1
|
Elmanova A, Jahn BO, Presselt M. Catching the π-Stacks: Prediction of Aggregate Structures of Porphyrin. J Phys Chem A 2024; 128:9917-9926. [PMID: 39520375 PMCID: PMC11586908 DOI: 10.1021/acs.jpca.4c05969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/24/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
π-π interactions decisively shape the supramolecular structure and functionality of π-conjugated molecular semiconductor materials. Despite the customizable molecular building blocks, predicting their supramolecular structure remains a challenge. Traditionally, force field methods have been used due to the complexity of these structures, but advances in computational power have enabled ab initio approaches such as density functional theory (DFT). DFT is particularly suitable for finding energetically favorable structures of dye aggregates, which are determined by a large number of different interactions, but a systematic aggregate search can still be very challenging due to the large number of possible geometries. In this work, we show ways to overcome this challenge. We investigate how finely translational and rotational lattices must be structured to identify all energetic minima of π-stack structures, focusing on porphyrins as a prototype challenge. Our approach involves single-point DFT calculations of systematically varied dimer geometries, identification of local energy minima, hierarchical grouping of geometrically similar structures, and optimization of the energetically favorable representatives of each geometric family. This ab initio method provides a general framework for the systematic prediction of aggregate structures and reveals geometrically diverse and energetically favorable dimers.
Collapse
Affiliation(s)
- Anna Elmanova
- Institute
of Physical Chemistry, Friedrich Schiller
University Jena, Helmholtzweg 4, 07743 Jena, Germany
- Leibniz
Institute of Photonic Technology (IPHT), Albert-Einstein-Str. 9, 07745 Jena, Germany
- SciClus
GmbH&Co. KG, Moritz-von-Rohr-Str.
1a, 07745 Jena, Germany
| | - Burkhard O. Jahn
- SciClus
GmbH&Co. KG, Moritz-von-Rohr-Str.
1a, 07745 Jena, Germany
| | - Martin Presselt
- Institute
of Physical Chemistry, Friedrich Schiller
University Jena, Helmholtzweg 4, 07743 Jena, Germany
- Leibniz
Institute of Photonic Technology (IPHT), Albert-Einstein-Str. 9, 07745 Jena, Germany
- SciClus
GmbH&Co. KG, Moritz-von-Rohr-Str.
1a, 07745 Jena, Germany
- Center
for Energy and Environmental Chemistry Jena (CEEC Jena) Friedrich
Schiller University Jena, Philosophenweg 7a, 07743 Jena, Germany
| |
Collapse
|
2
|
Emsley L. Spiers Memorial Lecture: NMR crystallography. Faraday Discuss 2024. [PMID: 39405130 PMCID: PMC11477664 DOI: 10.1039/d4fd00151f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/03/2024] [Indexed: 10/19/2024]
Abstract
Chemical function is directly related to the spatial arrangement of atoms. Consequently, the determination of atomic-level three-dimensional structures has transformed molecular and materials science over the past 60 years. In this context, solid-state NMR has emerged to become the method of choice for atomic-level characterization of complex materials in powder form. In the following we present an overview of current methods for chemical shift driven NMR crystallography, illustrated with applications to complex materials.
Collapse
Affiliation(s)
- Lyndon Emsley
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| |
Collapse
|
3
|
Gupta AK, Stulajter MM, Shaidu Y, Neaton JB, de Jong WA. Equivariant Neural Networks Utilizing Molecular Clusters for Accurate Molecular Crystal Lattice Energy Predictions. ACS OMEGA 2024; 9:40269-40282. [PMID: 39346862 PMCID: PMC11425815 DOI: 10.1021/acsomega.4c07434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 08/27/2024] [Accepted: 09/02/2024] [Indexed: 10/01/2024]
Abstract
Equivariant neural networks have emerged as prominent models in advancing the construction of interatomic potentials due to their remarkable data efficiency and generalization capabilities for out-of-distribution data. Here, we expand the utility of these networks to the prediction of crystal structures consisting of organic molecules. Traditional methods for computing crystal structure properties, such as plane-wave quantum chemical methods based on density functional theory (DFT), are prohibitively resource-intensive, often necessitating compromises in accuracy and the choice of exchange-correlation functional. We present an approach that leverages the efficiency, and transferability of equivariant neural networks, specifically Allegro, to predict molecular crystal structure energies at a reduced computational cost. Our neural network is trained on molecular clusters using a highly accurate Gaussian-type orbital (GTO)-based method as the target level of theory, eliminating the need for costly periodic DFT calculations, while providing access to all families of exchange-corelation functionals and post-Hartree-Fock methods. The trained model exhibits remarkable accuracy in predicting lattice energies, aligning closely with those computed by plane-wave based DFT methods, thus representing significant cost reductions. Furthermore, the Allegro network was seamlessly integrated with the USPEX framework, accelerating the discovery of low-energy crystal structures during crystal structure prediction.
Collapse
Affiliation(s)
- Ankur K Gupta
- Applied Mathematics and Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Miko M Stulajter
- Applied Mathematics and Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Yusuf Shaidu
- Department of Physics, University of California Berkeley, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jeffrey B Neaton
- Department of Physics, University of California Berkeley, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Kavli Energy NanoSciences Institute at Berkeley, Berkeley, California 94720, United States
| | - Wibe A de Jong
- Applied Mathematics and Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
4
|
Ramos SA, Mueller LJ, Beran GJO. The interplay of density functional selection and crystal structure for accurate NMR chemical shift predictions. Faraday Discuss 2024. [PMID: 39258864 DOI: 10.1039/d4fd00072b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Ab initio chemical shift prediction plays a central role in nuclear magnetic resonance (NMR) crystallography, and the accuracy with which chemical shifts can be predicted relative to experiment impacts the confidence with which structures can be assigned. For organic crystals, periodic density functional theory calculations with the gauge-including projector augmented wave (GIPAW) approximation and the PBE functional are widely used at present. Many previous studies have examined how using more advanced density functionals can increase the accuracy of predicted chemical shifts relative to experiment, but nearly all of those studies employed crystal structures that were optimized with generalized-gradient approximation (GGA) functionals. Here, we investigate how the accuracy of the predicted chemical shifts in organic crystals is affected by replacing GGA-level PBE-D3(BJ) crystal geometries with more accurate hybrid functional PBE0-D3(BJ) ones. Based on benchmark data sets containing 132 13C and 35 15N chemical shifts, plus case studies on testosterone, acetaminophen, and phenobarbital, we find that switching from GGA-level geometries and chemical shifts to hybrid-functional ones reduces 13C and 15N chemical shift errors by ∼40-60% versus experiment. However, most of the improvement stems from the use of the hybrid functional for the chemical shift calculations, rather than from the refined geometries. In addition, even with the improved geometries, we find that double-hybrid functionals still do not systematically increase chemical shift agreement with experiment beyond what hybrid functionals provide. In the end, these results suggest that the combination of GGA-level crystal structures and hybrid-functional chemical shifts represents a particularly cost-effective combination for NMR crystallography in organic systems.
Collapse
Affiliation(s)
- Sebastian A Ramos
- Department of Chemistry, University of California Riverside, Riverside, CA 92521, USA.
| | - Leonard J Mueller
- Department of Chemistry, University of California Riverside, Riverside, CA 92521, USA.
| | - Gregory J O Beran
- Department of Chemistry, University of California Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
5
|
A P V, O R S, T V V, G L P. Sublimation of pyridine derivatives: fundamental aspects and application for two-component crystal screening. Phys Chem Chem Phys 2024; 26:22558-22571. [PMID: 39150718 DOI: 10.1039/d4cp01442a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The saturated vapour pressures of five heterocyclic compounds containing the pyridine fragment, namely, three isomers of aminopyridine (2-aminopyridine (2AmPy), 3-aminopyridine (3AmPy), and 4-aminopyridine (4AmPy)); 3-hydroxypyridine (3OHPy) and 2-(1H-imidazol-2-yl)pyridine (ImPy), were measured at appropriate temperature intervals using a transpiration (inert gas flow) method. The standard molar enthalpies, entropies, and Gibbs energies of sublimation for all the studied substances were determined. Among the compounds studied, the largest value of ΔH298sub was observed for ImPy. The influence of substitution and the effects of hydrogen bonds in the crystal lattices on sublimation parameters are discussed herein. The reliable dependences relating ΔG298sub to Tfus and ΔH298sub to ΔG298sub were plotted. A comparative analysis of several calculation schemes for the estimation of sublimation enthalpy and Gibbs free energy was carried out. Thermodynamic parameters obtained in this study were applied for the evaluation of cocrystallisation thermodynamic functions for two-component crystals (virtual screening) on the basis of the studied substituted pyridines.
Collapse
Affiliation(s)
- Voronin A P
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya St., Ivanovo, 153045, Russian Federation.
| | - Simonova O R
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya St., Ivanovo, 153045, Russian Federation.
| | - Volkova T V
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya St., Ivanovo, 153045, Russian Federation.
| | - Perlovich G L
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya St., Ivanovo, 153045, Russian Federation.
| |
Collapse
|
6
|
Glick ZL, Metcalf DP, Glick CS, Spronk SA, Koutsoukas A, Cheney DL, Sherrill CD. A physics-aware neural network for protein-ligand interactions with quantum chemical accuracy. Chem Sci 2024; 15:13313-13324. [PMID: 39183910 PMCID: PMC11339967 DOI: 10.1039/d4sc01029a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 07/09/2024] [Indexed: 08/27/2024] Open
Abstract
Quantifying intermolecular interactions with quantum chemistry (QC) is useful for many chemical problems, including understanding the nature of protein-ligand interactions. Unfortunately, QC computations on protein-ligand systems are too computationally expensive for most use cases. The flourishing field of machine-learned (ML) potentials is a promising solution, but it is limited by an inability to easily capture long range, non-local interactions. In this work we develop an atomic-pairwise neural network (AP-Net) specialized for modeling intermolecular interactions. This model benefits from a number of physical constraints, including a two-component equivariant message passing neural network architecture that predicts interaction energies via an intermediate prediction of monomer electron densities. The AP-Net model is trained on a comprehensive dataset composed of paired ligand and protein fragments. This model accurately predicts QC-quality interaction energies of protein-ligand systems at a computational cost reduced by orders of magnitude. Applications of the AP-Net model to molecular crystal structure prediction are explored, as well as limitations in modeling highly polarizable systems.
Collapse
Affiliation(s)
- Zachary L Glick
- School of Chemistry and Biochemistry, School of Computational Science and Engineering, Georgia Institute of Technology Atlanta Georgia 30332-0400 USA
| | - Derek P Metcalf
- School of Chemistry and Biochemistry, School of Computational Science and Engineering, Georgia Institute of Technology Atlanta Georgia 30332-0400 USA
| | - Caroline S Glick
- School of Chemistry and Biochemistry, School of Computational Science and Engineering, Georgia Institute of Technology Atlanta Georgia 30332-0400 USA
| | - Steven A Spronk
- Molecular Structure and Design, Bristol Myers Squibb Company P.O. Box 5400 Princeton New Jersey 08543 USA
| | - Alexios Koutsoukas
- Molecular Structure and Design, Bristol Myers Squibb Company P.O. Box 5400 Princeton New Jersey 08543 USA
| | - Daniel L Cheney
- Molecular Structure and Design, Bristol Myers Squibb Company P.O. Box 5400 Princeton New Jersey 08543 USA
| | - C David Sherrill
- School of Chemistry and Biochemistry, School of Computational Science and Engineering, Georgia Institute of Technology Atlanta Georgia 30332-0400 USA
| |
Collapse
|
7
|
Della Pia F, Zen A, Alfè D, Michaelides A. How Accurate Are Simulations and Experiments for the Lattice Energies of Molecular Crystals? PHYSICAL REVIEW LETTERS 2024; 133:046401. [PMID: 39121404 DOI: 10.1103/physrevlett.133.046401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/17/2024] [Indexed: 08/11/2024]
Abstract
Molecular crystals play a central role in a wide range of scientific fields, including pharmaceuticals and organic semiconductor devices. However, they are challenging systems to model accurately with computational approaches because of a delicate interplay of intermolecular interactions such as hydrogen bonding and Van der Waals dispersion forces. Here, by exploiting recent algorithmic developments, we report the first set of diffusion Monte Carlo lattice energies for all 23 molecular crystals in the popular and widely used X23 dataset. Comparisons with previous state-of-the-art lattice energy predictions (on a subset of the dataset) and a careful analysis of experimental sublimation enthalpies reveals that high-accuracy computational methods are now at least as reliable as (computationally derived) experiments for the lattice energies of molecular crystals. Overall, this work demonstrates the feasibility of high-level explicitly correlated electronic structure methods for broad benchmarking studies in complex condensed phase systems, and signposts a route towards closer agreement between experiment and simulation.
Collapse
Affiliation(s)
| | | | - Dario Alfè
- Dipartimento di Fisica Ettore Pancini, Università di Napoli Federico II, Monte S. Angelo, I-80126 Napoli, Italy
- Department of Earth Sciences, University College London, London WC1E 6BT, United Kingdom
- Thomas Young Centre, University College London, London WC1E 6BT, United Kingdom
- London Centre for Nanotechnology, University College London, London WC1E 6BT, United Kingdom
| | | |
Collapse
|
8
|
Tian B, Wang N, Yang J, Jiang Z, Feng Y, Wang T, Zhou L, Huang X, Hao H. Insight into the Manipulation Mechanism of Polymorphic Transformation by Polymers: A Case of Cimetidine. Pharm Res 2024; 41:1521-1531. [PMID: 38955998 DOI: 10.1007/s11095-024-03734-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/20/2024] [Indexed: 07/04/2024]
Abstract
PURPOSE Employing polymer additives is an effective strategy to realize the manipulation of polymorphic transformation. However, the manipulation mechanism is still not clear, which limit the precise selection of polymeric excipients and the development of pharmaceutical formulations. METHODS The solubility of cimetidine (CIM) in acetonitrile/water mixtures were measured. And the polymorphic transformation from CIM form A to form B with the addition of different polymers was monitored by Raman spectroscopy. Furthermore, the manipulation effect of polymers was determined based on the results of experiments and molecular simulations. RESULTS The solubility of form A is consistently higher than that of form B, which indicate that form B is the thermodynamically stable form within the examined temperature range. The presence of polyvinylpyrrolidone (PVP) of a shorter chain length could have a stronger inhibitory effect on the phase transformation process of metastable form, whereas polyethylene glycol (PEG) had almost no impact. The nucleation kinetics experiments and molecular dynamic simulation results showed that only PVP molecules could significantly decrease the nucleation rate of CIM, due to the ability of reducing solute molecular diffusion and solute-solute molecular interaction. A combination of crystal growth rate measurements and calculations of the interaction energies between PVP and the crystal faces of CIM indicate that smaller molecular weight PVP can suppress crystal growth more effectively. CONCLUSION PVP K16-18 has more impact on the stabilization of CIM form A and inhibition of the phase transformation process. The manipulation mechanism of polymer additives in the polymorphic transformation of CIM was proposed.
Collapse
Affiliation(s)
- Beiqian Tian
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Na Wang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Jinyue Yang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Zhicheng Jiang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yaoguang Feng
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Ting Wang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Lina Zhou
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Xin Huang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China.
- Zhejiang Institute of Tianjin University, Ningbo, 315200, China.
| | - Hongxun Hao
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China.
| |
Collapse
|
9
|
Pham KN, Modrzejewski M, Klimeš J. Contributions beyond direct random-phase approximation in the binding energy of solid ethane, ethylene, and acetylene. J Chem Phys 2024; 160:224101. [PMID: 38856055 DOI: 10.1063/5.0207090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/22/2024] [Indexed: 06/11/2024] Open
Abstract
The random-phase approximation (RPA) includes a subset of higher than second-order correlation-energy contributions, but stays in the same complexity class as the second-order Møller-Plesset perturbation theory (MP2) in both Gaussian-orbital and plane-wave codes. This makes RPA a promising ab initio electronic structure approach for the binding energies of molecular crystals. Still, some issues stand out in practical applications of RPA. Notably, compact clusters of nonpolar molecules are poorly described, and the interaction energies strongly depend on the reference single-determinant state. Using the many-body expansion of the binding energy of a crystal, we investigate those issues and the effect of beyond-RPA corrections. We find the beneficial effect of quartic-scaling exchange and non-ring coupled-cluster doubles corrections. The nonadditive interactions in compact trimers of molecules are improved by using the self-consistent Hartree-Fock orbitals instead of the usual Kohn-Sham states, but this kind of orbital input also leads to underestimated dimer energies. Overall, a substantial improvement over the RPA with a renormalized singles approach is possible at a modest quartic-scaling cost, which encourages further research into additional RPA corrections.
Collapse
Affiliation(s)
- Khanh Ngoc Pham
- Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, CZ-12116 Prague 2, Czech Republic
| | - Marcin Modrzejewski
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Jiří Klimeš
- Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, CZ-12116 Prague 2, Czech Republic
| |
Collapse
|
10
|
Ludík J, Kostková V, Kocian Š, Touš P, Štejfa V, Červinka C. First-Principles Models of Polymorphism of Pharmaceuticals: Maximizing the Accuracy-to-Cost Ratio. J Chem Theory Comput 2024; 20:2858-2870. [PMID: 38531828 PMCID: PMC11008097 DOI: 10.1021/acs.jctc.4c00099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024]
Abstract
Accuracy and sophistication of in silico models of structure, internal dynamics, and cohesion of molecular materials at finite temperatures increase over time. Applicability limits of ab initio polymorph ranking that would be feasible at reasonable costs currently represent crystals of moderately sized molecules (less than 20 nonhydrogen atoms) and simple unit cells (containing rather only one symmetry-irreducible molecule). Extending the applicability range of the underlying first-principles methods to larger systems with a real-life significance, and enabling to perform such computations in a high-throughput regime represent additional challenges to be tackled in computational chemistry. This work presents a novel composite method that combines the computational efficiency of density-functional tight-binding (DFTB) methods with the accuracy of density-functional theory (DFT). Being rooted in the quasi-harmonic approximation, it uses a cheap method to perform all of the costly scans of how static and dynamic characteristics of the crystal vary with respect to its volume. Such data are subsequently corrected to agree with a higher-level model, which must be evaluated only at a single volume of the crystal. It thus enables predictions of structural, cohesive, and thermodynamic properties of complex molecular materials, such as pharmaceuticals or organic semiconductors, at a fraction of the original computational cost. As the composite model retains the solid physical background, it suffers from a minimum accuracy deterioration compared to the full treatment with the costly approach. The novel methodology is demonstrated to provide consistent results for the structural and thermodynamic properties of real-life molecular crystals and their polymorph ranking.
Collapse
Affiliation(s)
- Jan Ludík
- Department of Physical Chemistry, University of Chemistry and Technology Prague, Technická 5, CZ-166 28 Prague 6, Czech Republic
| | - Veronika Kostková
- Department of Physical Chemistry, University of Chemistry and Technology Prague, Technická 5, CZ-166 28 Prague 6, Czech Republic
| | - Štefan Kocian
- Department of Physical Chemistry, University of Chemistry and Technology Prague, Technická 5, CZ-166 28 Prague 6, Czech Republic
| | - Petr Touš
- Department of Physical Chemistry, University of Chemistry and Technology Prague, Technická 5, CZ-166 28 Prague 6, Czech Republic
| | - Vojtěch Štejfa
- Department of Physical Chemistry, University of Chemistry and Technology Prague, Technická 5, CZ-166 28 Prague 6, Czech Republic
| | - Ctirad Červinka
- Department of Physical Chemistry, University of Chemistry and Technology Prague, Technická 5, CZ-166 28 Prague 6, Czech Republic
| |
Collapse
|
11
|
Chaloupecká E, Tyrpekl V, Bártová K, Nishiyama Y, Dračínský M. NMR crystallography of amino acids. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2024; 130:101921. [PMID: 38422809 DOI: 10.1016/j.ssnmr.2024.101921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 03/02/2024]
Abstract
The development of NMR crystallography methods requires a reliable database of chemical shifts measured for systems with known crystal structure. We measured and assigned carbon and hydrogen chemical shifts of twenty solid natural amino acids of known polymorphic structure, meticulously determined using powder X-ray diffraction. We then correlated the experimental data with DFT-calculated isotropic shieldings. The small size of the unit cell of most amino acids allowed for advanced computations using various families of DFT functionals, including generalized gradient approximation (GGA), meta-GGA and hybrid DFT functionals. We tested several combinations of functionals for geometry optimizations and NMR calculations. For carbon shieldings, the widely used GGA functional PBE performed very well, although an improvement could be achieved by adding shielding corrections calculated for isolated molecules using a hybrid functional. For hydrogen nuclei, we observed the best performance for NMR calculations carried out with structures optimized at the hybrid DFT level. The high fidelity of the calculations made it possible to assign additional signals that could not be assigned based on experiments alone, for example signals of two non-equivalent molecules in the unit cell of some of the amino acids.
Collapse
Affiliation(s)
- Ema Chaloupecká
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague, Czech Republic; Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, 128 40 Prague 2, Czech Republic
| | - Václav Tyrpekl
- Department of Inorganic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, 128 40 Prague 2, Czech Republic
| | - Kateřina Bártová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague, Czech Republic
| | | | - Martin Dračínský
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague, Czech Republic.
| |
Collapse
|
12
|
Paschoal VH, Ribeiro MCC. Phase transitions of choline dihydrogen phosphate: A vibrational spectroscopy and periodic DFT study. J Chem Phys 2024; 160:094507. [PMID: 38445739 DOI: 10.1063/5.0189049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 02/19/2024] [Indexed: 03/07/2024] Open
Abstract
Choline dihydrogen phosphate, [Chol][H2PO4], is a proton-conducting ionic plastic crystal exhibiting a complicated sequence of phase transitions. Here, we address the argument in the literature around the thermal properties of [Chol][H2PO4] using Raman and infrared microspectroscopy. The known structure of the low-temperature crystal, which contains the anti-conformer of [Chol]+ and hydrogen-bonded dimers of anions, was used to do periodic density functional theory calculations of the vibrational frequencies. Raman spectra indicate that the solid-solid transition at 20 °C is linked to a conformational change to the gauche [Chol] conformer with a concurrent local rearrangement of the anions. The distinct bands of lattice modes in the low-frequency range of the Raman spectra vanish at the 20 °C transition. Given the ease with which metastable crystals can be produced, Raman mappings demonstrate that a sample of [Chol][H2PO4] at ambient temperature can contain a combination of anti- and gauche conformers. Heating to 120 °C causes continuous changes in the local environment of anions rather than melting as suggested by a recent calorimetric investigation of [Chol][H2PO4]. The monotonic change in vibrational spectra is consistent with earlier observations of a very small entropy of fusion and no abrupt jump in the temperature dependence of ionic conductivity along the phase transitions of [Chol][H2PO4].
Collapse
Affiliation(s)
- Vitor H Paschoal
- Laboratório de Espectroscopia Molecular, Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, 05513-970 São Paulo, Brazil
| | - Mauro C C Ribeiro
- Laboratório de Espectroscopia Molecular, Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, 05513-970 São Paulo, Brazil
| |
Collapse
|
13
|
Widdifield CM, Zakeri F. Can simple 'molecular' corrections outperform projector augmented-wave density functional theory in the prediction of 35 Cl electric field gradient tensor parameters for chlorine-containing crystalline systems? MAGNETIC RESONANCE IN CHEMISTRY : MRC 2024; 62:156-168. [PMID: 37950622 DOI: 10.1002/mrc.5408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/13/2023]
Abstract
Many-body expansion (MBE) fragment approaches have been applied to accurately compute nuclear magnetic resonance (NMR) parameters in crystalline systems. Recent examples demonstrate that electric field gradient (EFG) tensor parameters can be accurately calculated for 14 N and 17 O. A key additional development is the simple molecular correction (SMC) approach, which uses two one-body fragment (i.e., isolated molecule) calculations to adjust NMR parameter values established using 'benchmark' projector augmented-wave (PAW) density functional theory (DFT) values. Here, we apply a SMC using the hybrid PBE0 exchange-correlation (XC) functional to see if this can improve the accuracy of calculated 35 Cl EFG tensor parameters. We selected eight organic and two inorganic crystal structures and considered 15 chlorine sites. We find that this SMC improves the accuracy of computed values for both the 35 Cl quadrupolar coupling constant (CQ ) and the asymmetry parameter ( η Q ) by approximately 30% compared with benchmark PAW DFT values. We also assessed a SMC that offers local improvements not only in terms of the quality of the XC functional but simultaneously in the quality of the description of relativistic effects via the inclusion of spin-orbit effects. As the inorganic systems considered contain heavy atoms bonded to the chlorine atoms, we find further improvements in the accuracy of calculated 35 Cl EFG tensor parameters when both a hybrid functional and spin-orbit effects are included in the SMC. On the contrary, for chlorine-containing organics, the inclusion of spin-orbit relativistic effects using a SMC does not improve the accuracy of computed 35 Cl EFG tensor parameters.
Collapse
Affiliation(s)
- Cory M Widdifield
- Department of Chemistry and Biochemistry, University of Regina, Regina, Saskatchewan, Canada
| | - Fatemeh Zakeri
- Department of Chemistry and Biochemistry, University of Regina, Regina, Saskatchewan, Canada
| |
Collapse
|
14
|
Caricato M. A Perspective on the Simulation of Electronic Circular Dichroism and Circularly Polarized Luminescence Spectra in Chiral Solid Materials. J Phys Chem A 2024; 128:1197-1206. [PMID: 38295762 DOI: 10.1021/acs.jpca.3c08095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Chiral materials have shown tremendous potential for many technological applications, such as optoelectronics, sensing, magnetism, information technology, and imaging. Characterization of these materials is mostly based on chiroptical spectroscopies, such as electronic circular dichroism (ECD) and circularly polarized luminescence (CPL). These experimental measurements would greatly benefit from theoretical simulations for interpretation of the spectra as well as predictions on new materials. While ECD and CPL simulations are well established for molecular systems, they are not for materials. In this Perspective, we describe the theoretical quantities necessary to simulate ECD and CPL spectra in oriented systems. Then, we discuss the approximate strategies currently used to perform these calculations, what computational machinery is already available to develop more general approaches, and some of the open challenges for the simulation of ECD and CPL spectra in solid materials. When methods that are as reliable and computationally efficient as those for molecules are developed, these simulations will provide invaluable insight and guidance for the rational design of optically active materials.
Collapse
Affiliation(s)
- Marco Caricato
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| |
Collapse
|
15
|
Shishkina SV, Shaposhnyk AM, Konovalova IS, Dyakonenko VV, Vaksler YO. Concomitant polymorphs of 2-imino-2H-chromene-3-carboxylic acid amide: experimental and quantum chemical study. ACTA CRYSTALLOGRAPHICA SECTION B, STRUCTURAL SCIENCE, CRYSTAL ENGINEERING AND MATERIALS 2024; 80:27-37. [PMID: 38205837 DOI: 10.1107/s2052520623010193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/24/2023] [Indexed: 01/12/2024]
Abstract
2-Iminocoumarin-3-carboxamide (2-imino-2 H-chromene-3-carboxylic acid) is a perspective compound for use in the pharmaceutical industry. This compound crystallized from several solvents as two concomitant polymorphic forms. The monoclinic polymorph, crystallized initially, is formed due to strong N-H...O hydrogen bonds, weak C-H...O and C-H...N(π) hydrogen bonds, and stacking interactions of `head-to-head' type. The triclinic polymorphic form obtained due to slow evaporation of the same solution is formed due to only strong intermolecular interactions, N-H...O hydrogen bonds of two types, and stacking interactions of two types. Analysis of pairwise interaction energies showed that the monoclinic structure is columnar while the triclinic one is layered. Calculations in a periodic approximation of their lattice energies confirmed that the monoclinic polymorphic crystals are metastable as compared to the stable triclinic polymorph. Further quantum chemical modeling of possible structure deformations proved that both concomitant polymorphs can not be transformed into a new polymorphic form under external influence.
Collapse
Affiliation(s)
- Svitlana V Shishkina
- SSI "Institute for Single Crystals" NAS of Ukraine, 60 Nauky ave., Kharkiv, 61001, Ukraine
| | - Anna M Shaposhnyk
- SSI "Institute for Single Crystals" NAS of Ukraine, 60 Nauky ave., Kharkiv, 61001, Ukraine
| | - Irina S Konovalova
- SSI "Institute for Single Crystals" NAS of Ukraine, 60 Nauky ave., Kharkiv, 61001, Ukraine
| | - Victoriya V Dyakonenko
- SSI "Institute for Single Crystals" NAS of Ukraine, 60 Nauky ave., Kharkiv, 61001, Ukraine
| | - Yevhenii O Vaksler
- SSI "Institute for Single Crystals" NAS of Ukraine, 60 Nauky ave., Kharkiv, 61001, Ukraine
| |
Collapse
|
16
|
Iyengar SS, Ricard TC, Zhu X. Reformulation of All ONIOM-Type Molecular Fragmentation Approaches and Many-Body Theories Using Graph-Theory-Based Projection Operators: Applications to Dynamics, Molecular Potential Surfaces, Machine Learning, and Quantum Computing. J Phys Chem A 2024; 128:466-478. [PMID: 38180503 DOI: 10.1021/acs.jpca.3c05630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
We present a graph-theory-based reformulation of all ONIOM-based molecular fragmentation methods. We discuss applications to (a) accurate post-Hartree-Fock AIMD that can be conducted at DFT cost for medium-sized systems, (b) hybrid DFT condensed-phase studies at the cost of pure density functionals, (c) reduced cost on-the-fly large basis gas-phase AIMD and condensed-phase studies, (d) post-Hartree-Fock-level potential surfaces at DFT cost to obtain quantum nuclear effects, and (e) novel transfer machine learning protocols derived from these measures. Additionally, in previous work, the unifying strategy discussed here has been used to construct new quantum computing algorithms. Thus, we conclude that this reformulation is robust and accurate.
Collapse
Affiliation(s)
- Srinivasan S Iyengar
- Department of Chemistry, Department of Physics, and the Indiana University Quantum Science and Engineering Center (IU-QSEC), Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Timothy C Ricard
- Department of Chemistry, Department of Physics, and the Indiana University Quantum Science and Engineering Center (IU-QSEC), Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Xiao Zhu
- Department of Chemistry, Department of Physics, and the Indiana University Quantum Science and Engineering Center (IU-QSEC), Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
17
|
Stein F, Hutter J. Massively parallel implementation of gradients within the random phase approximation: Application to the polymorphs of benzene. J Chem Phys 2024; 160:024120. [PMID: 38214385 DOI: 10.1063/5.0180704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/15/2023] [Indexed: 01/13/2024] Open
Abstract
The Random-Phase approximation (RPA) provides an appealing framework for semi-local density functional theory. In its Resolution-of-the-Identity (RI) approach, it is a very accurate and more cost-effective method than most other wavefunction-based correlation methods. For widespread applications, efficient implementations of nuclear gradients for structure optimizations and data sampling of machine learning approaches are required. We report a well scaling implementation of RI-RPA nuclear gradients on massively parallel computers. The approach is applied to two polymorphs of the benzene crystal obtaining very good cohesive and relative energies. Different correction and extrapolation schemes are investigated for further improvement of the results and estimations of error bars.
Collapse
Affiliation(s)
- Frederick Stein
- Center for Advanced Systems Understanding (CASUS), Helmholtz-Zentrum Dresden, Rossendorf (HZDR), Untermarkt 20, 02826 Görlitz, Germany
| | - Jürg Hutter
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
18
|
Thakur AC, Remsing RC. Nuclear quantum effects in the acetylene:ammonia plastic co-crystal. J Chem Phys 2024; 160:024502. [PMID: 38189604 DOI: 10.1063/5.0179161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/20/2023] [Indexed: 01/09/2024] Open
Abstract
Organic molecular solids can exhibit rich phase diagrams. In addition to structurally unique phases, translational and rotational degrees of freedom can melt at different state points, giving rise to partially disordered solid phases. The structural and dynamic disorder in these materials can have a significant impact on the physical properties of the organic solid, necessitating a thorough understanding of disorder at the atomic scale. When these disordered phases form at low temperatures, especially in crystals with light nuclei, the prediction of material properties can be complicated by the importance of nuclear quantum effects. As an example, we investigate nuclear quantum effects on the structure and dynamics of the orientationally disordered, translationally ordered plastic phase of the acetylene:ammonia (1:1) co-crystal that is expected to exist on the surface of Saturn's moon Titan. Titan's low surface temperature (∼90 K) suggests that the quantum mechanical behavior of nuclei may be important in this and other molecular solids in these environments. By using neural network potentials combined with ring polymer molecular dynamics simulations, we show that nuclear quantum effects increase orientational disorder and rotational dynamics within the acetylene:ammonia (1:1) co-crystal by weakening hydrogen bonds. Our results suggest that nuclear quantum effects are important to accurately model molecular solids and their physical properties in low-temperature environments.
Collapse
Affiliation(s)
- Atul C Thakur
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Richard C Remsing
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, USA
| |
Collapse
|
19
|
Hoja J, List A, Boese AD. Multimer Embedding Approach for Molecular Crystals up to Harmonic Vibrational Properties. J Chem Theory Comput 2024; 20:357-367. [PMID: 38109226 PMCID: PMC10782452 DOI: 10.1021/acs.jctc.3c01082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 12/20/2023]
Abstract
Accurate calculations of molecular crystals are crucial for drug design and crystal engineering. However, periodic high-level density functional calculations using hybrid functionals are often prohibitively expensive for the relevant systems. These expensive periodic calculations can be circumvented by the usage of embedding methods in which, for instance, the periodic calculation is only performed at a lower-cost level and then monomer energies and dimer interactions are replaced by those of the higher-level method. Herein, we extend such a multimer embedding approach to enable energy corrections for trimer interactions and the calculation of harmonic vibrational properties up to the dimer level. We evaluate this approach for the X23 benchmark set of molecular crystals by approximating a periodic hybrid density functional (PBE0+MBD) by embedding multimers into less expensive calculations using a generalized-gradient approximation functional (PBE+MBD). We show that trimer interactions are crucial for accurately approximating lattice energies within 1 kJ/mol and might also be needed for further improvement of lattice constants and hence cell volumes. Finally, the vibrational properties are already very well captured at the monomer and dimer level, making it possible to approximate vibrational free energies at room temperature within 1 kJ/mol.
Collapse
Affiliation(s)
- Johannes Hoja
- Department of Chemistry, University
of Graz, Heinrichstraße 28/IV, Graz 8010, Austria
| | - Alexander List
- Department of Chemistry, University
of Graz, Heinrichstraße 28/IV, Graz 8010, Austria
| | - A. Daniel Boese
- Department of Chemistry, University
of Graz, Heinrichstraße 28/IV, Graz 8010, Austria
| |
Collapse
|
20
|
Li W, Wang Y, Ni Z, Li S. Cluster-in-Molecule Local Correlation Method for Dispersion Interactions in Large Systems and Periodic Systems. Acc Chem Res 2023; 56:3462-3474. [PMID: 37991873 DOI: 10.1021/acs.accounts.3c00538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
ConspectusThe noncovalent interactions, including dispersion interactions, control the structures and stabilities of complex chemical systems, including host-guest complexes and the adsorption process of molecules on the solid surfaces. The density functional theory (DFT) with empirical dispersion correction is now the working horse in many areas of applications. Post-Hartree-Fock (post-HF) methods have been well recognized to provide more accurate descriptions in a systematic way. However, traditional post-HF methods are mainly limited to small- or medium-sized systems, and their applications to periodic condensed phase systems are still very limited due to their expensive computational costs.To extend post-HF calculations to large molecules, the cluster-in-molecule (CIM) local correlation approach has been established, allowing highly accurate electron correlation calculations that are routinely available for very large systems. In the CIM approach, the electron correlation energy of a large molecule could be obtained from electron correlation calculations on a series of clusters, each of which contains a subset of occupied and virtual localized molecular orbitals. The CIM method could be massively and efficiently parallelized on general computer clusters. The CIM method has been implemented at various electron correlation levels, including second-order Mo̷ller-Plesset perturbation theory (MP2), coupled cluster singles and doubles (CCSD), CCSD with perturbative triples correction [CCSD(T)], etc. The CIM-MP2 energy gradient algorithm was developed and applied to the geometry optimizations of large systems. The CIM method has also been extended to condensed-phase systems under periodic boundary conditions (PBC-CIM). For periodic systems, the correlation energy per unit cell could be evaluated with correlation energy contributions from a series of clusters that are built with localized Wannier functions.CIM-based electron correlation calculations have been employed to investigate a number of chemical problems in which the dispersion interaction is important. CIM-based post-HF methods including CIM domain-based local pair natural orbital (DLPNO) CCSD(T) are applied to compute the relative or binding energies of biological systems or supramolecular complexes, the reaction barrier in a relatively complex chemical reaction. The CIM-MP2 method is used to obtain the optimized geometry of large systems. CIM-based post-HF calculations have also been used to compute the cohesive energies of molecular crystals and adsorption energies of molecules on the solid surfaces. The CIM and its PBC variant are expected to become a powerful theoretical tool for accurate calculations of the energies and structures for a broad range of large systems and condensed-phase systems with significant dispersion interactions.
Collapse
Affiliation(s)
- Wei Li
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, New Cornerstone Science Laboratory, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Yuqi Wang
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, New Cornerstone Science Laboratory, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Zhigang Ni
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, People's Republic of China
| | - Shuhua Li
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, New Cornerstone Science Laboratory, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| |
Collapse
|
21
|
Ricard TC, Zhu X, Iyengar SS. Capturing Weak Interactions in Surface Adsorbate Systems at Coupled Cluster Accuracy: A Graph-Theoretic Molecular Fragmentation Approach Improved through Machine Learning. J Chem Theory Comput 2023. [PMID: 38019639 DOI: 10.1021/acs.jctc.3c00955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
The accurate and efficient study of the interactions of organic matter with the surface of water is critical to a wide range of applications. For example, environmental studies have found that acidic polyfluorinated alkyl substances, especially perfluorooctanoic acid (PFOA), have spread throughout the environment and bioaccumulate into human populations residing near contaminated watersheds, leading to many systemic maladies. Thus, the study of the interactions of PFOA with water surfaces became important for the mitigation of their activity as pollutants and threats to public health. However, theoretical study of the interactions of such organic adsorbates on the surface of water, and their bulk concerted properties, often necessitates the use of ab initio methods to properly incorporate the long-range electronic properties that govern these extended systems. Notable theoretical treatments of "on-water" reactions thus far have employed hybrid DFT and semilocal DFT, but the interactions involved are weak interactions that may be best described using post-Hartree-Fock theory. Here, we aim to demonstrate the utility of a graph-theoretic approach to molecular fragmentation that accurately captures the critical "weak" interactions while maintaining an efficient ab initio treatment of the long-range periodic interactions that underpin the physics of extended systems. We apply this graph-theoretical treatment to study PFOA on the surface of water as a model system for the study of weak interactions seen in the wide range of surface interactions and reactions. The approach divides a system into a set of vertices, that are then connected through edges, faces, and higher order graph theoretic objects known as simplexes, to represent a collection of locally interacting subsystems. These subsystems are then used to construct ab initio molecular dynamics simulations and for computing multidimensional potential energy surfaces. To further improve the computational efficiency of our graph theoretic fragmentation method, we use a recently developed transfer learning protocol to construct the full system potential energy from a family of neural networks each designed to accurately model the behavior of individual simplexes. We use a unique multidimensional clustering algorithm, based on the k-means clustering methodology, to define our training space for each separate simplex. These models are used to extrapolate the energies for molecular dynamics trajectories at PFOA water interfaces, at less than one-tenth the cost as compared to a regular molecular fragmentation-based dynamics calculation with excellent agreement with couple cluster level of full system potential energies.
Collapse
Affiliation(s)
- Timothy C Ricard
- Department of Chemistry and Department of Physics, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Xiao Zhu
- Department of Chemistry and Department of Physics, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Srinivasan S Iyengar
- Department of Chemistry and Department of Physics, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
22
|
Beran GJO. Frontiers of molecular crystal structure prediction for pharmaceuticals and functional organic materials. Chem Sci 2023; 14:13290-13312. [PMID: 38033897 PMCID: PMC10685338 DOI: 10.1039/d3sc03903j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023] Open
Abstract
The reliability of organic molecular crystal structure prediction has improved tremendously in recent years. Crystal structure predictions for small, mostly rigid molecules are quickly becoming routine. Structure predictions for larger, highly flexible molecules are more challenging, but their crystal structures can also now be predicted with increasing rates of success. These advances are ushering in a new era where crystal structure prediction drives the experimental discovery of new solid forms. After briefly discussing the computational methods that enable successful crystal structure prediction, this perspective presents case studies from the literature that demonstrate how state-of-the-art crystal structure prediction can transform how scientists approach problems involving the organic solid state. Applications to pharmaceuticals, porous organic materials, photomechanical crystals, organic semi-conductors, and nuclear magnetic resonance crystallography are included. Finally, efforts to improve our understanding of which predicted crystal structures can actually be produced experimentally and other outstanding challenges are discussed.
Collapse
Affiliation(s)
- Gregory J O Beran
- Department of Chemistry, University of California Riverside Riverside CA 92521 USA
| |
Collapse
|
23
|
Liang YH, Ye HZ, Berkelbach TC. Can Spin-Component Scaled MP2 Achieve kJ/mol Accuracy for Cohesive Energies of Molecular Crystals? J Phys Chem Lett 2023; 14:10435-10441. [PMID: 37956873 DOI: 10.1021/acs.jpclett.3c02411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Attaining kJ/mol accuracy in cohesive energy for molecular crystals is a persistent challenge in computational materials science. In this study, we evaluate second-order Møller-Plesset perturbation theory (MP2) and its spin-component scaled models for calculating cohesive energies for 23 molecular crystals (X23 data set). Using periodic boundary conditions and Brillouin zone sampling, we converge results to the thermodynamic and complete basis set limits, achieving an accuracy of about 2 kJ/mol (0.5 kcal/mol), which is rarely achieved in previous MP2 calculations for molecular crystals. When compared to experimental data, our results have a mean absolute error of 12.9 kJ/mol, comparable to Density Functional Theory with the PBE functional and TS dispersion correction. By separately scaling the opposite-spin and same-spin correlation energy components, using predetermined parameters, we reduce the mean absolute error to 9.5 kJ/mol. Further fine-tuning of these scaling parameters specifically for the X23 data set brings the mean absolute error down to 7.5 kJ/mol.
Collapse
Affiliation(s)
- Yu Hsuan Liang
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Hong-Zhou Ye
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Timothy C Berkelbach
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
24
|
Iyengar SS, Zhang JH, Saha D, Ricard TC. Graph-| Q⟩⟨ C|: A Quantum Algorithm with Reduced Quantum Circuit Depth for Electronic Structure. J Phys Chem A 2023; 127:9334-9345. [PMID: 37906738 DOI: 10.1021/acs.jpca.3c04261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The accurate determination of chemical properties is known to have a critical impact on multiple fundamental chemical problems but is deeply hindered by the steep algebraic scaling of electron correlation calculations and the exponential scaling of quantum nuclear dynamics. With the advent of new quantum computing hardware and associated developments in creating new paradigms for quantum software, this avenue has been recognized as perhaps one way to address exponentially complex challenges in quantum chemistry and molecular dynamics. In this paper, we discuss a new approach to drastically reduce the quantum circuit depth (by several orders of magnitude) and help improve the accuracy in the quantum computation of electron correlation energies for large molecular systems. The method is derived from a graph-theoretic approach to molecular fragmentation and enables us to create a family of projection operators that decompose quantum circuits into separate unitary processes. Some of these processes can be treated on quantum hardware and others on classical hardware in a completely asynchronous and parallel fashion. Numerical benchmarks are provided through the computation of unitary coupled-cluster singles and doubles (UCCSD) energies for medium-sized protonated and neutral water clusters using the new quantum algorithms presented here.
Collapse
Affiliation(s)
- Srinivasan S Iyengar
- Department of Chemistry, Department of Physics, and the Indiana University Quantum Science and Engineering Center (IU-QSEC), Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Juncheng Harry Zhang
- Department of Chemistry, Department of Physics, and the Indiana University Quantum Science and Engineering Center (IU-QSEC), Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Debadrita Saha
- Department of Chemistry, Department of Physics, and the Indiana University Quantum Science and Engineering Center (IU-QSEC), Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Timothy C Ricard
- Department of Chemistry, Department of Physics, and the Indiana University Quantum Science and Engineering Center (IU-QSEC), Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
25
|
Focke K, Jacob CR. Coupled-Cluster Density-Based Many-Body Expansion. J Phys Chem A 2023; 127:9139-9148. [PMID: 37871170 PMCID: PMC10626589 DOI: 10.1021/acs.jpca.3c04591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/25/2023]
Abstract
While CCSD(T) is often considered the "gold standard" of computational chemistry, the scaling of its computational cost as N7 limits its applicability for large and complex molecular systems. In this work, we apply the density-based many-body expansion [ Int. J. Quantum Chem. 2020, 120, e26228] in combination with CCSD(T). The accuracy of this approach is assessed for neutral, protonated, and deprotonated water hexamers, as well as (H2O)16 and (H2O)17 clusters. For the neutral water clusters, we find that already with a density-based two-body expansion, we are able to approximate the supermolecular CCSD(T) energies within chemical accuracy (4 kJ/mol). This surpasses the accuracy that is achieved with a conventional, energy-based three-body expansion. We show that this accuracy can be maintained even when approximating the electron densities using Hartree-Fock instead of using coupled-cluster densities. The density-based many-body expansion thus offers a simple, resource-efficient, and highly parallelizable approach that makes CCSD(T)-quality calculations feasible where they would otherwise be prohibitively expensive.
Collapse
Affiliation(s)
- Kevin Focke
- Institute of Physical and
Theoretical Chemistry, Technische Universität
Braunschweig, Gaußstraße 17, 38106 Braunschweig, Germany
| | - Christoph R. Jacob
- Institute of Physical and
Theoretical Chemistry, Technische Universität
Braunschweig, Gaußstraße 17, 38106 Braunschweig, Germany
| |
Collapse
|
26
|
Ochieng SA, Patkowski K. Accurate three-body noncovalent interactions: the insights from energy decomposition. Phys Chem Chem Phys 2023; 25:28621-28637. [PMID: 37874287 DOI: 10.1039/d3cp03938b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
An impressive collection of accurate two-body interaction energies for small complexes has been assembled into benchmark databases and used to improve the performance of multiple density functional, semiempirical, and machine learning methods. Similar benchmark data on nonadditive three-body energies in molecular trimers are comparatively scarce, and the existing ones are practically limited to homotrimers. In this work, we present a benchmark dataset of 20 equilibrium noncovalent interaction energies for a small but diverse selection of 10 heteromolecular trimers. The new 3BHET dataset presents complexes that combine different interactions including π-π, anion-π, cation-π, and various motifs of hydrogen and halogen bonding in each trimer. A detailed symmetry-adapted perturbation theory (SAPT)-based energy decomposition of the two- and three-body interaction energies shows that 3BHET consists of electrostatics- and dispersion-dominated complexes. The nonadditive three-body contribution is dominated by induction, but its influence on the overall bonding type in the complex (as exemplified by its position on the ternary diagram) is quite small. We also tested the extended SAPT (XSAPT) approach which is capable of including some nonadditive interactions in clusters of any size. The resulting three-body dispersion term (obtained from the many-body dispersion formalism) is mostly in good agreement with the supermolecular CCSD(T)-MP2 values and the nonadditive induction term is similar to the three-body SAPT(DFT) data, but the overall three-body XSAPT energies are not very accurate as they are missing the first-order exchange terms.
Collapse
Affiliation(s)
- Sharon A Ochieng
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, USA.
| | - Konrad Patkowski
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, USA.
| |
Collapse
|
27
|
O’Connor D, Bier I, Tom R, Hiszpanski AM, Steele BA, Marom N. Ab Initio Crystal Structure Prediction of the Energetic Materials LLM-105, RDX, and HMX. CRYSTAL GROWTH & DESIGN 2023; 23:6275-6289. [PMID: 38173900 PMCID: PMC10763925 DOI: 10.1021/acs.cgd.3c00027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 08/02/2023] [Indexed: 01/05/2024]
Abstract
Crystal structure prediction (CSP) is performed for the energetic materials (EMs) LLM-105 and α-RDX, as well as the α and β conformational polymorphs of 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane (HMX), using the genetic algorithm (GA) code, GAtor, and its associated random structure generator, Genarris. Genarris and GAtor successfully generate the experimental structures of all targets. GAtor's symmetric crossover scheme, where the space group symmetries of parent structures are treated as genes inherited by offspring, is found to be particularly effective. However, conducting several GA runs with different settings is still important for achieving diverse samplings of the potential energy surface. For LLM-105 and α-RDX, the experimental structure is ranked as the most stable, with all of the dispersion-inclusive density functional theory (DFT) methods used here. For HMX, the α form was persistently ranked as more stable than the β form, in contrast to experimental observations, even when correcting for vibrational contributions and thermal expansion. This may be attributed to insufficient accuracy of dispersion-inclusive DFT methods or to kinetic effects not considered here. In general, the ranking of some putative structures is found to be sensitive to the choice of the DFT functional and the dispersion method. For LLM-105, GAtor generates a putative structure with a layered packing motif, which is desirable thanks to its correlation with low sensitivity. Our results demonstrate that CSP is a useful tool for studying the ubiquitous polymorphism of EMs and shows promise of becoming an integral part of the EM development pipeline.
Collapse
Affiliation(s)
- Dana O’Connor
- Department
of Materials Science and Engineering, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Imanuel Bier
- Department
of Materials Science and Engineering, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Rithwik Tom
- Department
of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Anna M. Hiszpanski
- Materials
Science Division, Lawrence Livermore National
Laboratory, Livermore, California 94550, United States
| | - Brad A. Steele
- Materials
Science Division, Lawrence Livermore National
Laboratory, Livermore, California 94550, United States
| | - Noa Marom
- Department
of Materials Science and Engineering, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Department
of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
28
|
Dai D, Cao B, Hao XL, Yu ZW. Transition Mechanism from the Metastable Two-Dimensional Gel to the Stable Three-Dimensional Crystal of Imidazolium-Based Ionic Liquids. J Phys Chem B 2023; 127:7323-7333. [PMID: 37560895 DOI: 10.1021/acs.jpcb.3c02720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
One important quest for making high quality materials with amphiphiles is to understand how a disordered self-assembly changes to a stable crystalline state. Herein, we addressed the basic question by investigating the phase transition mechanism of imidazolium-based ionic liquid (IL) [C16mim]Br, using time-resolved small- and wide-angle X-ray scattering (SAXS-WAXS), differential scanning calorimetry, and Fourier transform infrared spectroscopy techniques. Totally, a hexagonal phase, two lamellar-gel phases, and three lamellar-crystalline phases were observed, showing the special polymorphism of the system. It was demonstrated that at low concentrations the two-dimensional gel phase (Lβ1) transforms into the most stable lamellar-crystal phase (Lc3) through two intermediate crystalline phases Lc1 and Lc2. At high concentrations, the Lβ1 phase changes to a condensed lamellar gel phase (Lβ2) before changing to Lc2 and eventually to Lc3. Comparative studies using [C16mim]Cl and [C16mim]NO3 unveiled that the interactions between the counterions and the headgroups of the IL, as well as the dehydration process, govern the nucleation process of Lc3 and thus the formation of the crystal. The in-depth investigation on the transition mechanism and the phase polymorphism in the present work advances our understanding of the crystallization of amphiphilic ionic liquids in dispersions and would promote future applications.
Collapse
Affiliation(s)
- Dong Dai
- MOE Key Laboratory on Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Bobo Cao
- MOE Key Laboratory on Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xiao-Lei Hao
- MOE Key Laboratory on Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zhi-Wu Yu
- MOE Key Laboratory on Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
29
|
Gill WA, Janjua MRSA. Ab Initio Calculations of the Interaction Potential of the N 2O-N 2O Dimer: Strength of the Intermolecular Interactions and Physical Insights. J Phys Chem A 2023. [PMID: 37478471 DOI: 10.1021/acs.jpca.3c02634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
N2O, or nitrous oxide, is an important greenhouse gas with a significant impact on global warming and climate change. To accurately model the behavior of N2O in the atmosphere, precise representations of its intermolecular force fields are required. First principles quantum mechanical calculations followed by appropriate fitting are commonly used to establish such force fields. However, fitting such force fields is challenging due to the complex mathematical functions that describe the molecular interactions of N2O. As such, ongoing research is focused on improving our understanding of N2O and developing more accurate models for use in climate modeling and other applications. In this study, we investigated the strength of the intermolecular interactions in the N2O-N2O dimer using the coupled-cluster theory with single, double, and perturbative triple excitation [CCSD(T)] method with the def2-QZVPP basis set. Our calculations provided a detailed understanding of the intermolecular forces that govern the stability and structure of the N2O dimer. We found that the N2O-N2O dimer is stabilized by a combination of van der Waals forces and dipole-dipole interactions. The calculated interaction energy between the two N2O molecules in the dimer was found to be -5.09 kcal/mol, which is in good agreement with previous theoretical and experimental results. Additionally, we analyzed the molecular properties of the N2O-N2O dimer, including its geometry and charge distribution. Our calculations provide a comprehensive understanding of the intermolecular interactions in the N2O-N2O dimer using the CCSD(T) method with the def2-QZVPP basis set by using the improved Lennard-Jones interaction potential method. These results can be used to improve our understanding of atmospheric chemistry and climate modeling, as well as to aid in the interpretation of experimental data.
Collapse
Affiliation(s)
- Waqas Amber Gill
- Departamento de Química Física, Universidad de Valencia, Avda Dr. Moliner, 50, Burjassot E-46100, Valencia, Spain
| | | |
Collapse
|
30
|
Van Speybroeck V. Challenges in modelling dynamic processes in realistic nanostructured materials at operating conditions. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2023; 381:20220239. [PMID: 37211031 PMCID: PMC10200353 DOI: 10.1098/rsta.2022.0239] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/23/2023] [Indexed: 05/23/2023]
Abstract
The question is addressed in how far current modelling strategies are capable of modelling dynamic phenomena in realistic nanostructured materials at operating conditions. Nanostructured materials used in applications are far from perfect; they possess a broad range of heterogeneities in space and time extending over several orders of magnitude. Spatial heterogeneities from the subnanometre to the micrometre scale in crystal particles with a finite size and specific morphology, impact the material's dynamics. Furthermore, the material's functional behaviour is largely determined by the operating conditions. Currently, there exists a huge length-time scale gap between attainable theoretical length-time scales and experimentally relevant scales. Within this perspective, three key challenges are highlighted within the molecular modelling chain to bridge this length-time scale gap. Methods are needed that enable (i) building structural models for realistic crystal particles having mesoscale dimensions with isolated defects, correlated nanoregions, mesoporosity, internal and external surfaces; (ii) the evaluation of interatomic forces with quantum mechanical accuracy albeit at much lower computational cost than the currently used density functional theory methods and (iii) derivation of the kinetics of phenomena taking place in a multi-length-time scale window to obtain an overall view of the dynamics of the process. This article is part of a discussion meeting issue 'Supercomputing simulations of advanced materials'.
Collapse
|
31
|
Banks PA, Kleist EM, Ruggiero MT. Investigating the function and design of molecular materials through terahertz vibrational spectroscopy. Nat Rev Chem 2023; 7:480-495. [PMID: 37414981 DOI: 10.1038/s41570-023-00487-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2023] [Indexed: 07/08/2023]
Abstract
Terahertz spectroscopy has proved to be an essential tool for the study of condensed phase materials. Terahertz spectroscopy probes the low-frequency vibrational dynamics of atoms and molecules, usually in the condensed phase. These nuclear dynamics, which typically involve displacements of entire molecules, have been linked to bulk phenomena ranging from phase transformations to semiconducting efficiency. The terahertz region of the electromagnetic spectrum has historically been referred to as the 'terahertz gap', but this is a misnomer, as there exist a multitude of methods for accessing terahertz frequencies, and now there are cost-effective instruments that have made terahertz studies much more user-friendly. This Review highlights some of the most exciting applications of terahertz vibrational spectroscopy so far, and provides an in-depth overview of the methods of this technique and its utility to the study of the chemical sciences.
Collapse
Affiliation(s)
- Peter A Banks
- Department of Chemistry, University of Vermont, Burlington, VT, USA
| | - Elyse M Kleist
- Department of Chemistry, University of Vermont, Burlington, VT, USA
| | | |
Collapse
|
32
|
Percino MJ, Udayakumar M, Cerón M, Pérez-Gutiérrez E, Venkatesan P, Thamotharan S. Weak noncovalent interactions in two positional isomers of acrylonitrile derivatives: inputs from PIXEL energy, Hirshfeld surface and QTAIM analyses. Front Chem 2023; 11:1209428. [PMID: 37448855 PMCID: PMC10338114 DOI: 10.3389/fchem.2023.1209428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
A single crystal X-ray diffraction analysis was performed on two positional isomers (m-tolyl and p-tolyl) of acrylonitrile derivatives, namely, (Z)-3-(4-(pyridin-2-yl) phenyl)-2-(m-tolyl) acrylonitrile (1) and (Z)-3-(4-(pyridin-2-yl)phenyl)-2-(p-tolyl) acrylonitrile (2). Compound 1 crystallized in the monoclinic P21/n space group with two crystallographically independent molecules. Compound 2 also possesses two crystallographically independent molecules and crystallized in the triclinic P-1 space group. The Hirshfeld surface analysis revealed that, in both isomers, intermolecular H⋅⋅⋅H/C/N contacts contribute significantly to the crystal packing. More than 40% of the contribution arises from intermolecular C-H⋅⋅⋅C(π) contacts. In both compounds, the relative contribution of these contacts is comparable, indicating that the positional isomeric effects are marginal. The structures in which these isomers are arranged in the solid state are very similar, and the lattice energies are also comparable between the isomers. The Coulomb-London-Pauli-PIXEL (CLP-PIXEL) energy analysis identified the energetically significant dimers. The strength of the intra- and intermolecular interactions was evaluated using the quantum theory of atoms in molecules approach. The UV-Vis absorbance in three different solvents (chloroform, ethanol, and ethyl acetate) for isomers 1 and 2 are very similar. This result is in good agreement with the time-dependent density-functional theory (TD-DFT) calculations.
Collapse
Affiliation(s)
- M. Judith Percino
- Instituto de Ciencias, Unidad de Polímeros y Electrónica Orgánica, Benemérita Universidad Autónoma de Puebla, Val3-Ecocampus Valsequillo, Puebla, CP, Mexico
| | - Mani Udayakumar
- Biomolecular Crystallography Laboratory, Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Margarita Cerón
- Instituto de Ciencias, Unidad de Polímeros y Electrónica Orgánica, Benemérita Universidad Autónoma de Puebla, Val3-Ecocampus Valsequillo, Puebla, CP, Mexico
| | - Enrique Pérez-Gutiérrez
- Instituto de Ciencias, Unidad de Polímeros y Electrónica Orgánica, Benemérita Universidad Autónoma de Puebla, Val3-Ecocampus Valsequillo, Puebla, CP, Mexico
| | - Perumal Venkatesan
- Department of Chemistry, Srimad Andavan Arts and Science College (Autonomous), Tiruchirappalli, India
| | - Subbiah Thamotharan
- Biomolecular Crystallography Laboratory, Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| |
Collapse
|
33
|
Hou S, Liu Q, Deng H, He J, Zhao W, Wu Z, Zhang Q, Shang L. Identification and low-frequency vibrational analysis of three free anthraquinones via terahertz spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 293:122439. [PMID: 36773425 DOI: 10.1016/j.saa.2023.122439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/11/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
In this study, terahertz time-domain spectroscopy (THz-TDS) was used to obtain the terahertz absorption spectra of three free anthraquinones (Chrysophanol, Emodin, Physcion) in the frequency range of 0.2-4.3 THz. The results show that terahertz spectroscopy is an effective detecting such compounds. Meanwhile, the theoretical spectrum using density functional theory calculations agrees well with the experimental spectrum. A modal decoupling method was used to identify each low-frequency vibrational mode and determine the average contribution of different atoms and groups. Modal decoupling provides a better understanding of molecules' mixed vibrational modes and enables quantifying the atoms' vibrational contributions. Results show that the substituent group facilitates the transition between the fundamental vibrational modes; subsequently, the substituent group shifts the vibrational centre of gravity of the three molecules and affects the vibrational contribution of hydrogen bonds. Furthermore, insignificant Emodin absorption is related to the nearly symmetrical structure formed by the substituents. The feasibility of terahertz analysis of differential molecular structures has also been confirmed.
Collapse
Affiliation(s)
- Senlin Hou
- School of Information Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Quancheng Liu
- School of Information Engineering, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Hu Deng
- School of Information Engineering, Southwest University of Science and Technology, Mianyang 621010, China; Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, ChengDu 610299, China
| | - Jun He
- School of Information Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Wei Zhao
- School of Information Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Zhixiang Wu
- School of Information Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Qi Zhang
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, China
| | - Liping Shang
- School of Information Engineering, Southwest University of Science and Technology, Mianyang 621010, China; Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, ChengDu 610299, China.
| |
Collapse
|
34
|
Bhat V, Callaway CP, Risko C. Computational Approaches for Organic Semiconductors: From Chemical and Physical Understanding to Predicting New Materials. Chem Rev 2023. [PMID: 37141497 DOI: 10.1021/acs.chemrev.2c00704] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
While a complete understanding of organic semiconductor (OSC) design principles remains elusive, computational methods─ranging from techniques based in classical and quantum mechanics to more recent data-enabled models─can complement experimental observations and provide deep physicochemical insights into OSC structure-processing-property relationships, offering new capabilities for in silico OSC discovery and design. In this Review, we trace the evolution of these computational methods and their application to OSCs, beginning with early quantum-chemical methods to investigate resonance in benzene and building to recent machine-learning (ML) techniques and their application to ever more sophisticated OSC scientific and engineering challenges. Along the way, we highlight the limitations of the methods and how sophisticated physical and mathematical frameworks have been created to overcome those limitations. We illustrate applications of these methods to a range of specific challenges in OSCs derived from π-conjugated polymers and molecules, including predicting charge-carrier transport, modeling chain conformations and bulk morphology, estimating thermomechanical properties, and describing phonons and thermal transport, to name a few. Through these examples, we demonstrate how advances in computational methods accelerate the deployment of OSCsin wide-ranging technologies, such as organic photovoltaics (OPVs), organic light-emitting diodes (OLEDs), organic thermoelectrics, organic batteries, and organic (bio)sensors. We conclude by providing an outlook for the future development of computational techniques to discover and assess the properties of high-performing OSCs with greater accuracy.
Collapse
Affiliation(s)
- Vinayak Bhat
- Department of Chemistry & Center for Applied Energy Research, University of Kentucky, Lexington, Kentucky 40506-0055, United States
| | - Connor P Callaway
- Department of Chemistry & Center for Applied Energy Research, University of Kentucky, Lexington, Kentucky 40506-0055, United States
| | - Chad Risko
- Department of Chemistry & Center for Applied Energy Research, University of Kentucky, Lexington, Kentucky 40506-0055, United States
| |
Collapse
|
35
|
He N, Huang M, Evangelista FA. CO Inversion on a NaCl(100) Surface: A Multireference Quantum Embedding Study. J Phys Chem A 2023; 127:1975-1987. [PMID: 36799901 PMCID: PMC9986868 DOI: 10.1021/acs.jpca.2c05844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
We develop a multireference quantum embedding model to investigate a recent experimental observation of the isomerization of vibrationally excited CO molecules on a NaCl(100) surface [Science 2020, 367, 175-178]. To explore this mechanism, we built a reduced potential energy surface of CO interacting with NaCl(100) using a second-order multireference perturbation theory, modeling the adsorbate-surface interaction with our previously developed active space embedding theory (ASET). We considered an isolated CO molecule on NaCl(100) and a high-coverage CO monolayer (1/1), and for both we generated potential energy surfaces parametrized by the CO stretching, adsorption, and inversion coordinates. These surfaces are used to determine stationary points and adsorption energies and to perform a vibrational analysis of the states relevant to the inversion mechanism. We found that for near-equilibrium bond lengths, CO adsorbed in the C-down configuration is lower in energy than in the O-down configuration. Stretching of the C-O bond reverses the energetic order of these configurations, supporting the accepted isomerization mechanism. The vibrational constants obtained from these potential energy surfaces show a small (< 10 cm-1) blue- and red-shift for the C-down and O-down configurations, respectively, in agreement with experimental assignments and previous theoretical studies. Our vibrational analysis of the monolayer case suggests that the O-down configuration is energetically more stable than the C-down one beyond the 16th vibrational excited state of CO, a value slightly smaller than the one from quasi-classical trajectory simulations (22nd) and consistent with the experiment. Our analysis suggests that CO-CO interactions in the monolayer play an important role in stabilizing highly vibrationally excited states in the O-down configuration and reducing the barrier between the C-down and O-down geometries, therefore playing a crucial role in the inversion mechanism.
Collapse
Affiliation(s)
- Nan He
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - Meng Huang
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - Francesco A Evangelista
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
36
|
Sargent CT, Metcalf DP, Glick ZL, Borca CH, Sherrill CD. Benchmarking two-body contributions to crystal lattice energies and a range-dependent assessment of approximate methods. J Chem Phys 2023; 158:054112. [PMID: 36754814 DOI: 10.1063/5.0141872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Using the many-body expansion to predict crystal lattice energies (CLEs), a pleasantly parallel process, allows for flexibility in the choice of theoretical methods. Benchmark-level two-body contributions to CLEs of 23 molecular crystals have been computed using interaction energies of dimers with minimum inter-monomer separations (i.e., closest contact distances) up to 30 Å. In a search for ways to reduce the computational expense of calculating accurate CLEs, we have computed these two-body contributions with 15 different quantum chemical levels of theory and compared these energies to those computed with coupled-cluster in the complete basis set (CBS) limit. Interaction energies of the more distant dimers are easier to compute accurately and several of the methods tested are suitable as replacements for coupled-cluster through perturbative triples for all but the closest dimers. For our dataset, sub-kJ mol-1 accuracy can be obtained when calculating two-body interaction energies of dimers with separations shorter than 4 Å with coupled-cluster with single, double, and perturbative triple excitations/CBS and dimers with separations longer than 4 Å with MP2.5/aug-cc-pVDZ, among other schemes, reducing the number of dimers to be computed with coupled-cluster by as much as 98%.
Collapse
Affiliation(s)
- Caroline T Sargent
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | - Derek P Metcalf
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | - Zachary L Glick
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | - Carlos H Borca
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | - C David Sherrill
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| |
Collapse
|
37
|
Abe H, Kishimura H, Uruichi M. A phase variety of fluorinated ionic liquids: Molecular conformational and crystal polymorph. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 286:121948. [PMID: 36252301 DOI: 10.1016/j.saa.2022.121948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/26/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Crystal polymorphs of fluorinated ionic liquids (fILs) were examined at low-temperature (LT) by Raman spectroscopy. The fILs were 1-alkyl-3-methylimidazolium perfluorobutanesulfonate, [Cnmim][PFBS] (n = 4, 6, and 8). The cations and anion possess conformational degrees of freedom. Various LT phases were derived from the conformational polymorphs of the cations and the anion. Conformational flexibility depended on alkyl chain length. The crystal polymorphs in the fILs were sensitive to molecular conformations and flexibility.
Collapse
Affiliation(s)
- Hiroshi Abe
- Department of Materials Science and Engineering, National Defense Academy, Yokosuka 239-8686, Japan
| | - Hiroaki Kishimura
- Department of Materials Science and Engineering, National Defense Academy, Yokosuka 239-8686, Japan
| | - Mikio Uruichi
- Institute for Molecular Science, Myodaiji, Okazaki 444-8585, Japan
| |
Collapse
|
38
|
Price AJA, Otero-de-la-Roza A, Johnson ER. XDM-corrected hybrid DFT with numerical atomic orbitals predicts molecular crystal lattice energies with unprecedented accuracy. Chem Sci 2023; 14:1252-1262. [PMID: 36756332 PMCID: PMC9891363 DOI: 10.1039/d2sc05997e] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Molecular crystals are important for many applications, including energetic materials, organic semiconductors, and the development and commercialization of pharmaceuticals. The exchange-hole dipole moment (XDM) dispersion model has shown good performance in the calculation of relative and absolute lattice energies of molecular crystals, although it has traditionally been applied in combination with plane-wave/pseudopotential approaches. This has limited XDM to use with semilocal functional approximations, which suffer from delocalization error and poor quality conformational energies, and to systems with a few hundreds of atoms at most due to unfavorable scaling. In this work, we combine XDM with numerical atomic orbitals, which enable the efficient use of XDM-corrected hybrid functionals for molecular crystals. We test the new XDM-corrected functionals for their ability to predict the lattice energies of molecular crystals for the X23 set and 13 ice phases, the latter being a particularly stringent test. A composite approach using a XDM-corrected, 25% hybrid functional based on B86bPBE achieves a mean absolute error of 0.48 kcal mol-1 per molecule for the X23 set and 0.19 kcal mol-1 for the total lattice energies of the ice phases, compared to recent diffusion Monte-Carlo data. These results make the new XDM-corrected hybrids not only far more computationally efficient than previous XDM implementations, but also the most accurate density-functional methods for molecular crystal lattice energies to date.
Collapse
Affiliation(s)
- Alastair J. A. Price
- Department of Chemistry, Dalhousie University6274 Coburg RdHalifaxB3H 4R2Nova ScotiaCanada
| | - Alberto Otero-de-la-Roza
- Departamento de Química Física y Analítica and MALTA-Consolider Team, Facultad de Química, Universidad de Oviedo Oviedo 33006 Spain
| | - Erin R. Johnson
- Department of Chemistry, Dalhousie University6274 Coburg RdHalifaxB3H 4R2Nova ScotiaCanada
| |
Collapse
|
39
|
Chen WK, Fang WH, Cui G. Extending multi-layer energy-based fragment method for excited-state calculations of large covalently bonded fragment systems. J Chem Phys 2023; 158:044110. [PMID: 36725521 DOI: 10.1063/5.0129458] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Recently, we developed a low-scaling Multi-Layer Energy-Based Fragment (MLEBF) method for accurate excited-state calculations and nonadiabatic dynamics simulations of nonbonded fragment systems. In this work, we extend the MLEBF method to treat covalently bonded fragment ones. The main idea is cutting a target system into many fragments according to chemical properties. Fragments with dangling bonds are first saturated by chemical groups; then, saturated fragments, together with the original fragments without dangling bonds, are grouped into different layers. The accurate total energy expression is formulated with the many-body energy expansion theory, in combination with the inclusion-exclusion principle that is used to delete the contribution of chemical groups introduced to saturate dangling bonds. Specifically, in a two-layer MLEBF model, the photochemically active and inert layers are calculated with high-level and efficient electronic structure methods, respectively. Intralayer and interlayer energies can be truncated at the two- or three-body interaction level. Subsequently, through several systems, including neutral and charged covalently bonded fragment systems, we demonstrate that MLEBF can provide accurate ground- and excited-state energies and gradients. Finally, we realize the structure, conical intersection, and path optimizations by combining our MLEBF program with commercial and free packages, e.g., ASE and SciPy. These developments make MLEBF a practical and reliable tool for studying complex photochemical and photophysical processes of large nonbonded and bonded fragment systems.
Collapse
Affiliation(s)
- Wen-Kai Chen
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
40
|
Hong B, Fang T, Li W, Li S. Predicting the structures and vibrational spectra of molecular crystals containing large molecules with the generalized energy-based fragmentation approach. J Chem Phys 2023; 158:044117. [PMID: 36725497 DOI: 10.1063/5.0137072] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The generalized energy-based fragmentation (GEBF) approach under periodic boundary conditions (PBCs) has been developed to facilitate calculations of molecular crystals containing large molecules. The PBC-GEBF approach can help predict structures and properties of molecular crystals at different theory levels by performing molecular quantum chemistry calculations on a series of non-periodic subsystems constructed from the studied systems. A more rigorous formula of the forces on translational vectors of molecular crystals was proposed and implemented, enabling more reliable predictions of crystal structures. Our benchmark results on several typical molecular crystals show that the PBC-GEBF approach could reproduce the forces on atoms and the translational vectors and the optimized crystal structures from the corresponding conventional periodic methods. The improved PBC-GEBF approach is then applied to predict the crystal structures and vibrational spectra of two molecular crystals containing large molecules. The PBC-GEBF approach can provide a satisfactory description on the crystal structure of a molecular crystal containing 312 atoms in a unit cell at density-fitting second-order Møller-Plesset perturbation theory and density functional theory (DFT) levels and the infrared vibrational spectra of another molecular crystal containing 864 atoms in a unit cell at the DFT level. The PBC-GEBF approach is expected to be a promising theoretical tool for electronic structure calculations on molecular crystals containing large molecules.
Collapse
Affiliation(s)
- Benkun Hong
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing 210093, People's Republic of China
| | - Tao Fang
- Genesys Microelectronics (Shanghai) Co., Ltd., 6th Floor, 11th Building, No. 3000 LongDong Road, Pu Dong District, Shanghai, People's Republic of China
| | - Wei Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing 210093, People's Republic of China
| | - Shuhua Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing 210093, People's Republic of China
| |
Collapse
|
41
|
Cook CJ, Li W, Lui BF, Gately TJ, Al-Kaysi RO, Mueller LJ, Bardeen CJ, Beran GJO. A theoretical framework for the design of molecular crystal engines. Chem Sci 2023; 14:937-949. [PMID: 36755715 PMCID: PMC9890974 DOI: 10.1039/d2sc05549j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Photomechanical molecular crystals have garnered attention for their ability to transform light into mechanical work, but difficulties in characterizing the structural changes and mechanical responses experimentally have hindered the development of practical organic crystal engines. This study proposes a new computational framework for predicting the solid-state crystal-to-crystal photochemical transformations entirely from first principles, and it establishes a photomechanical engine cycle that quantifies the anisotropic mechanical performance resulting from the transformation. The approach relies on crystal structure prediction, solid-state topochemical principles, and high-quality electronic structure methods. After validating the framework on the well-studied [4 + 4] cycloadditions in 9-methyl anthracene and 9-tert-butyl anthracene ester, the experimentally-unknown solid-state transformation of 9-carboxylic acid anthracene is predicted for the first time. The results illustrate how the mechanical work is done by relaxation of the crystal lattice to accommodate the photoproduct, rather than by the photochemistry itself. The large ∼107 J m-3 work densities computed for all three systems highlight the promise of photomechanical crystal engines. This study demonstrates the importance of crystal packing in determining molecular crystal engine performance and provides tools and insights to design improved materials in silico.
Collapse
Affiliation(s)
- Cameron J. Cook
- Department of Chemistry, University of California RiversideRiverside CA 92521USA
| | - Wangxiang Li
- Department of Chemistry, University of California Riverside Riverside CA 92521 USA
| | - Brandon F. Lui
- Department of Chemistry, University of California RiversideRiverside CA 92521USA
| | - Thomas J. Gately
- Department of Chemistry, University of California RiversideRiverside CA 92521USA
| | - Rabih O. Al-Kaysi
- College of Science and Health Professions-3124, King Saud Bin Abdulaziz University for Health Sciences, and King Abdullah International Medical Research Center, Ministry of National Guard Health AffairsRiyadh 11426Kingdom of Saudi Arabia
| | - Leonard J. Mueller
- Department of Chemistry, University of California RiversideRiverside CA 92521USA
| | | | - Gregory J. O. Beran
- Department of Chemistry, University of California RiversideRiverside CA 92521USA
| |
Collapse
|
42
|
Baishya T, Gomila RM, Frontera A, Barcelo-Oliver M, Verma AK, Bhattacharyya MK. Enclathration of Mn(II)(H2O)6 guests and unusual Cu⋯O bonding contacts in supramolecular assemblies of Mn(II) Co-crystal hydrate and Cu(II) Pyridinedicarboxylate: Antiproliferative evaluation and theoretical studies. Polyhedron 2023. [DOI: 10.1016/j.poly.2022.116243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
43
|
Kumar A, DeGregorio N, Ricard T, Iyengar SS. Graph-Theoretic Molecular Fragmentation for Potential Surfaces Leads Naturally to a Tensor Network Form and Allows Accurate and Efficient Quantum Nuclear Dynamics. J Chem Theory Comput 2022; 18:7243-7259. [PMID: 36332133 DOI: 10.1021/acs.jctc.2c00484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Molecular fragmentation methods have revolutionized quantum chemistry. Here, we use a graph-theoretically generated molecular fragmentation method, to obtain accurate and efficient representations for multidimensional potential energy surfaces and the quantum time-evolution operator, which plays a critical role in quantum chemical dynamics. In doing so, we find that the graph-theoretic fragmentation approach naturally reduces the potential portion of the time-evolution operator into a tensor network that contains a stream of coupled lower-dimensional propagation steps to potentially achieve quantum dynamics with reduced complexity. Furthermore, the fragmentation approach used here has previously been shown to allow accurate and efficient computation of post-Hartree-Fock electronic potential energy surfaces, which in many cases has been shown to be at density functional theory cost. Thus, by combining the advantages of molecular fragmentation with the tensor network formalism, the approach yields an on-the-fly quantum dynamics scheme where both the electronic potential calculation and nuclear propagation portion are enormously simplified through a single stroke. The method is demonstrated by computing approximations to the propagator and to potential surfaces for a set of coupled nuclear dimensions within a protonated water wire problem exhibiting the Grotthuss mechanism of proton transport. In all cases, our approach has been shown to reduce the complexity of representing the quantum propagator, and by extension action of the propagator on an initial wavepacket, by several orders, with minimal loss in accuracy.
Collapse
Affiliation(s)
- Anup Kumar
- Department of Chemistry, and the Indiana University Quantum Science and Engineering Center (IU-QSEC), Indiana University, Bloomington, Indiana 47405, United States
| | - Nicole DeGregorio
- Department of Chemistry, and the Indiana University Quantum Science and Engineering Center (IU-QSEC), Indiana University, Bloomington, Indiana 47405, United States
| | - Timothy Ricard
- Department of Chemistry, and the Indiana University Quantum Science and Engineering Center (IU-QSEC), Indiana University, Bloomington, Indiana 47405, United States
| | - Srinivasan S Iyengar
- Department of Chemistry, and the Indiana University Quantum Science and Engineering Center (IU-QSEC), Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
44
|
Phase Transitions and Stabilities among Three Phases of Di-p-tolyl Disulfides. Molecules 2022; 27:molecules27238342. [PMID: 36500435 PMCID: PMC9739323 DOI: 10.3390/molecules27238342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Di-p-tolyl disulfides (p-Tol2S2) are employed as load-carrying additives because of their anti-wear and extreme load-bearing qualities. External pressure triggers conformational up-conversion (leads to phase transition) in the molecules of p-Tol2S2, by compensating for the stress and absorbing its energy. These features make p-Tol2S2 a potential candidate for next-generation energy storage devices. Upon lithiation, MoS2 expands up to 103% which causes stress and affects battery stability and performance. Therefore, it is essential to study these materials under different physical conditions. In this work, we used density functional theory (DFT) at ωB97XD/6-31G* functional level, to calculate lattice parameters, Gibbs free energies, and vibrational spectra of three phases (i.e., α, β, and γ) of p-Tol2S2 under different pressure and temperature conditions. The phase transition between phases α and β occurred at a pressure and temperature of 0.65 GPa and 463 K, respectively. Furthermore, phase transition between phases α and γ was found at a pressure and temperature of 0.35 GPa and 400 K, respectively. Moreover, no phase transition was observed between phases β and γ under the pressure range studied (0 GPa to 5.5 GPa). We also computed and compared the FT-IR spectra of the three phases. These results can guide scientists and chemists in designing more stable battery materials.
Collapse
|
45
|
Schmid F. Understanding and Modeling Polymers: The Challenge of Multiple Scales. ACS POLYMERS AU 2022. [DOI: 10.1021/acspolymersau.2c00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Friederike Schmid
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 9, 55128Mainz, Germany
| |
Collapse
|
46
|
Pokorný V, Touš P, Štejfa V, Růžička K, Rohlíček J, Czernek J, Brus J, Červinka C. Anisotropy, segmental dynamics and polymorphism of crystalline biogenic carboxylic acids. Phys Chem Chem Phys 2022; 24:25904-25917. [PMID: 36260017 DOI: 10.1039/d2cp03698c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Carboxylic acids of the Krebs cycle possess invaluable biochemical significance. Still, there are severe gaps in the availability of thermodynamic and crystallographic data, as well as ambiguities prevailing in the literature on the thermodynamic characterization and polymorph ranking. Providing an unambiguous description of the structure, thermodynamics and polymorphism of their neat crystalline phases requires a complex multidisciplinary approach. This work presents results of an extensive investigation of the structural anisotropy of the thermal expansion and local dynamics within these crystals, obtained from a beneficial cooperation of NMR crystallography and ab initio calculations of non-covalent interactions. The observed structural anisotropy and spin-lattice relaxation times are traced to large spatial variations in the strength of molecular interactions in the crystal lattice, especially in the orientation of the hydrogen bonds. A completely resolved crystal structure for oxaloacetic acid is reported for the first time. Thanks to multi-instrumental calorimetric effort, this work clarifies phase behavior, determines third-law entropies of the crystals, and states definitive polymorph ranking for succinic and fumaric acids. These thermodynamic observations are then interpreted in terms of first-principles quasi-harmonic calculations of cohesive properties. A sophisticated model capturing electronic, thermal, and configurational-entropic effects on the crystal structure approaches captures the subtle Gibbs energy differences governing polymorph ranking for succinic and fumaric acids, representing another success story of computational chemistry.
Collapse
Affiliation(s)
- Václav Pokorný
- Department of Physical Chemistry, University of Chemistry and Technology Prague, Technická 5, CZ-166 28 Prague 6, Czech Republic.
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, CZ-162 06 Prague 6, Czech Republic
| | - Petr Touš
- Department of Physical Chemistry, University of Chemistry and Technology Prague, Technická 5, CZ-166 28 Prague 6, Czech Republic.
| | - Vojtěch Štejfa
- Department of Physical Chemistry, University of Chemistry and Technology Prague, Technická 5, CZ-166 28 Prague 6, Czech Republic.
| | - Květoslav Růžička
- Department of Physical Chemistry, University of Chemistry and Technology Prague, Technická 5, CZ-166 28 Prague 6, Czech Republic.
| | - Jan Rohlíček
- Institute of Physics, Czech Academy of Sciences, Na Slovance 2, CZ-182 21 Prague 8, Czech Republic
| | - Jiří Czernek
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, CZ-162 06 Prague 6, Czech Republic
| | - Jiří Brus
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, CZ-162 06 Prague 6, Czech Republic
| | - Ctirad Červinka
- Department of Physical Chemistry, University of Chemistry and Technology Prague, Technická 5, CZ-166 28 Prague 6, Czech Republic.
| |
Collapse
|
47
|
Rana B, Beran GJO, Herbert JM. Correcting π-delocalisation errors in conformational energies using density-corrected DFT, with application to crystal polymorphs. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2138789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
- Bhaskar Rana
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | | | - John M. Herbert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
48
|
Cabrera-Ramírez A, Prosmiti R. Modeling of Structure H Carbon Dioxide Clathrate Hydrates: Guest-Lattice Energies, Crystal Structure, and Pressure Dependencies. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:14832-14842. [PMID: 36110497 PMCID: PMC9465682 DOI: 10.1021/acs.jpcc.2c04140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/26/2022] [Indexed: 06/15/2023]
Abstract
We performed first-principles computations to investigate the complex interplay of molecular interaction energies in determining the lattice structure and stability of CO2@sH clathrate hydrates. Density functional theory computations using periodic boundary conditions were employed to characterize energetics and the key structural properties of the sH clathrate crystal under pressure, such as equilibrium lattice volume and bulk modulus. The performance of exchange-correlation functionals together with recently developed dispersion-corrected schemes was evaluated in describing interactions in both short-range and long-range regions of the potential. Structural relaxations of the fully CO2-filled and empty sH unit cells yield crystal structure and lattice energies, while their compressibility parameters were derived by including the pressure dependencies. The present quantum chemistry computations suggest anisotropy in the compressibility of the sH clathrate hydrates, with the crystal being less compressible along the a-axis direction than along the c-axis one, in distinction from nearly isotropic sI and sII structures. The detailed results presented here give insight into the complex nature of the underlying guest-host interactions, checking earlier assumptions, providing critical tests, and improving estimates. Such entries may eventually lead to better predictions of thermodynamic properties and formation conditions, with a direct impact on emerging hydrate-based technologies.
Collapse
Affiliation(s)
- Adriana Cabrera-Ramírez
- Institute
of Fundamental Physics (IFF-CSIC), CSIC, Serrano 123, 28006, Madrid, Spain
- Doctoral
Programme in Theoretical Chemistry and Computational Modelling, Doctoral
School, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Rita Prosmiti
- Institute
of Fundamental Physics (IFF-CSIC), CSIC, Serrano 123, 28006, Madrid, Spain
| |
Collapse
|
49
|
Metcalf DP, Smith AJ, Glick ZL, Sherrill CD. Range-dependence of two-body intermolecular interactions and their energy components in molecular crystals. J Chem Phys 2022; 157:084503. [DOI: 10.1063/5.0103644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Routinely assessing the stability of molecular crystals with high accuracy remains an open challenge in the computational sciences. The many-body expansion decomposes computation of the crystal lattice energy into an embarrassingly parallel collection of computations over molecular dimers, trimers, and so forth, making quantum chemistry techniques tractable for many crystals of small organic molecules. By examining the range-dependence of different types of energetic contributions to the crystal lattice energy, we can glean qualitative understanding of solid-state intermolecular interactions as well as practical, exploitable reductions in the number of computations required for accurate energies. Here, we assess the range-dependent character of two-body interactions of 24 small organic molecular crystals using the physically interpretable components from symmetry-adapted perturbation theory (electrostatics, exchange repulsion, induction/polarization, and London dispersion). We also examine correlations between the convergence rates of electrostatics and London dispersion terms with molecular dipole moments and polarizabilities, to provide guidance for estimating convergence rates in other molecular crystals.
Collapse
Affiliation(s)
- Derek P Metcalf
- Chemistry & Biochemistry, Georgia Institute of Technology, United States of America
| | | | - Zachary Lee Glick
- Chemistry and Biochemistry, Georgia Institute of Technology College of Sciences, United States of America
| | - C. David Sherrill
- School of Chemistry and Biochemistry, Georgia Institute of Technology College of Sciences, United States of America
| |
Collapse
|
50
|
Siddiqui R, Sharma N, Chakraborty A, Shivam K, Patra S, Rani J, Mukherjee M, Titi HM, Patra R, Dhamija S. Electrochemical, Photophysical, Morphological and DFT Study of Polymorphic Sn(IV)-Porphyrins Containing Fluorinated Axial Ligand. Chem Asian J 2022; 17:e202200515. [PMID: 35833469 DOI: 10.1002/asia.202200515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/08/2022] [Indexed: 11/11/2022]
Abstract
In this study, we report the polymorphism of six coordinated Sn(IV)- tetrabromophenyl porphyrins axially armed with fluorine-substituted phenolate ligands (structural formula [Sn(TBrPP)2+(A-)2], where A is the axial ligand = 3,5-difluoro phenol, compound 1). One form stabilizes in triclinic system (namely, 1α), and the other stabilizes in monoclinic system (namely, 1β). The two 1α and 1β polymorphs display distinct photophysical and morphological properties in the solid state. X-ray diffraction study reveals that these polymorphs 1α and 1β significantly differ in their supramolecular architecture, different axial phenolate conformations, and noncovalent interactions, which are responsible for their distinct solid-state properties. The crystal packing of these polymorphs dominates by intermolecular C-H···F, C-H···π and C-Br···F interhalogen interactions. Furthermore, the solid-state emission spectra of 1α showed red-shifted emission bands with respect to 1β, in addition the redox behavior of 1α is slightly different in comparison to 1β. Complementary theoretical studies with Hirshfeld surface analysis show the definite role of Br···F interhalogen interactions in the overall stability. Mapping the electrostatic potential isosurfaces with the aid of density functional theory in compound 1 clearly shows the presence of σ-hole, a requisite feature to show halogen interactions in the crystalline state. In addition, lattice energy and single point energy calculation shows that 1α was found to be energetically more favorable and thermodynamically more stable compare to 1β.
Collapse
Affiliation(s)
- Rafia Siddiqui
- Amity University, Amity Institute of Click Chemistry Research and Studies, INDIA
| | - Niharika Sharma
- Amity University, Amity Institute of Click Chemistry Research and Studies, INDIA
| | - Arnab Chakraborty
- Amity University, Amity Institute of Click Chemistry Research and Studies, INDIA
| | - Kumar Shivam
- Amity University, Amity Institute of Click Chemistry Research and Studies, INDIA
| | - Sayan Patra
- Amity University, Amity Institute of Click Chemistry Research and Studies, INDIA
| | - Jyoti Rani
- Amity University, Amity Institute of Click Chemistry Research and Studies, INDIA
| | - Monalisa Mukherjee
- Amity University, Amity Institute of Click Chemistry Research and Studies, INDIA
| | | | - Ranjan Patra
- Amity University - Noida Campus, AICCRS, AICCRS, India, 201313, Noida, INDIA
| | - Swati Dhamija
- Amity University, Amity Institute of Click Chemistry Research and Studies, 201303, Noida, INDIA
| |
Collapse
|