed Shell Adsorbates on Semiconductors: Ag and Ag2 on TiO2. J Chem Phys 2022; 156:104705. [DOI: 10.1063/5.0082748] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
| | - Yulun Han
- North Dakota State University, United States of America
| | | | - David A Micha
- Departments of Chemistry and of Physics, University of Florida Quantum Theory Project, United States of America
| |
Collapse
|
16
|
Biswas S, Kim J, Zhang X, Scholes GD. Coherent Two-Dimensional and Broadband Electronic Spectroscopies. Chem Rev 2022; 122:4257-4321. [PMID: 35037757 DOI: 10.1021/acs.chemrev.1c00623] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Over the past few decades, coherent broadband spectroscopy has been widely used to improve our understanding of ultrafast processes (e.g., photoinduced electron transfer, proton transfer, and proton-coupled electron transfer reactions) at femtosecond resolution. The advances in femtosecond laser technology along with the development of nonlinear multidimensional spectroscopy enabled further insights into ultrafast energy transfer and carrier relaxation processes in complex biological and material systems. New discoveries and interpretations have led to improved design principles for optimizing the photophysical properties of various artificial systems. In this review, we first provide a detailed theoretical framework of both coherent broadband and two-dimensional electronic spectroscopy (2DES). We then discuss a selection of experimental approaches and considerations of 2DES along with best practices for data processing and analysis. Finally, we review several examples where coherent broadband and 2DES were employed to reveal mechanisms of photoinitiated ultrafast processes in molecular, biological, and material systems. We end the review with a brief perspective on the future of the experimental techniques themselves and their potential to answer an even greater range of scientific questions.
Collapse
Affiliation(s)
- Somnath Biswas
- Department of Chemistry, Princeton University, Princeton, New Jersey 08 544, United States
| | - JunWoo Kim
- Department of Chemistry, Princeton University, Princeton, New Jersey 08 544, United States
| | - Xinzi Zhang
- Department of Chemistry, Princeton University, Princeton, New Jersey 08 544, United States
| | - Gregory D Scholes
- Department of Chemistry, Princeton University, Princeton, New Jersey 08 544, United States
| |
Collapse
|
17
|
Andermann AM, Rego LGC. Energetics of the charge generation in organic donor-acceptor interfaces. J Chem Phys 2022; 156:024104. [PMID: 35032994 DOI: 10.1063/5.0076611] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Non-fullerene acceptor materials have posed new paradigms for the design of organic solar cells , whereby efficient carrier generation is obtained with small driving forces, in order to maximize the open-circuit voltage (VOC). In this paper, we use a coarse-grained mixed quantum-classical method, which combines Ehrenfest and Redfield theories, to shed light on the charge generation process in small energy offset interfaces. We have investigated the influence of the energetic driving force as well as the vibronic effects on the charge generation and photovoltaic energy conversion. By analyzing the effects of the Holstein and Peierls vibrational couplings, we find that vibrational couplings produce an overall effect of improving the charge generation. However, the two vibronic mechanisms play different roles: the Holstein relaxation mechanism decreases the charge generation, whereas the Peierls mechanism always assists the charge generation. Moreover, by examining the electron-hole binding energy as a function of time, we evince two distinct regimes for the charge separation: the temperature independent excitonic spread on a sub-100 fs timescale and the complete dissociation of the charge-transfer state that occurs on the timescale of tens to hundreds of picoseconds, depending on the temperature. The quantum dynamics of the system exhibits the three regimes of the Marcus electron transfer kinetics as the energy offset of the interface is varied.
Collapse
Affiliation(s)
- Artur M Andermann
- Department of Physics, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil
| | - Luis G C Rego
- Department of Physics, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
18
|
Johnson L, Kilin D. Effect of ligand groups on photoexcited charge carrier dynamics at the perovskite/TiO 2 interface. RSC Adv 2021; 12:78-87. [PMID: 35424519 PMCID: PMC8978705 DOI: 10.1039/d1ra05306j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/25/2021] [Indexed: 11/21/2022] Open
Abstract
The work proposed here aims to describe the dynamics of photoexcited charge carriers at the interface between the perovskite and electron transport layer (ETL) in perovskite solar cells (PSCs) and the effect that the interface morphology has on these dynamics. This is done in an effort to further develop the understanding of these materials so that their chemical composition and morphology may be better utilized to improve PSCs by means of increasing the power conversion efficiency (PCE), maximizing the chemical stability of PSCs to lengthen their lifespan, finding the cheapest and easiest materials to synthesize which have beneficial properties in photovoltaics, etc. This is done by using density functional theory to model the interface and open system Redfield theory to describe the charge carrier dynamics. We find that the charge transfer characteristics at the perovskite/ETL interface depend greatly on the choice of ligands adsorbed on the ETL that act as a bridge between the perovskite and ETL. The two ligand choices discussed here go so far as to determine whether the system will undergo a Förster energy transfer or a Dexter energy transfer upon photoexcitation. First principles modeling of excited state dynamics of charge carriers at the interface between the perovskite and electron transport layer in perovskite solar cells identifies an effect of the interface morphology onto efficiency of charge transfer.![]()
Collapse
Affiliation(s)
- Landon Johnson
- Department of Physics, North Dakota State University Fargo ND 58108 USA
| | - Dmitri Kilin
- Department of Chemistry and Biochemistry Fargo ND 58108 USA
| |
Collapse
|
19
|
Esch MP, Levine BG. An accurate, non-empirical method for incorporating decoherence into Ehrenfest dynamics. J Chem Phys 2021; 155:214101. [PMID: 34879667 DOI: 10.1063/5.0070686] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In mixed quantum-classical nonadiabatic molecular dynamics methods, the anchoring of the electronic wave function to a single nuclear geometry results in both quantitative and qualitative errors in the dynamics. In the context of both Ehrenfest and trajectory surface hopping methods, methods for incorporating decoherence are widely used to eliminate these errors. However, the accuracy of these methods often depends strongly on the parameterization of the decoherence time and/or other related quantities. Here, we present a refinement of the recently introduced collapse to a block (TAB) scheme for incorporating decoherence into Ehrenfest dynamics. The proposed approach incorporates an approximation to the history of the population dynamics and treats the coherence decay as Gaussian, rather than exponential. This method uses parameters that can be obtained from first principles, rather than empirical fitting. Application to one-dimensional models indicates excellent agreement with numerically exact simulations. We also introduce a second refinement to the TAB method: a robust linear least-squares algorithm for determining collapse probabilities.
Collapse
Affiliation(s)
- Michael P Esch
- Department of Chemistry and Institute for Advanced Computational Science, Stony Brook University, Stony Brook, New York 11794, USA
| | - Benjamin G Levine
- Department of Chemistry and Institute for Advanced Computational Science, Stony Brook University, Stony Brook, New York 11794, USA
| |
Collapse
|
20
|
Hu D, Peng J, Chen L, Gelin MF, Lan Z. Spectral Fingerprint of Excited-State Energy Transfer in Dendrimers through Polarization-Sensitive Transient-Absorption Pump-Probe Signals: On-the-Fly Nonadiabatic Dynamics Simulations. J Phys Chem Lett 2021; 12:9710-9719. [PMID: 34590858 DOI: 10.1021/acs.jpclett.1c02640] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The time-resolved polarization-sensitive transient-absorption (TA) pump-probe (PP) spectra are simulated using on-the-fly surface-hopping nonadiabatic dynamics and the doorway-window representation of nonlinear spectroscopy. A dendrimer model system composed of two linear phenylene ethynylene units (2-ring and 3-ring) is taken as an example. The ground-state bleach (GSB), stimulated emission (SE), and excited-state absorption (ESA) contributions as well as the total TA PP signals are obtained and carefully analyzed. It is shown that intramolecular excited-state energy transfer from the 2-ring unit to the 3-ring unit can be conveniently identified by employing pump and probe pulses with different polarizations. Our results demonstrate that time-resolved polarization-sensitive TA PP signals provide a powerful tool for the elucidation of excited-state energy-transfer pathways, notably in molecular systems possessing several optically bright nonadiabatically coupled electronic states with different orientations of transition dipole moments.
Collapse
Affiliation(s)
- Deping Hu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, Guangzhou 510006, China
| | - Jiawei Peng
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, Guangzhou 510006, China
| | - Lipeng Chen
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
| | - Maxim F Gelin
- School of Sciences, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Zhenggang Lan
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
21
|
Han Y, Iduoku K, Grant G, Rasulev B, Leontyev A, Hobbie EK, Tretiak S, Kilina SV, Kilin DS. Hot Carrier Dynamics at Ligated Silicon(111) Surfaces: A Computational Study. J Phys Chem Lett 2021; 12:7504-7511. [PMID: 34342460 DOI: 10.1021/acs.jpclett.1c02084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We provide a case-study for thermal grafting of benzenediazonium bromide onto a hydrogenated Si(111) surface using ab initio molecular dynamics (AIMD) calculations. A sequence of reaction steps is identified in the AIMD trajectory, including the loss of N2 from the diazonium salt, proton transfer from the surface to the bromide ion that eliminates HBr, and deposition of the phenyl group onto the surface. We next assess the influence of the phenyl groups on photophysics of hydrogen-terminated Si(111) slabs. The nonadiabatic couplings necessary for a description of the excited-state dynamics are calculated by combining ab initio electronic structures and reduced density matrix formalism with Redfield theory. The phenyl-terminated slab shows reduced nonradiative relaxation and recombination rates of hot charge carriers in comparison with the hydrogen-terminated slab. Altogether, our results provide atomistic insights revealing that (i) the diazonium salt thermally decomposes at the surface allowing the formation of covalently bonded phenyl group, and (ii) the coverage of phenyl groups on the surface slows down charge carrier cooling driven by electron-phonon interactions, which increases photoluminescence efficiency at the near-infrared spectral region.
Collapse
Affiliation(s)
- Yulun Han
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Kweeni Iduoku
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Gena Grant
- Turtle Mountain Community College, 10145 BIA Road 7, PO Box 340, Belcourt, North Dakota 58316, United States
| | - Bakhtiyor Rasulev
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Alexey Leontyev
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Erik K Hobbie
- Department of Physics, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Sergei Tretiak
- Theoretical Division and Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Svetlana V Kilina
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Dmitri S Kilin
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108, United States
| |
Collapse
|
22
|
Alesadi A, Fatima F, Xia W, Kilin D. First-Principles Study on the Electronic Properties of PDPP-Based Conjugated Polymer via Density Functional Theory. J Phys Chem B 2021; 125:8953-8964. [PMID: 34324337 DOI: 10.1021/acs.jpcb.1c02518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this study, we focus on computational predictions of the electronic and optical properties of a one-dimensional periodic model of a single chain of a diketopyrrolopyrrole (DPP)-based conjugated polymer (PDPP3T) as a function of electronic configuration changes due to charge injection. We employ density functional theory (DFT) to explore the ground-state and excited-state electronic properties as well as optical properties influenced by charge injection. We utilize both the Heyd-Scuseria-Ernzerhof (HSE06) and Perdew-Burke-Ernzerhof (PBE) functionals to predict the band gap and compute the absorption spectrum. Our DFT results point out that utilizing the HSE06 functional in conjunction with momentum sampling over the Brillouin zone can appropriately predict the band gap and absorption spectrum in good agreement with experimental data. Moreover, we explore the influence of charge-carrier injection on the electronic configuration of the PDPP3T polymer. Our results indicate that the injection of charge carriers into the PDPP3T semiconducting polymer model greatly affects the electrical properties and ends in a low band gap and high mobility of charge carriers in PDPP3T polymers, offering the potential to tailor the material electronic performance for organic photovoltaic and optoelectronic device applications.
Collapse
Affiliation(s)
- Amirhadi Alesadi
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, North Dakota 58108, United States
| | - F Fatima
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Wenjie Xia
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, North Dakota 58108, United States.,Materials and Nanotechnology, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Dmitri Kilin
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108, United States
| |
Collapse
|
23
|
Keefer D, Freixas VM, Song H, Tretiak S, Fernandez-Alberti S, Mukamel S. Monitoring molecular vibronic coherences in a bichromophoric molecule by ultrafast X-ray spectroscopy. Chem Sci 2021; 12:5286-5294. [PMID: 34168779 PMCID: PMC8179640 DOI: 10.1039/d0sc06328b] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/24/2021] [Indexed: 11/21/2022] Open
Abstract
The role of quantum-mechanical coherences in the elementary photophysics of functional optoelectronic molecular materials is currently under active study. Designing and controlling stable coherences arising from concerted vibronic dynamics in organic chromophores is the key for numerous applications. Here, we present fundamental insight into the energy transfer properties of a rigid synthetic heterodimer that has been experimentally engineered to study coherences. Quantum non-adiabatic excited state simulations are used to compute X-ray Raman signals, which are able to sensitively monitor the coherence evolution. Our results verify their vibronic nature, that survives multiple conical intersection passages for several hundred femtoseconds at room temperature. Despite the contributions of highly heterogeneous evolution pathways, the coherences are unambiguously visualized by the experimentally accessible X-ray signals. They offer direct information on the dynamics of electronic and structural degrees of freedom, paving the way for detailed coherence measurements in functional organic materials.
Collapse
Affiliation(s)
- Daniel Keefer
- Departments of Chemistry and Physics and Astronomy, University of California Irvine California 92697-2025 USA
| | - Victor M Freixas
- Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET B1876BXD Bernal Argentina
| | - Huajing Song
- Theoretical Division, Los Alamos National Laboratory Los Alamos New Mexico 87545 USA
| | - Sergei Tretiak
- Theoretical Division, Los Alamos National Laboratory Los Alamos New Mexico 87545 USA
| | | | - Shaul Mukamel
- Departments of Chemistry and Physics and Astronomy, University of California Irvine California 92697-2025 USA
| |
Collapse
|
24
|
Gieseking RLM. A new release of MOPAC incorporating the INDO/S semiempirical model with CI excited states. J Comput Chem 2021; 42:365-378. [PMID: 33227163 DOI: 10.1002/jcc.26455] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/28/2020] [Accepted: 11/05/2020] [Indexed: 11/10/2022]
Abstract
The semiempirical INDO/S Hamiltonian is incorporated into a new release of MOPAC2016. The MOPAC2016 software package has long been at the forefront of semiempirical quantum chemical methods (SEQMs) for small molecules, proteins, and solids and until this release has included only NDDO-type SEQMs. The new code enables the calculation of excited states using the INDO/S Hamiltonian combined with a configuration interaction (CI) approach using single excitations (CIS), single and double excitations (CISD), or multiple reference determinants (MRCI) where reference determinants are generated using a complete active space (CAS) approach. The capacity to perform excited-state calculations beyond the CIS level makes INDO/CI one of the few low-cost computational methods capable of accurately modeling states with substantial double-excitation character. Solvent corrections to the ground-state and excited-state energies can be computed using the COSMO implicit solvent model, incorporating state-specific corrections to the excited states based on the solvent refractive index. This code produces physically reasonable electronic structures, absorption spectra, and solvatochromic shifts at low computational costs for systems up to hundreds of atoms, and for both organic molecules and metal clusters.
Collapse
|
25
|
Raja V, Jaffar Ali B. Synergy of photon up-conversion and Z-scheme mechanism in graphitic carbon nitride nanoparticles decorated g-C3N4-TiO2. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125862] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
26
|
Perez CM, Ghosh D, Prezhdo O, Tretiak S, Neukirch AJ. Excited-State Properties of Defected Halide Perovskite Quantum Dots: Insights from Computation. J Phys Chem Lett 2021; 12:1005-1011. [PMID: 33470811 DOI: 10.1021/acs.jpclett.0c03317] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
CsPbBr3 quantum dots (QDs) have been recently suggested for their application as bright green light-emitting diodes (LEDs); however, their optical properties are yet to be fully understood and characterized. In this work, we utilize time-dependent density functional theory to analyze the ground and excited states of the CsPbBr3 clusters in the presence of various low formation energy vacancy defects. Our study finds that the QD perovskites retain their defect tolerance with limited perturbance to the simulated UV-vis spectra. The exception to this general trend is that Br vacancies must be avoided, as they cause molecular orbital localization, resulting in trap states and lower LED performance. Blinking will likely still plague CsPbBr3 QDs, given that the charged defects critically perturb the spectra via red-shifting and lower absorbance. Our study provides insight into the tunability of CsPbBr3 QDs optical properties by understanding the nature of the electronic excitations and guiding improved development for high-performance LEDs.
Collapse
Affiliation(s)
- Carlos Mora Perez
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
- Theoretical Physics and Chemistry of Materials, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Dibyajyoti Ghosh
- Theoretical Physics and Chemistry of Materials, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Oleg Prezhdo
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Sergei Tretiak
- Theoretical Physics and Chemistry of Materials, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Amanda J Neukirch
- Theoretical Physics and Chemistry of Materials, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
27
|
Smith B, Shakiba M, Akimov AV. Nonadiabatic Dynamics in Si and CdSe Nanoclusters: Many-Body vs Single-Particle Treatment of Excited States. J Chem Theory Comput 2021; 17:678-693. [DOI: 10.1021/acs.jctc.0c01009] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Brendan Smith
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260 United States
| | - Mohammad Shakiba
- Department of Materials Science and Engineering, Shahid Bahonar University of Kerman, Kerman 76169-14111, Iran
| | - Alexey V. Akimov
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260 United States
| |
Collapse
|
28
|
Zhu X, Liu B, Cui P, Kilina S, Sun W. Multinuclear 2-(Quinolin-2-yl)quinoxaline-Coordinated Iridium(III) Complexes Tethered by Carbazole Derivatives: Synthesis and Photophysics. Inorg Chem 2020; 59:17096-17108. [PMID: 33170657 DOI: 10.1021/acs.inorgchem.0c02366] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Five mono/di/trinuclear iridium(III) complexes (1-5) bearing the carbazole-derivative-tethered 2-(quinolin-2-yl)quinoxaline (quqo) diimine (N^N) ligand were synthesized and characterized. The photophysical properties of these complexes and their corresponding diimine ligands were systematically studied via UV-vis absorption, emission, and transient absorption (TA) spectroscopy and simulated by time-dependent density functional theory. All complexes possessed strong well-resolved absorption bands at <400 nm that have predominant ligand-based 1π,π* transitions and broad structureless charge-transfer (1CT) absorption bands at 400-700 nm. The energies or intensities of these 1CT bands varied pronouncedly when the number of tethered Ir(quqo)(piq)2+ (piq refers to 1-phenylisoquinoline) units, π conjugation of the carbazole derivative linker, or attachment positions on the carbazole linker were altered. All complexes were emissive at room temperature, with 1-3 showing near-IR (NIR) 3MLCT (metal-to-ligand charge-transfer)/3LLCT (ligand-to-ligand charge-transfer) emission at ∼710 nm and 4 and 5 exhibiting red or NIR 3ILCT (intraligand charge-transfer)/3LMCT (ligand-to-metal charge-transfer) emission in CH2Cl2. In CH3CN, 1-3 displayed an additional emission band at ca. 590 nm (3ILCT/3LMCT/3MLCT/3π,π* in nature) in addition to the 710 nm band. The different natures of the emitting states of 1-3 versus those of 4 and 5 also gave rise to different spectral features in their triplet TA spectra. It appears that the parentage and characteristics of the lowest triplet excited states in these complexes are mainly impacted by the π systems of the bridging carbazole derivatives and essentially no interactions among the Ir(quqo)(piq)2+ units. In addition, all of the diimine ligands tethered by the carbazole derivatives displayed a dramatic solvatochromic effect in their emission due to the predominant intramolecular charge-transfer nature of their emitting states. Aggregation-enhanced emission was also observed from the mixed CH2Cl2/ethyl acetate or CH2Cl2/hexane solutions of these ligands.
Collapse
Affiliation(s)
- Xiaolin Zhu
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108-6050, United States
| | - Bingqing Liu
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108-6050, United States
| | - Peng Cui
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108-6050, United States.,Materials and Nanotechnology Program, North Dakota State University, Fargo, North Dakota 58108-6050, United States.,Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu Province 214122, P. R. China
| | - Svetlana Kilina
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108-6050, United States
| | - Wenfang Sun
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108-6050, United States
| |
Collapse
|
29
|
Coccia E, Fregoni J, Guido CA, Marsili M, Pipolo S, Corni S. Hybrid theoretical models for molecular nanoplasmonics. J Chem Phys 2020; 153:200901. [PMID: 33261492 DOI: 10.1063/5.0027935] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The multidisciplinary nature of the research in molecular nanoplasmonics, i.e., the use of plasmonic nanostructures to enhance, control, or suppress properties of molecules interacting with light, led to contributions from different theory communities over the years, with the aim of understanding, interpreting, and predicting the physical and chemical phenomena occurring at molecular- and nano-scale in the presence of light. Multiscale hybrid techniques, using a different level of description for the molecule and the plasmonic nanosystems, permit a reliable representation of the atomistic details and of collective features, such as plasmons, in such complex systems. Here, we focus on a selected set of topics of current interest in molecular plasmonics (control of electronic excitations in light-harvesting systems, polaritonic chemistry, hot-carrier generation, and plasmon-enhanced catalysis). We discuss how their description may benefit from a hybrid modeling approach and what are the main challenges for the application of such models. In doing so, we also provide an introduction to such models and to the selected topics, as well as general discussions on their theoretical descriptions.
Collapse
Affiliation(s)
- E Coccia
- Dipartimento di Scienze Chimiche e Farmaceutiche, Universit di Trieste, via L. Giorgieri 1, 34127 Trieste, Italy
| | - J Fregoni
- Dipartimento di Scienze Fisiche, Informatiche e Matematiche, Universit di Modena e Reggio Emilia, via Campi 213/A, 41125 Modena, Italy
| | - C A Guido
- Dipartimento di Scienze Chimiche, Universit di Padova, via F. Marzolo 1, 35131 Padova, Italy
| | - M Marsili
- Dipartimento di Scienze Chimiche, Universit di Padova, via F. Marzolo 1, 35131 Padova, Italy
| | - S Pipolo
- Université de Lille, CNRS, Centrale Lille, ENSCL, Université d'Artois UMR 8181-UCCS Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - S Corni
- Istituto Nanoscienze-CNR, via Campi 213/A, 41125 Modena, Italy
| |
Collapse
|
30
|
Esch MP, Levine BG. Decoherence-corrected Ehrenfest molecular dynamics on many electronic states. J Chem Phys 2020; 153:114104. [DOI: 10.1063/5.0022529] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Michael P. Esch
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | - Benjamin G. Levine
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
31
|
Coden M, De Checchi P, Fresch B. Spectral shift, electronic coupling and exciton delocalization in nanocrystal dimers: insights from all-atom electronic structure computations. NANOSCALE 2020; 12:18124-18136. [PMID: 32852028 DOI: 10.1039/d0nr05601d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Delocalization of excitons promoted by electronic coupling between clusters or quantum dots (QD) changes the dynamical processes in nanostructured aggregates enhancing energy transport. A spectroscopic shift of the absorption spectrum upon QD aggregation is commonly observed and ascribed to quantum mechanical coupling between neighbouring dots but also to exciton delocalization over the sulphur-based ligand shell or to other mechanisms as a change in the dielectric constant of the surrounding medium. We address the question of electronic coupling and exciton delocalization in nanocrystal aggregates by performing all-atom electronic structure calculations in models of colloidal QD dimers. The relation between spectral shift, interdot coupling and exciton delocalization is investigated in atomistic detail in models of dimers formed by CdSe clusters kept together by bridging organic ligands. Our results support the possibility of obtaining exciton delocalization over the dimer and point out the crucial role of the bridging ligand in enhancing interdot electronic coupling.
Collapse
Affiliation(s)
- Maurizio Coden
- Department of Chemical Sciences, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy.
| | - Pietro De Checchi
- Department of Chemical Sciences, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy.
| | - Barbara Fresch
- Department of Chemical Sciences, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy.
| |
Collapse
|
32
|
Li H, Liu S, Lystrom L, Kilina S, Sun W. Improving triplet excited-state absorption and lifetime of cationic iridium(III) complexes by extending π-conjugation of the 2-(2-quinolinyl)quinoxaline ligand. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112609] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
33
|
Liu B, Gao Y, Jabed MA, Kilina S, Liu G, Sun W. Lysosome Targeting Bis-terpyridine Ruthenium(II) Complexes: Photophysical Properties and In Vitro Photodynamic Therapy. ACS APPLIED BIO MATERIALS 2020; 3:6025-6038. [DOI: 10.1021/acsabm.0c00647] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Bingqing Liu
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108-6050, United States
| | - Yibo Gao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P. R. China
| | - Mohammed A. Jabed
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108-6050, United States
| | - Svetlana Kilina
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108-6050, United States
| | - Guoquan Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P. R. China
| | - Wenfang Sun
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108-6050, United States
| |
Collapse
|
34
|
Fedorov DA, Seritan S, Fales BS, Martínez TJ, Levine BG. PySpawn: Software for Nonadiabatic Quantum Molecular Dynamics. J Chem Theory Comput 2020; 16:5485-5498. [PMID: 32687710 DOI: 10.1021/acs.jctc.0c00575] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The ab initio multiple spawning (AIMS) method enables nonadiabatic quantum molecular dynamics simulations in an arbitrary number of dimensions, with potential energy surfaces provided by electronic structure calculations performed on-the-fly. However, the intricacy of the AIMS algorithm complicates software development, deployment on modern shared computer resources, and postsimulation data analysis. PySpawn is a nonadiabatic molecular dynamics software package that addresses these issues. The program is designed to be easily interfaced with electronic structure software, and an interface to the TeraChem software package is described here. PySpawn introduces a task-based reorganization of the AIMS algorithm, allowing fine-grained restart capability and setting the stage for efficient parallelization in a future release. PySpawn includes a user-friendly and interactive Python analysis module that will enable novice users to painlessly adopt AIMS. As a demonstration of PySpawn's simulation capability and analysis module, we report complete active space self-consistent field-based AIMS simulations of the 1,2-dithienyl-1,2-dicyanoethene molecule, a promising molecular photoswitch.
Collapse
Affiliation(s)
- Dmitry A Fedorov
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Stefan Seritan
- Department of Chemistry and the PULSE Institute, Stanford University, Stanford, California 94305, United States.,SLAC National Accelerator Laboratory, Menlo Park, California 94305, United States
| | - B Scott Fales
- Department of Chemistry and the PULSE Institute, Stanford University, Stanford, California 94305, United States.,SLAC National Accelerator Laboratory, Menlo Park, California 94305, United States
| | - Todd J Martínez
- Department of Chemistry and the PULSE Institute, Stanford University, Stanford, California 94305, United States.,SLAC National Accelerator Laboratory, Menlo Park, California 94305, United States
| | - Benjamin G Levine
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
35
|
Esch MP, Levine BG. State-pairwise decoherence times for nonadiabatic dynamics on more than two electronic states. J Chem Phys 2020; 152:234105. [PMID: 32571062 DOI: 10.1063/5.0010081] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Independent trajectory (IT) nonadiabatic molecular dynamics simulation methods are powerful tools for modeling processes involving transitions between electronic states. Incorporation and refinement of decoherence corrections into popular IT methods, e.g., Ehrenfest dynamics and trajectory surface hopping, is an important means of improving their accuracies. In this work, we identify a new challenge in the development of such decoherence corrections; when a system exists in a coherent superposition of three or more electronic states, coherences may decay unphysically when the decoherence correction is based on decoherence times assigned on a state-wise basis. As a solution, we introduce decoherence corrected Ehrenfest schemes based on decoherence times assigned on a state-pairwise basis. By application of these methods to a set of very simple one-dimensional model problems, we show that one of these state-pairwise methods ("collapse to a block") correctly describes the loss of coherence between all pairs of states in our multistate model problems, whereas a method based on a state-wise description of coherence loss does not. The new one-dimensional models introduced here can serve as useful tests for other decoherence correction schemes.
Collapse
Affiliation(s)
- Michael P Esch
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | - Benjamin G Levine
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
36
|
Lystrom L, Tamukong P, Mihaylov D, Kilina S. Phonon-Driven Energy Relaxation in PbS/CdS and PbSe/CdSe Core/Shell Quantum Dots. J Phys Chem Lett 2020; 11:4269-4278. [PMID: 32354213 DOI: 10.1021/acs.jpclett.0c00845] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We study the impact of the chemical composition on phonon-mediated exciton relaxation in the core/shell quantum dots (QDs), with 1 nm core made of PbX and the monolayer shell made of CdX, where X = S and Se. For this, time-domain nonadiabatic molecular dynamics (NAMD) based on density functional theory (DFT) and surface hopping techniques are applied. Simulations reveal twice faster energy relaxation in PbS/CdS than PbSe/CdSe because of dominant couplings to higher-energy optical phonons in structures with sulfur anions. For both QDs, the long-living intermediate states associated with the core-shell interface govern the dynamics. Therefore, a simple exponential model is not appropriate, and the four-state irreversible kinetic model is suggested instead, predicting 0.9 and 0.5 ps relaxation rates in PbSe/CdSe and PbS/CdS QDs, respectively. Thus, 2 nm PdSe/CdSe QDs with a single monolayer shell exhibit the phonon-mediated relaxation time sufficient for carrier multiplications to outpace energy dissipation and benefit the solar conversion efficiency.
Collapse
Affiliation(s)
- Levi Lystrom
- Chemistry & Biochemistry Department, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Patrick Tamukong
- School of Medicine & Health Sciences, University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - Deyan Mihaylov
- Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623, United States
| | - Svetlana Kilina
- Chemistry & Biochemistry Department, North Dakota State University, Fargo, North Dakota 58108, United States
| |
Collapse
|
37
|
Freixas VM, Tretiak S, Makhov DV, Shalashilin DV, Fernandez-Alberti S. Vibronic Quantum Beating between Electronic Excited States in a Heterodimer. J Phys Chem B 2020; 124:3992-4001. [DOI: 10.1021/acs.jpcb.0c01685] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- V. M. Freixas
- Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET, B1876BXD Bernal, Argentina
| | - S. Tretiak
- Theoretical Division, Center for Nonlinear Studies (CNLS), and Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - D. V. Makhov
- School of Chemistry, University of Leeds, Leeds LS2 9JT, U.K
- School of Mathematics, University of Bristol, Bristol BS8 1TW, U.K
| | | | - S. Fernandez-Alberti
- Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET, B1876BXD Bernal, Argentina
| |
Collapse
|
38
|
Smith B, Akimov AV. Hot Electron Cooling in Silicon Nanoclusters via Landau-Zener Nonadiabatic Molecular Dynamics: Size Dependence and Role of Surface Termination. J Phys Chem Lett 2020; 11:1456-1465. [PMID: 31958367 DOI: 10.1021/acs.jpclett.9b03687] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We develop a new express methodology for modeling excited-state dynamics occurring in dense manifolds of electronic states in atomistic systems. The approach leverages a modified Landau-Zener formula, the neglect of a back-reaction approximation, and the highly efficient density functional tight-binding method. We study the hot electron dynamics in a series of H- and F-terminated silicon nanocrystals (NCs) containing up to several hundred atoms. We explain the slower electron cooling dynamics in F-terminated NCs by the larger energy gaps between the adjacent electronic states in these systems as well as their slower fluctuations. We conclude that both the mass and chemical identity of the surface termination groups equally influence the electron dynamics, on average. However, the mass effect becomes dominant for higher-energy excitations. We find that the electron decay dynamics in F-terminated NCs has a greater sensitivity to the mass of the surface ligands than do the H-terminated NCs and explain this observation by the details of the electron-phonon coupling in the systems. We find that in the H-terminated NCs, electronic transitions in the cooling process occur predominantly between the surface states, whereas in F-terminated Si NCs, both surface and NC core states are coupled to the nuclear vibrations. We find that electron energy relaxation is accelerated in larger NCs and attribute this effect to the higher densities of states and smaller energy gaps in these systems.
Collapse
Affiliation(s)
- Brendan Smith
- Department of Chemistry , University at Buffalo, The State University of New York , Buffalo , New York 14260 , United States
| | - Alexey V Akimov
- Department of Chemistry , University at Buffalo, The State University of New York , Buffalo , New York 14260 , United States
| |
Collapse
|
39
|
Zheng M, Cai W, Fang Y, Wang X. Nanoscale boron carbonitride semiconductors for photoredox catalysis. NANOSCALE 2020; 12:3593-3604. [PMID: 32020138 DOI: 10.1039/c9nr09333h] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The conversion of solar energy to chemical energy achieved by photocatalysts comprising homogeneous transition-metal based systems, organic dyes, or semiconductors has received significant attention in recent years. Among these photocatalysts, boron carbon nitride (BCN) materials, as an emerging class of metal-free heterogeneous semiconductors, have extended the scope of photocatalysts due to their good performance and Earth abundance. The combination of boron (B), carbon (C), and nitrogen (N) constitutes a ternary system with large surface area and abundant activity sites, which together contribute to the good performance for reduction reactions, oxidation reactions and orchestrated both reduction and oxidation reactions. This Minireview reports the methods for the synthesis of nanoscale hexagonal boron carbonitride (h-BCN) and describes the latest advances in the application of h-BCN materials as semiconductor photocatalysts for sustainable photosynthesis, such as water splitting, reduction of CO2, acceptorless dehydrogenation, oxidation of sp3 C-H bonds, and sp2 C-H functionalization. h-BCN materials may have potential for applications in other organic transformations and industrial manufacture in the future.
Collapse
Affiliation(s)
- Meifang Zheng
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, China.
| | - Wancang Cai
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, China.
| | - Yuanxing Fang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, China.
| | - Xinchen Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, China.
| |
Collapse
|
40
|
Wang L, Cui P, Lystrom L, Lu J, Kilina S, Sun W. Heteroleptic cationic iridium( iii) complexes bearing phenanthroline derivatives with extended π-conjugation as potential broadband reverse saturable absorbers. NEW J CHEM 2020. [DOI: 10.1039/c9nj03877a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Fluorenyl substitution at the diimine ligand broadened the excited-state absorption to near-IR, and enhanced reverse saturable absorption at 532 nm for the cationic Ir(iii) complexes.
Collapse
Affiliation(s)
- Li Wang
- Department of Chemistry and Biochemistry
- North Dakota State University
- Fargo
- USA
| | - Peng Cui
- Department of Chemistry and Biochemistry
- North Dakota State University
- Fargo
- USA
- Materials and Nanotechnology Program
| | - Levi Lystrom
- Department of Chemistry and Biochemistry
- North Dakota State University
- Fargo
- USA
| | - Jiapeng Lu
- Department of Chemistry and Biochemistry
- North Dakota State University
- Fargo
- USA
| | - Svetlana Kilina
- Department of Chemistry and Biochemistry
- North Dakota State University
- Fargo
- USA
| | - Wenfang Sun
- Department of Chemistry and Biochemistry
- North Dakota State University
- Fargo
- USA
| |
Collapse
|
41
|
Xu Z, Zhou Y, Groß L, De Sio A, Yam CY, Lienau C, Frauenheim T, Chen G. Coherent Real-Space Charge Transport Across a Donor-Acceptor Interface Mediated by Vibronic Couplings. NANO LETTERS 2019; 19:8630-8637. [PMID: 31698905 DOI: 10.1021/acs.nanolett.9b03194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
There is growing experimental and theoretical evidence that vibronic couplings, couplings between electronic and nuclear degrees of freedom, play a fundamental role in ultrafast excited-state dynamics in organic donor-acceptor hybrids. Whereas vibronic coupling has been shown to support charge separation at donor-acceptor interfaces, so far, little is known about its role in the real-space transport of charges in such systems. Here we theoretically study charge transport in thiophene:fullerene stacks using time-dependent density functional tight-binding theory combined with Ehrenfest molecular dynamics for open systems. Our results reveal coherent oscillations of the charge density between neighboring donor sites, persisting for ∼200 fs and promoting charge transport within the polymer stacks. At the donor-acceptor interface, vibronic wave packets are launched, propagating coherently over distances of more than 3 nm into the acceptor region. This supports previous experimental observations of long-range ballistic charge-carrier motion in organic photovoltaic systems and highlights the importance of vibronic coupling engineering as a concept for tailoring the functionality of hybrid organic devices.
Collapse
Affiliation(s)
- Ziyao Xu
- Department of Chemistry , University of Hong Kong , Pokfulam Road , Hong Kong SAR , China
| | - Yi Zhou
- Department of Chemistry , University of Hong Kong , Pokfulam Road , Hong Kong SAR , China
| | - Lynn Groß
- Bremen Center for Computational Materials Science , University of Bremen , Am Fallturm 1 , 28359 Bremen , Germany
| | - Antonietta De Sio
- Institut für Physik and Center of Interface Science , Carl von Ossietzky Universität , Oldenburg 26129 , Germany
| | - Chi Yung Yam
- Beijing Computational Science Research Center , Beijing 100084 , China
| | - Christoph Lienau
- Institut für Physik and Center of Interface Science , Carl von Ossietzky Universität , Oldenburg 26129 , Germany
- Research Center Neurosensory Science , Carl von Ossietzky Universität , Oldenburg 26111 , Germany
| | - Thomas Frauenheim
- Bremen Center for Computational Materials Science , University of Bremen , Am Fallturm 1 , 28359 Bremen , Germany
| | - GuanHua Chen
- Department of Chemistry , University of Hong Kong , Pokfulam Road , Hong Kong SAR , China
| |
Collapse
|
42
|
Zhou G, Cen C, Wang S, Deng M, Prezhdo OV. Electron-Phonon Scattering Is Much Weaker in Carbon Nanotubes than in Graphene Nanoribbons. J Phys Chem Lett 2019; 10:7179-7187. [PMID: 31644293 DOI: 10.1021/acs.jpclett.9b02874] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Carbon nanotubes (CNTs) and graphene nanoribbons (GNRs) are lower-dimensional derivatives of graphene. Similar to graphene, they exhibit high charge mobilities; however, in contrast to graphene, they are semiconducting and thus are suitable for electronics, optics, solar energy devices, and other applications. Charge carrier mobilities, energies, and lifetimes are governed by scattering with phonons, and we demonstrate, using ab initio nonadiabatic molecular dynamics, that charge-phonon scattering is much stronger in GNRs. Focusing on a GNR and a CNT of similar size and electronic properties, we show that the difference arises because of the significantly higher stiffness of the CNT. The GNR undergoes large-scale undulating motions at ambient conditions. Such thermal geometry distortions localize wave functions, accelerate both elastic and inelastic charge-phonon scattering, and increase the rates of energy and carrier losses. Even though, formally, both CNTs and GNRs are quantum confined derivatives of graphene, charge-phonon scattering differs significantly between them. Showing good agreement with time-resolved photoconductivity and photoluminescence measurements, the study demonstrates that GNRs are quite similar to molecules, such as conjugated polymers, while CNTs exhibit extended features attributed to bulk materials. The state-of-the-art simulations alter the traditional view of graphene nanostructures and demonstrate that the performance can be tuned not only by size and composition but also by stiffness and response to thermal excitation.
Collapse
Affiliation(s)
- Guoqing Zhou
- Guizhou Provincial Key Laboratory of Computational Nano-material Science , Guizhou Education University , Guiyang 550018 , China
- Department of Physics and Astronomy , University of Southern California , Los Angeles , California 90089 , United States
| | - Chao Cen
- Guizhou Provincial Key Laboratory of Computational Nano-material Science , Guizhou Education University , Guiyang 550018 , China
| | - Shuyi Wang
- Guizhou Provincial Key Laboratory of Computational Nano-material Science , Guizhou Education University , Guiyang 550018 , China
| | - Mingsen Deng
- Guizhou Provincial Key Laboratory of Computational Nano-material Science , Guizhou Education University , Guiyang 550018 , China
| | - Oleg V Prezhdo
- Department of Physics and Astronomy , University of Southern California , Los Angeles , California 90089 , United States
- Department of Chemistry , University of Southern California , Los Angeles , California 90089 , United States
| |
Collapse
|
43
|
Smith B, Akimov AV. A comparative analysis of surface hopping acceptance and decoherence algorithms within the neglect of back-reaction approximation. J Chem Phys 2019; 151:124107. [DOI: 10.1063/1.5122770] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Brendan Smith
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, USA
| | - Alexey V. Akimov
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, USA
| |
Collapse
|
44
|
Assembly‐Induced Diverse Optical Property of 4‐Biphenylcarboxy‐Protected Serine and Tyrosine. ChemistrySelect 2019. [DOI: 10.1002/slct.201902353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
45
|
Fatima, Forde A, Inerbaev TM, Oncel N, Kilin DS. Time-resolved Optical Properties of SiNW Oriented in <211> Crystallographic Direction. ACTA ACUST UNITED AC 2019. [DOI: 10.1557/adv.2019.267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
46
|
Phan H, Kelly TJ, Zhugayevych A, Bazan GC, Nguyen TQ, Jarvis EA, Tretiak S. Tuning Optical Properties of Conjugated Molecules by Lewis Acids: Insights from Electronic Structure Modeling. J Phys Chem Lett 2019; 10:4632-4638. [PMID: 31291110 DOI: 10.1021/acs.jpclett.9b01572] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Understanding and controlling the optoelectronic properties of organic semiconductors at the molecular level remains a challenge due to the complexity of chemical structures and intermolecular interactions. A common strategy to address this challenge is to utilize both experimental and computational approaches. In this contribution, we show that density functional theory (DFT) calculation is a useful tool to provide insights into the bonding, electron population distribution, and optical transitions of adducts between conjugated molecules and Lewis acids (CM-LA). Adduct formation leads to relevant modifications of key properties, including a red shift in optical transitions and an increase in charge carrier density and charge mobility, compared to the parent conjugated molecules. We show that electron density transfer from the CM to the LA, which was hypothesized to cause the experimental red shift in absorption spectra upon LA binding, can be quantified and interpreted by population analysis. Experimental red shifts in optical transitions for all molecular families can also be predicted by time-dependent DFT calculations with different density functionals. These detailed insights help to optimize a priori design guidelines for future applications.
Collapse
Affiliation(s)
- Hung Phan
- Fulbright University Vietnam , Ho Chi Minh City , Vietnam
- Center for Polymers and Organic Solids (CPOS) , University of California Santa Barbara , Santa Barbara , California 93106 , United States
| | - Thomas J Kelly
- Department of Chemistry & Biochemistry , Loyola Marymount University , Los Angeles , California 90045 , United States
| | | | - Guillermo C Bazan
- Center for Polymers and Organic Solids (CPOS) , University of California Santa Barbara , Santa Barbara , California 93106 , United States
| | - Thuc-Quyen Nguyen
- Center for Polymers and Organic Solids (CPOS) , University of California Santa Barbara , Santa Barbara , California 93106 , United States
| | - Emily A Jarvis
- Department of Chemistry & Biochemistry , Loyola Marymount University , Los Angeles , California 90045 , United States
| | - Sergei Tretiak
- Center for Polymers and Organic Solids (CPOS) , University of California Santa Barbara , Santa Barbara , California 93106 , United States
- Skolkovo Institute of Science and Technology , Moscow 143026 , Russia
- Theoretical Division and Center for Integrated Nanotechnologies , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| |
Collapse
|
47
|
Fedorov DA, Levine BG. Nonadiabatic Quantum Molecular Dynamics in Dense Manifolds of Electronic States. J Phys Chem Lett 2019; 10:4542-4548. [PMID: 31342748 DOI: 10.1021/acs.jpclett.9b01902] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Most nonadiabatic molecular dynamics methods require the determination of a basis of adiabatic or diabatic electronic states at every time step, but in dense manifolds of electronic states, such approaches become intractable. A notable exception is Ehrenfest molecular dynamics, which can be implemented without explicit determination of such a basis but suffers from unphysical behavior when propagation on a mean-field potential energy surface (PES) does not accurately reflect the true dynamics on multiple electronic states. Here we introduce the multiple cloning for dense manifolds of states (MCDMS) method, a systematically improvable approximation to the multiple cloning method. MCDMS avoids both the mean-field PES problem and the need to compute the full electronic spectrum. This is achieved by reformulating multiple cloning to use a subspace of approximate eigenstates constructed from the time-dependent Ehrenfest electronic wave function. By application to model systems, we show that this approach allows a substantial reduction in the size of the required electronic basis without significant loss in accuracy.
Collapse
Affiliation(s)
- Dmitry A Fedorov
- Department of Chemistry , Michigan State University , East Lansing , Michigan 48824 , United States
| | - Benjamin G Levine
- Department of Chemistry , Michigan State University , East Lansing , Michigan 48824 , United States
| |
Collapse
|
48
|
Ali M, Ren J, Zhao T, Liu X, Hua Y, Yue Y, Qiu J. Broad Mid-Infrared Luminescence in a Metal-Organic Framework Glass. ACS OMEGA 2019; 4:12081-12087. [PMID: 31460321 PMCID: PMC6682119 DOI: 10.1021/acsomega.9b01559] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 07/02/2019] [Indexed: 05/28/2023]
Abstract
Metal-organic framework (MOF) glasses are a newly discovered family of melt-quenched glasses. Despite considerable progress in understanding the nature of MOF glasses, their photonic functionalities have not been found so far. Here, we report on the first breakthrough regarding the photonic functionalities of MOF glasses, that is, finding of the luminescence in melt-quenched MOF glasses. The finding was achieved on a zeolitic imidazolate framework (ZIF) series, that is, the ZIF-62 series: Zn1-x Co x (Im)1.7(bIm)0.3, x = 0, 0.1, and 0.5, where Co substitutes Zn in ZIF-62 forming single-phased solid solutions. Remarkably, we observed broadband mid-infrared (Mid-IR) luminescence (in the wavelength range of 1.5-4.8 μm) in both the crystalline and amorphous solid solutions. The intensity of the luminescence in ZIF glass is gradually enhanced by increasing the level of Co concentration. The observed Mid-IR emission originates from d-d transition of Co ions. The discovery of the luminescence in ZIF-62 glass may pave the way toward new photonic applications of bulk MOF glasses.
Collapse
Affiliation(s)
- Mohamed.
A. Ali
- College
of Materials Science and Engineering and State Key Laboratory of Modern Optical
Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Department
of Physics, Faculty of Science, Suez University, Suez 43511, Egypt
| | - Jinjun Ren
- Shanghai
Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Jiading, Shanghai 210009, China
| | - Tongyao Zhao
- Shanghai
Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Jiading, Shanghai 210009, China
| | - Xiaofeng Liu
- College
of Materials Science and Engineering and State Key Laboratory of Modern Optical
Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Youjie Hua
- College
of Materials Science and Engineering, China
Jiliang University, Hangzhou 310018, China
| | - Yuanzheng Yue
- Department
of Chemistry and Bioscience, Aalborg University, Aalborg DK-9220, Denmark
| | - Jianrong Qiu
- College
of Materials Science and Engineering and State Key Laboratory of Modern Optical
Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
49
|
Levine BG, Peng WT, Esch MP. Locality of conical intersections in semiconductor nanomaterials. Phys Chem Chem Phys 2019; 21:10870-10878. [PMID: 31106323 DOI: 10.1039/c9cp01584a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A predictive theory connecting atomic structure to the rate of recombination would enable the rational design of semiconductor nanomaterials for optoelectronic applications. Recently our group has demonstrated that the theoretical study of conical intersections can serve this purpose. Here we review recent work in this area, focusing on the thesis that low-energy conical intersections in nanomaterials share a common feature: locality. We define a conical intersection as local if (a) the intersecting states differ by the excitation of an electron between spatially local orbitals, and (b) the intersection is accessed when the energies of these orbitals are tuned by local distortions of the geometry. After illustrating the locality of the conical intersection responsible for recombination at dangling bond defects in silicon, we demonstrate the locality of low-energy conical intersections in cases where locality may be a surprise. First, we demonstrate the locality of low-energy self-trapped conical intersections in a pristine silicon nanocrystal, which has no defects that one would expect to serve as the center of a local intersection. Second, we demonstrate that the lowest energy intersection in a silicon system with two neighboring dangling bond defects localizes to a single defect site. We discuss the profound implications of locality for predicting the rate of recombination and suggest that the locality of intersections could be exploited in the experimental study of recombination, where spectroscopic studies of molecular models of defects could provide new insights.
Collapse
Affiliation(s)
- Benjamin G Levine
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA.
| | - Wei-Tao Peng
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA.
| | - Michael P Esch
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
50
|
|