1
|
Rueda-Espinosa J, Zhou W, Love JA, Pal S. Intramolecular Csp 3-H Activation at a Platinum(IV) Center Resulting from O 2 Activation: The Role of a Proton-Responsive Ligand and Trans Influence. J Am Chem Soc 2024; 146:34442-34451. [PMID: 39630995 DOI: 10.1021/jacs.4c11054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Aerobic oxidation of a dimethylplatinum(II) complex featuring 1,1-di(2-pyridyl)ethanol as a supporting ligand leads to the formation of two unexpected PtIV complexes (in ∼1:1 ratio), neither of which results from direct oxidation typical for PtII centers supported by popular κ2-(N,N) ligands. While one product features an isomerized PtIV center stabilized by the κ3-(N,N,O) ligand coordination mode, surprisingly, the other product results from intramolecular activation of the ligand methyl fragment. Mechanistic studies, reactivity of model complexes, and DFT calculations reveal that the critical proton-responsive nature of the ligand allows formation of intermediates that result in a concerted metalation deprotonation (CMD)-like C-H activation at PtIV. To the best of our knowledge, this is the first mechanistic delineation of Csp3-H activation at PtIV, despite being known for other high-valent platinum group metal centers.
Collapse
Affiliation(s)
- Juan Rueda-Espinosa
- Department of Chemistry, University of Calgary, 2500 University Dr. NW, Calgary, Alberta T2N 1N4, Canada
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Wen Zhou
- Department of Chemistry, University of Calgary, 2500 University Dr. NW, Calgary, Alberta T2N 1N4, Canada
| | - Jennifer A Love
- Department of Chemistry, University of Calgary, 2500 University Dr. NW, Calgary, Alberta T2N 1N4, Canada
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Shrinwantu Pal
- Department of Chemistry, Brandon University, 270 18th Street, Brandon, Manitoba R7A 6A9, Canada
| |
Collapse
|
2
|
Hazarika N, Konwar M, Das A. Synthesis of π-Extended Imidazo[1,2- a]quinolines via Carboxylic Acid-Assisted Ru(II)-Catalyzed Dual C-H Activation and Alkyne Annulation. Org Lett 2024; 26:10447-10452. [PMID: 39602523 DOI: 10.1021/acs.orglett.4c03522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Ru(II)-catalyzed, carboxylic acid-assisted oxidative annulation of N-aryl azoles with alkynes via double C-H activation to produce highly functionalized π-extended imidazo[1,2-a]quinolines is reported. The reaction features a broad substrate generality and tolerates various biologically relevant scaffolds. Interestingly, annulated products showed strong fluorescence properties and an AgIE effect and exhibited a selective fluorescent response toward the Cu2+ ion. Further photocatalytic properties of the product are demonstrated in the photochemical coupling of azoles and arenes.
Collapse
Affiliation(s)
- Nitumoni Hazarika
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Monuranjan Konwar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Animesh Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
3
|
Fu Z, Zeng J, Xiong C, Guo S, Cai H. Electrooxidative Ni-Catalyzed Decarboxylation of Arylacetic Acids Towards the Synthesis of Carbonyls under Air Conditions. Chemistry 2024; 30:e202403077. [PMID: 39283722 DOI: 10.1002/chem.202403077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Indexed: 11/05/2024]
Abstract
After systematic realization of decarboxylative functionalization of carboxylic acids under heating conditions in our group, we herein reported an electrochemical method for Ni-catalyzed decarboxylative oxygenation of arylacetic acids under open air conditions. The protocol provided corresponding carbonyls including aldehydes and ketones in moderate to satisfactory yields with good functional group tolerance, furthermore, the practicability and advantage of the method was highlighted through Ni-catalyzed oxidative decarboxylation of carboxylic acid-containing drugs and preformation of scalable transformation. Mechanistic studies demonstrated that the possible involvement of free radical intermediate in the conversion.
Collapse
Affiliation(s)
- Zhengjiang Fu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, China, 330031
| | - Junhua Zeng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, China, 330031
| | - Cheng Xiong
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, China, 330031
| | - Shengmei Guo
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, China, 330031
| | - Hu Cai
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, China, 330031
| |
Collapse
|
4
|
Li J, Lin Q, Dungan O, Fu Y, Ren S, Ruccolo S, Moor S, Phillips EM. Homogenous Palladium-Catalyzed Dehalogenative Deuteration and Tritiation of Aryl Halides with D 2/T 2 Gas. J Am Chem Soc 2024; 146:31497-31506. [PMID: 39514417 DOI: 10.1021/jacs.4c08176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Hydrogen isotopically labeled compounds have extensive utility across diverse domains, especially in drug discovery and development. However, synthesis of the labeled compounds with exclusive site selectivity and/or high isotope incorporation is challenging. One widely employed method is heterogeneous palladium(0)-catalyzed (such as Pd/C) dehalogenative deuteration and tritiation with D2/T2 gas. While commonly used, the method faces two long-standing challenges related to insufficient isotope incorporation and functional group tolerance, particularly with aryl bromides and chlorides. These long-standing issues pose a substantial obstacle in the synthesis of deuterated drug molecules and high-specific-activity tritium tracers. Herein, we present a novel palladium catalytic system using Zn(OAc)2 as an additive, enabling novel homogenous dehalogenative deuteration/tritiation using D2/T2 gas. Under mild reaction conditions, a wide range of drug-like aryl halides and pseudohalides undergo selective deuteration with complete isotope incorporation. The reaction displays excellent compatibility with diverse functional groups, including multiple bonds and O/N-benzyl, and cyano groups, which are frequently problematic in the Pd/C reactions. Furthermore, this method was successfully applied to the tritiation of four halogenated pharmaceutically relevant molecules, resulting in predictable high specific activity per halogen atom (26.5-27.7 Ci/mmol). Notably, the developed system allows gram-scale preparation of a deuterium-containing intermediate, a crucial step in synthesizing a deuterium-labeled drug molecule. A key intermediate, Pd(Ar)OAc, is proposed to activate hydrogen gas during dehalogenative deuteration and tritiation, and Zn(OAc)2 plays an essential role in inhibiting Pd poisoning by halides.
Collapse
Affiliation(s)
- Jingwei Li
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Qiao Lin
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Otto Dungan
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Yue Fu
- Modeling and Informatics, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Sumei Ren
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Serge Ruccolo
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Sarah Moor
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Eric M Phillips
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| |
Collapse
|
5
|
Liu DY, Fang DC. Theoretical Study on the Mechanism of Ru(II)-Catalyzed Intermolecular [3 + 2] Annulation between o-Toluic Acid and 3,5-Bis(trifluoromethyl)benzaldehyde: Octahedral vs Trigonal Bipyramidal. J Org Chem 2024; 89:14061-14072. [PMID: 39312811 DOI: 10.1021/acs.joc.4c01461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Density functional theory was utilized to investigate the mechanism of Ru(II)-catalyzed aromatic C-H activation and addition of aromatic aldehydes. The proposed catalytic cycle consists of C-H bond activation, aldehyde carbonyl insertion for C-C coupling, lactonization for the formation of the final product, product separation, and catalyst recovery. Our calculations suggest that Ru(OAc)2(PCy3) (referred to as CAT) is the most favorable active catalyst, facilitating the C-H bond activation to form a five-membered ring cycloruthenium intermediate (INT2). Subsequently, the aromatic aldehyde reactant 2a enters the Ru coordination sphere, accelerating the C-C coupling and lactonization for the formation of the final product. The involvement of acetate assists in the final product separation, while INT1 re-enters the Ru coordination sphere to initiate a new catalytic cycle. Utilizing the energetic span model, the apparent activation free energy barrier was computed to be 34.3 kcal mol-1 at 443 K. Furthermore, exploration of the reaction mechanism in the absence of phosphine ligands identified Ru(OAc)2(p-cymene) as the most favorable active catalyst. The derived apparent activation free energy barrier offers a comprehensive explanation for the experimentally observed yields. Additionally, we have examined the disparities between the octahedral and trigonal bipyramidal structures of the catalysts concerning their effects on the reaction mechanisms and apparent activation free energy barriers.
Collapse
Affiliation(s)
- Dan-Yang Liu
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - De-Cai Fang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
6
|
Li K, Li M, Dong S, Li SL, Chen Z, Liao RZ, Yin G. Factors Affecting the Formation and Transformation of the Intermediates in Pd(II)-Catalyzed Aromatic C-H Activation: A Comprehensive Study with the Pd(II)/LA Platform. J Org Chem 2024; 89:13540-13555. [PMID: 39255243 DOI: 10.1021/acs.joc.4c01739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
How the factors affecting the formation and transformation of the intermediates in Pd(II)-catalyzed aromatic C-H activation: A comprehensive study with the Pd(II)/LA platform. Using the Pd(II)/Lewis acid (LA)-catalyzed C-H activation of electron-rich acetanilides as a platform, the C-H activation intermediates, including the precomplex η2-intermediate, the agostic hydrogen intermediate, and the palladacycle compound have been well-characterized. This work presents how the catalyst source, substrate, and solvent affect the formation of the η2-intermediate and its equilibrium with the agostic hydrogen intermediate, and the transformation of the agostic hydrogen intermediate to the palladacycle compound through C-H activation. The findings disclosed above are provided as a guideline for the catalyst design of the oxidative olefination of acetanilide with dioxygen, and the catalytic efficiency matched well with the mechanistic findings.
Collapse
Affiliation(s)
- Kaiwen Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Man Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Shuangfeng Dong
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Shuang-Long Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Zhuqi Chen
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Rong-Zhen Liao
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Guochuan Yin
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| |
Collapse
|
7
|
Yu K, Ward TR. C-H functionalization reactions catalyzed by artificial metalloenzymes. J Inorg Biochem 2024; 258:112621. [PMID: 38852295 DOI: 10.1016/j.jinorgbio.2024.112621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/11/2024]
Abstract
CH functionalization, a promising frontier in modern organic chemistry, facilitates the direct conversion of inert CH bonds into many valuable functional groups. Despite its merits, traditional homogeneous catalysis, often faces challenges in efficiency, selectivity, and sustainability towards this transformation. In this context, artificial metalloenzymes (ArMs), resulting from the incorporation of a catalytically-competent metal cofactor within an evolvable protein scaffold, bridges the gap between the efficiency of enzymatic transformations and the versatility of transition metal catalysis. Accordingly, ArMs have emerged as attractive tools for various challenging catalytic transformations. Additionally, the coming of age of directed evolution has unlocked unprecedented avenues for optimizing enzymatic catalysis. Taking advantage of their genetically-encoded protein scaffold, ArMs have been evolved to catalyze various CH functionalization reactions. This review delves into the recent developments of ArM-catalyzed CH functionalization reactions, highlighting the benefits of engineering the second coordination sphere around a metal cofactor within a host protein.
Collapse
Affiliation(s)
- Kun Yu
- Department of Chemistry, University of Basel, Mattenstrasse 22, Basel CH-4058, Switzerland
| | - Thomas R Ward
- Department of Chemistry, University of Basel, Mattenstrasse 22, Basel CH-4058, Switzerland.
| |
Collapse
|
8
|
Tsitopoulou M, Clemenceau A, Thesmar P, Baudoin O. 1,4-Pd Migration-Enabled Synthesis of Fused 4-Membered Rings. J Am Chem Soc 2024; 146:18811-18816. [PMID: 38968581 PMCID: PMC11258686 DOI: 10.1021/jacs.4c04701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/07/2024]
Abstract
1,4-Palladium migration has been widely used for the functionalization of remote C-H bonds. However, this mechanism has been limited to aryl halide precursors. This work reports an unprecedented Pd0-catalyzed cyclobutanation protocol producing valuable fused cyclobutanes starting from cycloalkenyl (pseudo)halides. This reaction takes place via alkenyl-to-alkyl 1,4-Pd migration, followed by intramolecular Heck coupling. The method performs best with cyclohexenyl precursors, giving access to a variety of substituted bicyclo[4,2,0]octenes. Reactants containing an N-methyl or methoxy group give rise to fused azetidines or oxetanes, respectively, via the same mechanism. Kinetic and deuterium-labeling studies point to a rate-limiting C(sp3)-H activation step.
Collapse
Affiliation(s)
- Maria Tsitopoulou
- Department of Chemistry, University
of Basel, CH-4056 Basel, Switzerland
| | - Antonin Clemenceau
- Department of Chemistry, University
of Basel, CH-4056 Basel, Switzerland
| | - Pierre Thesmar
- Department of Chemistry, University
of Basel, CH-4056 Basel, Switzerland
| | - Olivier Baudoin
- Department of Chemistry, University
of Basel, CH-4056 Basel, Switzerland
| |
Collapse
|
9
|
González-Fernández E, Marinus N, Dhankhar J, Linden A, Čorić I. Control over Anion Coordination on Pd(II), Cu(I), and Ag(I) with Regioisomeric Phosphine-Carboxylate Ligands. Chemistry 2024; 30:e202401215. [PMID: 38688855 DOI: 10.1002/chem.202401215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
The coordination of anionic donors is involved at various stages of catalytic cycles in transition-metal catalysis, but control over the spatial positioning of anions around a metal center is a challenge in coordination chemistry. Here we show that regioisomeric phosphine-carboxylate ligands provide spatial anion control on palladium(II) centers by favoring either κ2, cis-κ1, or trans-κ1 coordination of the carboxylate donor. Additionally, the palladium(II) carboxylates, which contain a methyl donor, upon protonation, deliver metal-alkyl complexes that feature a coordinated carboxylic acid. Such complexes can be considered as models for the minima that follow the concerted metalation-deprotonation transition state for C-H activation. The predictability of the coordination modes is further demonstrated on silver(I) and copper(I) centers, for which less common structures of mononuclear and dinuclear complexes can be obtained by using spatial anion control. Our results demonstrate the potential for spatial control over carboxylate anions in coordination chemistry.
Collapse
Affiliation(s)
- Elisa González-Fernández
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
| | - Nittert Marinus
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
| | - Jyoti Dhankhar
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
| | - Anthony Linden
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
| | - Ilija Čorić
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
| |
Collapse
|
10
|
Fogos WF, Lessa MD, de Carvalho da Silva F, de Carneiro JWM. Mechanistic insights into C(sp 2)-H activation in 1-Phenyl-4-vinyl-1H-1,2,3-triazole derivatives: a theoretical study with palladium acetate catalyst. J Mol Model 2024; 30:183. [PMID: 38782773 DOI: 10.1007/s00894-024-05987-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
CONTEXT The activation of C-H bonds is a fundamental process in synthetic organic chemistry, which enables their replacement by highly reactive functional groups. Coordination compounds serve as effective catalysts for this purpose, as they facilitate chemical transformations by interacting with C-H bonds. A comprehensive understanding of the mechanism of activation of this type of bond lays the foundation for the development of efficient protocols for cross-coupling reactions. We explored the activation of C(sp2)-H bonds in 1-Phenyl-4-vinyl-1H-1,2,3-triazole derivatives with CH3, OCH3, and NO2 substituents in the para position of the phenyl ring, using palladium acetate as catalyst. The studied reaction is the first step for subsequent conjugation of the triazoles with naphthoquinones in a Heck-type reaction to create a C-C bond. The basic nitrogen atoms of the 1,2,3-triazole coordinate preferentially with the cationic palladium center to form an activated species. A concerted proton transfer from the terminal vinyl carbon to one of the acetate ligands with low activation energy is the main step for the C(sp2)-H activation. This study offers significant mechanistic insights for enhancing the effectiveness of C(sp2)-H activation protocols in organic synthesis. METHODS All calculations were performed using the Gaussian 09 software package and density functional theory (DFT). The structures of all reaction path components were fully optimized using the CAM-B3LYP functional with the Def2-SVP basis set. The optimized geometries were analyzed by computing the second-order Hessian matrix to confirm that the corresponding minimum or transition state was located. To account for solvent effects, the Polarizable Continuum Model of the Integral Equation Formalism (IEFPCM) with water as the solvent was used.
Collapse
Affiliation(s)
- Wagner F Fogos
- Department of Inorganic Chemistry, Institute of Chemistry, Fluminense Federal University, Niterói, Brazil.
| | - Milena D Lessa
- Department of Inorganic Chemistry, Institute of Chemistry, Fluminense Federal University, Niterói, Brazil
| | - Fernando de Carvalho da Silva
- Department of Organic Chemistry, Institute of Chemistry, Fluminense Federal University, Outeiro de São João Batista-, Niterói, RJ, 24020-141, Brazil
| | | |
Collapse
|
11
|
Li K, Dong S, Li SL, Chen Z, Yin G. Pd(II)/LA-catalyzed acetanilide olefination with dioxygen. Org Biomol Chem 2024; 22:4089-4095. [PMID: 38695080 DOI: 10.1039/d4ob00468j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Transition-metal-catalyzed aromatic olefination through direct C-H activation represents an atom and step-economic route for versatile pharmaceutical syntheses, and in many cases, different stoichiometric oxidants are frequently employed for achieving a reasonable catalytic efficiency of the transition metal ions. Herein, we report a Lewis acid promoted Pd(II)-catalyzed acetanilide olefination reaction with atmospheric dioxygen as the oxidant source. The linkage of the Lewis acid to the Pd(II) species through a diacetate bridge significantly improved its catalytic efficiency, and independent kinetic studies on the olefination step revealed that adding the Lewis acid significantly accelerated the olefination rate as well as the C-H activation step. A strong basicity of the internal base in the Pd(II) salt also benefited the olefination reaction plausibly through base-assisted β-hydride elimination.
Collapse
Affiliation(s)
- Kaiwen Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.
| | - Shuangfeng Dong
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.
| | - Shuang-Long Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.
| | - Zhuqi Chen
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.
| | - Guochuan Yin
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.
| |
Collapse
|
12
|
Ojea V, Ruiz M. DLPNO-CCSD(T) and DFT study of the acetate-assisted C-H activation of benzaldimine at [RuCl 2( p-cymene)] 2: the relevance of ligand exchange processes at ruthenium(II) complexes in polar protic media. Dalton Trans 2024; 53:8662-8679. [PMID: 38695752 DOI: 10.1039/d4dt00380b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
To gain mechanistic insights into the acetate-assisted cyclometallations of arylimines promoted by [RuCl2(p-cymene)]2 in polar protic media, DFT geometry optimizations (with M06 and ωB97X-D3 functionals and the cc-pVDZ-PP[Ru] basis set) followed by DLPNO-CCSD(T)/CBS energy evaluations were performed using benzaldimine as a model substrate and methanol as the solvent (with CPCM or SMD models). The calculation results show that coordination of the imine to an acetate ruthenium precursor is followed by anion (chloride or acetate) dissociation as the rate-determining step of the process. H-Bonding of two explicit MeOH to the anion reduces the calculated activation energy to ca. 23 kcal mol-1, in good agreement with the experimental half-life at room temperature. Subsequent AMLA/CMD C-H activation of the intermediate cationic complexes is a faster, reversible process. Alternative reaction pathways involving neutral diacetate ruthenium complexes offer AMLA/CMD transition state structures of lower energy but are precluded due to higher energy barriers for the initial ligand exchange processes at ruthenium. Solvent assistance accelerates the final chloride/acetate exchange processes on the cycloruthenate intermediates, particularly when compression in the condensed phase is taken into consideration. The performance of six DFT functionals (with the aug-pVTZ-PP[Ru] basis set) was assessed using the DLPNO-CCSD(T)/CBS reference energies. Neutral diacetate ruthenium complexes were incorrectly predicted as being kinetically relevant when using hybrid DFT methods (PBE0-D3(BJ), M06-2X or ωB97M-V). Good agreement between the calculated barrier heights and our benchmark energy results was obtained by using double-hybrid DFT methods. PWPB95 with D3(BJ) or D4 dispersion energy corrections was found to be the most accurate (ΔG≠ MUE of ca. 1 kcal mol-1). This study may aid our understanding of and help with further experimental investigations of synthetically useful carboxylate-assisted C-H bond functionalizations involving (N,C)-cyclometallated (p-cymene)Ru(II) intermediate complexes in sustainable polar protic solvents.
Collapse
Affiliation(s)
- Vicente Ojea
- Departamento de Química, Facultade de Ciencias, Universidade da Coruña, E-15078 A Coruña, Spain.
| | - María Ruiz
- Departamento de Química, Facultade de Ciencias, Universidade da Coruña, E-15078 A Coruña, Spain.
| |
Collapse
|
13
|
Chen B, Pan B, He X, Jiang L, Chan ASC, Qiu L. Access to chiral dihydrophenanthridines via a palladium(0)-catalyzed Suzuki coupling and C-H arylation cascade reaction using new chiral-bridged biphenyl bifunctional ligands. Chem Sci 2024; 15:6884-6890. [PMID: 38725491 PMCID: PMC11077526 DOI: 10.1039/d4sc00621f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/01/2024] [Indexed: 05/12/2024] Open
Abstract
A class of chiral-bridged biphenyl phosphine-carboxylate bifunctional ligands CB-Phos has been developed and successfully applied to Pd(0)-catalyzed single enantioselective C-H arylation and a one pot cascade reaction involving Suzuki cross-coupling and C-H arylation. The catalytic system provides a new and convenient way for the synthesis of versatile chiral dihydrophenanthridines with rich structures and broad functional group tolerance. Good to excellent yields with high enantioselectivities were generally achieved. The reaction mechanism of the cascade reaction was also preliminarily discussed.
Collapse
Affiliation(s)
- Bin Chen
- School of Chemistry, IGCME, The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, Sun Yat-sen University Guangzhou 510006 People's Republic of China
| | - Bendu Pan
- School of Chemistry, IGCME, The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, Sun Yat-sen University Guangzhou 510006 People's Republic of China
| | - Xiaobo He
- School of Chemistry, IGCME, The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, Sun Yat-sen University Guangzhou 510006 People's Republic of China
| | - Long Jiang
- School of Chemistry, IGCME, The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, Sun Yat-sen University Guangzhou 510006 People's Republic of China
| | - Albert S C Chan
- School of Chemistry, IGCME, The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, Sun Yat-sen University Guangzhou 510006 People's Republic of China
| | - Liqin Qiu
- School of Chemistry, IGCME, The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, Sun Yat-sen University Guangzhou 510006 People's Republic of China
| |
Collapse
|
14
|
Kunz S, Barnå F, Urrutia MP, Ingner FJL, Martínez-Topete A, Orthaber A, Gates PJ, Pilarski LT, Dyrager C. Derivatization of 2,1,3-Benzothiadiazole via Regioselective C-H Functionalization and Aryne Reactivity. J Org Chem 2024; 89:6138-6148. [PMID: 38648018 PMCID: PMC11077497 DOI: 10.1021/acs.joc.4c00122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/29/2024] [Accepted: 03/15/2024] [Indexed: 04/25/2024]
Abstract
Despite growing interest in 2,1,3-benzothiadiazole (BTD) as an integral component of many functional molecules, methods for the functionalization of its benzenoid ring have remained limited, and many even simply decorated BTDs have required de novo synthesis. We show that regioselective Ir-catalyzed C-H borylation allows access to versatile 5-boryl or 4,6-diboryl BTD building blocks, which undergo functionalization at the C4, C5, C6, and C7 positions. The optimization and regioselectivity of C-H borylation are discussed. A broad reaction scope is presented, encompassing ipso substitution at the C-B bond, the first examples of ortho-directed C-H functionalization of BTD, ring closing reactions to generate fused ring systems, as well as the generation and capture reactions of novel BTD-based heteroarynes. The regioselectivity of the latter is discussed with reference to the Aryne Distortion Model.
Collapse
Affiliation(s)
- Susanna Kunz
- Department
of Chemistry—BMC, Uppsala University, Box 576, Uppsala 75123, Sweden
| | - Fredrik Barnå
- Department
of Chemistry—BMC, Uppsala University, Box 576, Uppsala 75123, Sweden
| | | | | | | | - Andreas Orthaber
- Department
of Chemistry—Ångström, Uppsala University, Box 523, Uppsala 75120, Sweden
| | - Paul J. Gates
- School
of Chemistry, University of Bristol, Cantock’s Close, Clifton, Bristol BS8 1TS, U.K.
| | - Lukasz T. Pilarski
- Department
of Chemistry—BMC, Uppsala University, Box 576, Uppsala 75123, Sweden
| | - Christine Dyrager
- Department
of Chemistry—BMC, Uppsala University, Box 576, Uppsala 75123, Sweden
| |
Collapse
|
15
|
Budiman YP, Perutz RN, Steel PG, Radius U, Marder TB. Applications of Transition Metal-Catalyzed ortho-Fluorine-Directed C-H Functionalization of (Poly)fluoroarenes in Organic Synthesis. Chem Rev 2024; 124:4822-4862. [PMID: 38564710 PMCID: PMC11046440 DOI: 10.1021/acs.chemrev.3c00793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/16/2024] [Accepted: 02/22/2024] [Indexed: 04/04/2024]
Abstract
The synthesis of organic compounds efficiently via fewer steps but in higher yields is desirable as this reduces energy and reagent use, waste production, and thus environmental impact as well as cost. The reactivity of C-H bonds ortho to fluorine substituents in (poly)fluoroarenes with metal centers is enhanced relative to meta and para positions. Thus, direct C-H functionalization of (poly)fluoroarenes without prefunctionalization is becoming a significant area of research in organic chemistry. Novel and selective methodologies to functionalize (poly)fluorinated arenes by taking advantage of the reactivity of C-H bonds ortho to C-F bonds are continuously being developed. This review summarizes the reasons for the enhanced reactivity and the consequent developments in the synthesis of valuable (poly)fluoroarene-containing organic compounds.
Collapse
Affiliation(s)
- Yudha P. Budiman
- Department
of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, 45363 Sumedang, Indonesia
| | - Robin N. Perutz
- Department
of Chemistry, University of York, York, YO10 5DD, U.K.
| | - Patrick G. Steel
- Department
of Chemistry, University of Durham, Science
Laboratories, South Road, Durham, DH1 3LE, U.K.
| | - Udo Radius
- Institute
for Inorganic Chemistry, Julius-Maximilians-Universität
Würzburg, Am Hubland, 97074 Würzburg Germany
| | - Todd B. Marder
- Institute
for Inorganic Chemistry, Julius-Maximilians-Universität
Würzburg, Am Hubland, 97074 Würzburg Germany
- Institute
for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg Germany
| |
Collapse
|
16
|
Fairlamb IJS, Lynam JM. Unveiling Mechanistic Complexity in Manganese-Catalyzed C-H Bond Functionalization Using IR Spectroscopy Over 16 Orders of Magnitude in Time. Acc Chem Res 2024; 57:919-932. [PMID: 38412502 PMCID: PMC10956383 DOI: 10.1021/acs.accounts.3c00774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/29/2024]
Abstract
ConspectusAn understanding of the mechanistic processes that underpin reactions catalyzed by 3d transition metals is vital for their development as potential replacements for scarce platinum group metals. However, this is a significant challenge because of the tendency of 3d metals to undergo mechanistically diverse pathways when compared with their heavier congeners, often as a consequence of one-electron transfer reactions and/or intrinsically weaker metal-ligand bonds. We have developed and implemented a new methodology to illuminate the pathways that underpin C-H bond functionalization pathways in reactions catalyzed by Mn-carbonyl compounds. By integrating measurements performed on catalytic reactions with in situ reaction monitoring and state-of-the-art ultrafast spectroscopic methods, unique insight into the mode of action and fate of the catalyst have been obtained.Using a combination of time-resolved spectroscopy and in situ low-temperature NMR studies, we have shown that photolysis of manganese-carbonyl precatalysts results in rapid (<5 ps) CO dissociation─the same process that occurs under thermal catalytic conditions. This enabled the detection of the key states relevant to catalysis, including solvent and alkyne complexes and their resulting transformation into manganacycles, which results from a migratory insertion reaction into the Mn-C bond. By systematic variation of the substrates (many of which are real-world structurally diverse substrates and not simple benchmark systems) and quantification of the resulting rate constants for the insertion step, a universal model for this migratory insertion process has been developed. The time-resolved spectroscopic method gave insight into fundamental mechanistic pathways underpinning other aspects of modern synthetic chemistry. The most notable was the first direct experimental observation of the concerted metalation deprotonation (CMD) mechanism through which carboxylate groups are able to mediate C-H bond activation at a metal center. This step underpins a host of important synthetic applications. This study demonstrated how the time-resolved multiple probe spectroscopy (TRMPS) method enables the observation of mechanistic process occurring on time scales from several picoseconds through to μs in a single experiment, thereby allowing the sequential observation of solvation, ligand substitution, migratory insertion, and ultimate protonation of a Mn-C bond.These studies have been complemented by an investigation of the "in reaction flask" catalyst behavior, which has provided additional insight into new pathways for precatalyst activation, including evidence that alkyne C-H bond activation may occur before heterocycle activation. Crucial insight into the fate of the catalyst species showed that excess water played a key role in deactivation to give higher-order hydroxyl-bridged manganese carbonyl clusters, which were independently found to be inactive. Traditional in situ IR and NMR spectroscopic analysis on the second time scale bridges the gap to the analysis of real catalytic reaction systems. As a whole, this work has provided unprecedented insight into the processes underpinning manganese-catalyzed reactions spanning 16 orders of magnitude in time.
Collapse
Affiliation(s)
- Ian J. S. Fairlamb
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Jason M. Lynam
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| |
Collapse
|
17
|
Tokura Y, Xu S, Yasui K, Nishii Y, Hirano K. Pd-catalysed C-H alkynylation of benzophospholes. Chem Commun (Camb) 2024; 60:2792-2795. [PMID: 38362673 DOI: 10.1039/d3cc05994d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
A palladium-catalysed C2-H alkynylation of benzophospholes with alkynyl bromides has been developed to afford the corresponding phosphole-alkyne conjugations in good to high yields. The C-C triple bond as well as terminal alkyne C-H bond in the obtained products is a good synthetic handle for further manipulations, thus giving the versatile π-conjugated benzophosphole derivatives. The optoelectronic properties of the newly synthesized conjugated benzophospholes are also described.
Collapse
Affiliation(s)
- Yu Tokura
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shibo Xu
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan.
| | - Kosuke Yasui
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yuji Nishii
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Koji Hirano
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
18
|
Ketata N, Liu L, Ben Salem R, Doucet H. Mono or double Pd-catalyzed C-H bond functionalization for the annulative π-extension of 1,8-dibromonaphthalene: a one pot access to fluoranthene derivatives. Beilstein J Org Chem 2024; 20:427-435. [PMID: 38410779 PMCID: PMC10896227 DOI: 10.3762/bjoc.20.37] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/08/2024] [Indexed: 02/28/2024] Open
Abstract
The Pd-catalyzed annulative π-extension of 1,8-dibromonaphthalene for the preparation of fluoranthenes in a single operation has been investigated. With specific arenes such as fluorobenzenes, the Pd-catalyzed double functionalization of C-H bonds yields the desired fluoranthenes. The reaction proceeds via a palladium-catalyzed direct intermolecular arylation, followed by a direct intramolecular arylation step. As the C-H bond activation of several benzene derivatives remains very challenging, the preparation of fluoranthenes from 1,8-dibromonaphthalene via Suzuki coupling followed by intramolecular C-H activation has also been investigated to provide a complementary method. Using the most appropriate synthetic route and substrates, it is possible to introduce the desired functional groups at positions 7-10 on fluoranthenes.
Collapse
Affiliation(s)
- Nahed Ketata
- University of Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France
- Organic chemistry laboratory, LR17ES08, Department of Chemistry, Faculty of Sciences, University of Sfax, B.P. 1171, 3038, Sfax, Tunisia
| | - Linhao Liu
- University of Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France
| | - Ridha Ben Salem
- Organic chemistry laboratory, LR17ES08, Department of Chemistry, Faculty of Sciences, University of Sfax, B.P. 1171, 3038, Sfax, Tunisia
| | - Henri Doucet
- University of Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France
| |
Collapse
|
19
|
Li Z, Xu W, Song S, Wang M, Zhao Y, Shi Z. Enantioselective Rhodium-Catalyzed C-H Arylation Enables Direct Synthesis of Atropisomeric Phosphines. Angew Chem Int Ed Engl 2024; 63:e202316035. [PMID: 38182545 DOI: 10.1002/anie.202316035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/07/2024]
Abstract
Atropisomeric phosphines hold considerable significance in asymmetric catalysis, yet their synthesis presents a formidable challenge owing to intricate multistep procedures. In this context, a groundbreaking methodology has been presented for their preparation. This innovative approach entails an atroposelective rhodium-catalyzed C-H activation employing aryl and heteroaryl halides, chelated by a P(III) center. The essence of this strategy lies in its ability to directly construct chiral phosphine ligands in a single step, thereby exhibiting exceptional efficiency in terms of atom and redox economy. Illustrative examples serve to demonstrate the immense potential of in situ-formed ligands in asymmetric catalysis. Mechanistic experiments have further provided invaluable insights into this transformation.
Collapse
Affiliation(s)
- Zexian Li
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Weipeng Xu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Shuaishuai Song
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
20
|
Lv X, Wang M, Zhao Y, Shi Z. P(III)-Directed Asymmetric C-H Arylation toward Planar Chiral Ferrocenes by Palladium Catalysis. J Am Chem Soc 2024; 146:3483-3491. [PMID: 38266486 DOI: 10.1021/jacs.3c13266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Planar chiral ferrocenyl phosphines have been employed as highly valuable ligands in metal-catalyzed asymmetric reactions. However, their preparation remains a formidable challenge due to the requirement for intricate, multistep synthetic sequences. In addressing this issue, we have developed a groundbreaking enantioselective C-H activation strategy facilitated by P(III) directing groups, enabling the efficient construction of planar chiral ferrocenyl phosphines in a single step. Our innovative approach entails the combination of a palladium catalyst, a parent ferrocenyl phosphine, and a chiral phosphoramidite ligand, leading to exceptional reactivity and enantioselectivity. Remarkably, these novel ligands exhibit remarkable efficacy in silver-catalyzed asymmetric 1,3-dipolar cycloadditions. We carried out a combination of experimental and computational studies to obtain a more comprehensive understanding of the reaction pathway and the factors contributing to enantioselectivity.
Collapse
Affiliation(s)
- Xueli Lv
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
21
|
Lachguar A, Pichugov AV, Neumann T, Dubrawski Z, Camp C. Cooperative activation of carbon-hydrogen bonds by heterobimetallic systems. Dalton Trans 2024; 53:1393-1409. [PMID: 38126396 PMCID: PMC10804807 DOI: 10.1039/d3dt03571a] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023]
Abstract
The direct activation of C-H bonds has been a rich and active field of organometallic chemistry for many years. Recently, incredible progress has been made and important mechanistic insights have accelerated research. In particular, the use of heterobimetallic complexes to heterolytically activate C-H bonds across the two metal centers has seen a recent surge in interest. This perspective article aims to orient the reader in this fast moving field, highlight recent progress, give design considerations for further research and provide an optimistic outlook on the future of catalytic C-H functionalization with heterobimetallic complexes.
Collapse
Affiliation(s)
- Abdelhak Lachguar
- Université de Lyon, Institut de Chimie de Lyon, Laboratory of Catalysis, Polymerization, Processes & Materials, CP2M UMR 5128 CNRS-UCB Lyon 1-CPE Lyon, 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France.
| | - Andrey V Pichugov
- Université de Lyon, Institut de Chimie de Lyon, Laboratory of Catalysis, Polymerization, Processes & Materials, CP2M UMR 5128 CNRS-UCB Lyon 1-CPE Lyon, 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France.
| | - Till Neumann
- Université de Lyon, Institut de Chimie de Lyon, Laboratory of Catalysis, Polymerization, Processes & Materials, CP2M UMR 5128 CNRS-UCB Lyon 1-CPE Lyon, 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France.
| | - Zachary Dubrawski
- Université de Lyon, Institut de Chimie de Lyon, Laboratory of Catalysis, Polymerization, Processes & Materials, CP2M UMR 5128 CNRS-UCB Lyon 1-CPE Lyon, 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France.
| | - Clément Camp
- Université de Lyon, Institut de Chimie de Lyon, Laboratory of Catalysis, Polymerization, Processes & Materials, CP2M UMR 5128 CNRS-UCB Lyon 1-CPE Lyon, 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France.
| |
Collapse
|
22
|
Ausekle E, Ehlers P, Villinger A, Langer P. Dibenzoindolo[1,8]naphthyridines: Synthesis and Characterization of X-Shaped Aza[4,6]helicenes. Chemistry 2024; 30:e202303225. [PMID: 37946613 DOI: 10.1002/chem.202303225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 11/12/2023]
Abstract
This report describes a one-pot multi-step procedure to obtain double azahelicenes via nucleophilic fluorine substitution of 2,2-di(2-bromophenyl)-1,1-difluoroalkenes and palladium-catalysed ring closing reaction. The developed synthesis approach allows easy diversification of substituents at all four fragments of the obtained X-shaped aza[4,6]helicene entity. Yields range from 20 % to 60 % among 12 product examples. X-ray single crystal analysis reveals formation of (P,P) and (M,M) enantiomer mixture of products. Optical and electrochemical properties of selected products were studied by performing UV/Vis absorption, photoluminescence and cyclic voltammetry measurements. Experimental results are supported by (TD)-DFT, NICS and NICS2BC calculations.
Collapse
Affiliation(s)
- Elina Ausekle
- Institut für Chemie, Universität Rostock, Albert Einstein Str. 3a, 18059, Rostock, Deutschland
| | - Peter Ehlers
- Institut für Chemie, Universität Rostock, Albert Einstein Str. 3a, 18059, Rostock, Deutschland
- Leibniz Institut für Katalyse, Albert Einstein Str. 29a, 18059, Rostock, Deutschland
| | - Alexander Villinger
- Institut für Chemie, Universität Rostock, Albert Einstein Str. 3a, 18059, Rostock, Deutschland
| | - Peter Langer
- Institut für Chemie, Universität Rostock, Albert Einstein Str. 3a, 18059, Rostock, Deutschland
- Leibniz Institut für Katalyse, Albert Einstein Str. 29a, 18059, Rostock, Deutschland
| |
Collapse
|
23
|
Ibáñez-Ibáñez L, Mollar-Cuni A, Apaloo-Messan E, Sharma AK, Mata JA, Maseras F, Vicent C. Ion mobility mass spectrometry uncovers regioselectivity in the carboxylate-assisted C-H activation of palladium N-heterocyclic carbene complexes. Dalton Trans 2024; 53:656-665. [PMID: 38073605 DOI: 10.1039/d3dt02793g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Carboxylate-assisted Pd-catalyzed C-H bond activation constitutes a mild and versatile synthetic tool to efficiently and selectively cleave inert C-H bonds. Herein, we demonstrate a simple method to experimentally evaluate both reactivity and selectivity in such systems using mass spectrometry (MS) methods. The N-heterocyclic carbene (NHC) cations [(NHC)PdX]+, bearing as X- ligand bases commonly used to promote the C-H activation (carboxylates and bicarbonate), are generated in the gas-phase by ESI-MS. Their C-H bond activation at the N-bound groups of the NHC is then studied using Collision Induced Dissociation (CID) experiments. Ion Mobility Spectrometry (IM)-MS is exploited to identify a number of regioisomers associated with the distinctive site selective C-H activations. It is demonstrated that such C-H activation concomitant with acetic acid release occurs from a mixture of activated [(NHC-H)Pd(CH3CO2H)]+ and non-activated [(NHC)Pd(CH3CO2)]+ complexes. The identity of the X-type ligands (X = Cl-, carboxylates and bicarbonate) has a significant impact on the regioisomer branching ratio upon CID conditions. IM-MS in conjunction with a DFT mechanistic study is presented for the acetate-assisted C-H activation of the [(NHC)Pd(CH3CO2)]+ cation featuring butyl and aryl as N-donor groups.
Collapse
Affiliation(s)
- Laura Ibáñez-Ibáñez
- Institute of Advanced Materials (INAM), Net of organometallic chemistry for sustainable solutions (OASIS), Universitat Jaume I, Avda. Sos Baynat s/n, 12071, Castellón, Spain.
| | - Andres Mollar-Cuni
- Institute of Advanced Materials (INAM), Net of organometallic chemistry for sustainable solutions (OASIS), Universitat Jaume I, Avda. Sos Baynat s/n, 12071, Castellón, Spain.
| | - Edmond Apaloo-Messan
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, Avgda. Països Catalans, 16, 43007 Tarragona, Spain.
| | - Akhilesh K Sharma
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, Avgda. Països Catalans, 16, 43007 Tarragona, Spain.
| | - Jose A Mata
- Institute of Advanced Materials (INAM), Net of organometallic chemistry for sustainable solutions (OASIS), Universitat Jaume I, Avda. Sos Baynat s/n, 12071, Castellón, Spain.
| | - Feliu Maseras
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, Avgda. Països Catalans, 16, 43007 Tarragona, Spain.
| | - Cristian Vicent
- Serveis Centrals d'Instrumentació Científica (SCIC). Universitat Jaume I, Avda. Sos Baynat s/n, 12071, Castellón, Spain.
| |
Collapse
|
24
|
Jiang W, Yang X, Lin L, Yan C, Zhao Y, Wang M, Shi Z. Merging Visible Light Photocatalysis and P(III)-Directed C-H Activation by a Single Catalyst: Modular Assembly of P-Alkyne Hybrid Ligands. Angew Chem Int Ed Engl 2023; 62:e202309709. [PMID: 37814137 DOI: 10.1002/anie.202309709] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 10/11/2023]
Abstract
Metal-catalyzed C-H activation strategies provide an efficient approach for synthesis by minimizing atom, step, and redox economy. Developing milder, greener, and more effective protocols for these strategies is always highly desirable to the scientific community. In this study, the utilization of a single rhodium complex enabled the visible-light-induced late-stage C-H activation of biaryl-type phosphines with alkynyl bromides, employing inherent phosphorus atoms as directing groups. This chemistry combines P(III)-directed C-H activation with visible light photocatalysis, under exogenous photosensitizer-free conditions, offering a unique platform for ligand design and preparation. Furthermore, this study also explores the asymmetric catalysis and coordination chemistry of the resulting P-alkyne hybrid ligands with specific transition metals. Experimental results and density functional theory calculations demonstrate the mechanistic intricacies of this transformation.
Collapse
Affiliation(s)
- Wang Jiang
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Xiuxiu Yang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Lin Lin
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Chaoguo Yan
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Zhuangzhi Shi
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
25
|
Roth D, Radosevich AT, Greb L. Reversible Oxidative Addition of Nonactivated C-H Bonds to Structurally Constrained Phosphenium Ions. J Am Chem Soc 2023; 145:24184-24190. [PMID: 37877607 PMCID: PMC10842376 DOI: 10.1021/jacs.3c08456] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
A series of structurally constrained phosphenium ions based on pyridinylmethylamidophenolate scaffolds are shown to undergo P(III)/P(V) oxidative addition with C-H bonds of alkynes, alkenes, and arenes. Nonactivated substrates such as benzene, toluene, and deactivated chlorobenzene are phosphorylated in quantitative yields. Computational and spectroscopic studies suggest a low-barrier isomerization from a bent to a T-shaped isomer that initiates a phosphorus-ligand-cooperative pathway and subsequent ring-chain tautomerism. Remarkably, C-H bond activations occur reversibly, allowing for reductive elimination back to P(III) at elevated temperatures or the exchange with other substrates.
Collapse
Affiliation(s)
- Daniel Roth
- Anorganisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Alexander T. Radosevich
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Lutz Greb
- Anorganisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg
| |
Collapse
|
26
|
Chatani N. Nickel-Catalyzed Functionalization Reactions Involving C-H Bond Activation via an Amidate-Promoted Strategy and Its Extension to the Activation of C-F, C-O, C-S, and C-CN Bonds. Acc Chem Res 2023; 56:3053-3064. [PMID: 37820051 DOI: 10.1021/acs.accounts.3c00493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
ConspectusThe development of functionalization reactions involving the activation of C-H bonds has evolved extensively due to the atom and step economy associated with such reactions. Among these reactions, chelation assistance has been shown to provide a powerful solution to the serious issues of reactivity and regioselectivity faced in the activation of C-H bonds. The vast majority of C-H functionalization reactions reported thus far has involved the use of precious metals. Kleiman and Dubeck reported the cyclonickelation of azobenzene and NiCp2 in which an azo group directs a Ni center to activate the ortho C-H bond in close proximity. Although this stoichiometric reaction was discovered earlier than that for other transition-metal complexes, its development as a catalytic reaction was delayed. No general catalytic systems were available for Ni-catalyzed C-H functionalization reactions for a long time. This Account details our group's development of Ni(0)- and Ni(II)-catalyzed chelation-assisted C-H functionalization reactions. It also highlights how the new strategy can be extended to the activation of other unreactive bonds.In the early 2010s, we found that the Ni(0)-catalyzed reaction of aromatic amides that contain a 2-pyridinylmethylamine moiety as a directing group with alkynes results in C-H/N-H oxidative annulation to give isoquinolinones. In addition, the combination of a Ni(II) catalyst and an 8-aminoquinoline directing group was found to be a superior combination for developing a wide variety of C-H functionalization reactions with various electrophiles. The reactions were proposed to include the formation of unstable Ni(IV) and/or Ni(III) species; the generation of such high-valence Ni species was rare at that time, but since then, many papers dealing with DFT and organometallic studies have appeared in the literature in attempts to understand the mechanism. Based on our in-depth considerations of the mechanism with respect to why an N,N-bidentate directing group is required, we realized that the formation of a N-Ni bond by the oxidative addition of a N-H bond to a Ni(0) species or a ligand exchange between a N-H bond and Ni(II) species is the key step. We concluded that the precoordination of the N(sp2) atom in the directing group positions the Ni species to be in close proximity to the N-H bond which permits the formation of a N-Ni bond. Based on this working hypothesis, we carried out the reaction using KOtBu as a base and found that the Ni(0)-catalyzed reaction of aromatic amides that do not contain such a specific directing group with alkynes results in the formation of the desired isoquinolinone, in which an amidate anion acts as the actual directing group. Remarkably, this strategy was found to be applicable to the activation of various other unreactive bonds such as C-F, C-O, C-S, and C-CN.
Collapse
Affiliation(s)
- Naoto Chatani
- Department of Applied Chemistry, Faculty of Engineering, and Research Center for Environmental Preservation, Osaka University, 565-0871 Osaka Japan
| |
Collapse
|
27
|
Yamada KE, Stepek IA, Matsuoka W, Ito H, Itami K. Synthesis of Heptagon-Containing Polyarenes by Catalytic C-H Activation. Angew Chem Int Ed Engl 2023:e202311770. [PMID: 37902441 DOI: 10.1002/anie.202311770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/13/2023] [Accepted: 10/30/2023] [Indexed: 10/31/2023]
Abstract
Nanocarbons incorporating non-hexagonal aromatic rings - such as five-, seven-, and eight-membered rings - have various intriguing physical properties such as curved structures, unique one-dimensional packing, and promising magnetic, optical, and conductivity properties. Herein, we report an efficient synthetic approach to polycyclic aromatics containing seven-membered rings via a palladium-catalyzed intramolecular Ar-H/Ar-Br coupling. In addition to all-hydrocarbon scaffolds, heteroatom-embedded heptagon-containing polyarenes can be efficiently constructed with this method. Rhodium- and palladium-catalyzed sequential six- and seven-membered ring formations also afford complex heptagon-containing molecular nanocarbons from readily available arylacetylenes and biphenyl boronic acids. Detailed mechanistic analysis by DFT calculations showed the feasibility of seven-membered ring formation by a concerted metalation-deprotonation mechanism. This reaction can serve as a template for the synthesis of a wide range of seven-membered ring-containing molecular nanocarbons.
Collapse
Affiliation(s)
- Keigo E Yamada
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Iain A Stepek
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Wataru Matsuoka
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Hideto Ito
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Kenichiro Itami
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan
| |
Collapse
|
28
|
Wheatley M, Zuccarello M, Tsitopoulou M, Macgregor SA, Baudoin O. Effect of α-Substitution on the Reactivity of C(sp 3)-H Bonds in Pd 0-Catalyzed C-H Arylation. ACS Catal 2023; 13:12563-12570. [PMID: 37822862 PMCID: PMC10563019 DOI: 10.1021/acscatal.3c03806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 08/22/2023] [Indexed: 10/13/2023]
Abstract
We report mechanistic studies on the reactivity of different α-substituted C(sp3)-H bonds, -CHnR (R = H, Me, CO2Me, CONMe2, OMe, and Ph, as well as the cyclopropyl and isopropyl derivatives -CH(CH2)2 and -CHMe2) in the context of Pd0-catalyzed C(sp3)-H arylation. Primary kinetic isotope effects, kH/kD, were determined experimentally for R = H (3.2) and Me (3.5), and these, along with the determination of reaction orders and computational studies, indicate rate-limiting C-H activation for all substituents except when R = CO2Me. This last result was confirmed experimentally (kH/kD ∼ 1). A reactivity scale for C(sp3)-H activation was then determined: CH2CO2Me > CH(CH2)2 ≥ CH2CONMe2 > CH3 ≫ CH2Ph > CH2Me > CH2OMe ≫ CHMe2. C-H activation involves AMLA/CMD transition states featuring intramolecular O → H-C H-bonding assisted by C-H → Pd agostic bonding. The "AMLA coefficient", χ, is introduced to quantify the energies associated with these interactions via natural bond orbital 2nd order perturbation theory analysis. Higher barriers correlate with lower χ values, which in turn signal a greater agostic interaction in the transition state. We believe that this reactivity scale and the underlying factors that determine this will be of use for future studies in transition-metal-catalyzed C(sp3)-H activation proceeding via the AMLA/CMD mechanism.
Collapse
Affiliation(s)
- Matthew Wheatley
- Department
of Chemistry, University of Basel, 4056 Basel, Switzerland
| | - Marco Zuccarello
- Department
of Chemistry, University of Basel, 4056 Basel, Switzerland
| | - Maria Tsitopoulou
- Department
of Chemistry, University of Basel, 4056 Basel, Switzerland
| | - Stuart A. Macgregor
- Institute
of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K.
| | - Olivier Baudoin
- Department
of Chemistry, University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
29
|
Iwamoto T, Suzuki M, Hasegawa H, Abeta H, Matsuo Y, Tanaka T, Yasuda N, Ishii Y. One-pot Syntheses of Benzo- and Benzofuran-fused Iridaoxabenzenes via CH Bond Activations of Alkyl-bridged Diphenol Derivatives. Chem Asian J 2023; 18:e202300640. [PMID: 37610036 DOI: 10.1002/asia.202300640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 08/24/2023]
Abstract
One-pot syntheses of new π-extended metallaaromatic compounds have been developed by utilizing Ir-mediated CH bond activation of ethylene- or ethylidene-bridged diphenol derivatives. Depending on the bridging alkyl groups, two types of iridaoxabenzenes, both of which are doubly fused with benzo and benzofuran units, have been obtained. Studies on their structures and electronic characters indicate that both complexes have an aromatic character on the iridaoxacycles, and their π-conjugated systems are fully delocalized over the whole molecular skeletons. These novel metallaaromatic complexes exhibited some reactivities which are distinct from those reported for the non-fused metallaaromatic compounds.
Collapse
Affiliation(s)
- Takahiro Iwamoto
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Mika Suzuki
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Hibiki Hasegawa
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Hinako Abeta
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Yusuke Matsuo
- Department of Chemistry, Graduate School of Science, Kyoto University Sakyo-ku, Kyoto, 606-8502, Japan
| | - Takayuki Tanaka
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510 (Japan)
| | - Nobuhiro Yasuda
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Youichi Ishii
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| |
Collapse
|
30
|
Ajitha M, Haines BE, Musaev DG. Mechanism and Selectivity of Copper-Catalyzed Bromination of Distal C(sp 3)-H Bonds. Organometallics 2023; 42:2467-2476. [PMID: 37772274 PMCID: PMC10526628 DOI: 10.1021/acs.organomet.2c00554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Indexed: 02/25/2023]
Abstract
Unactivated C(sp3)-H bonds are the most challenging substrate class for transition metal-catalyzed C-H halogenation. Recently, the Yu group [Liu, T.; Myers, M. C.; Yu, J. Q. Angew. Chem., Int. Ed.2017, 56 (1), 306-309] has demonstrated that a CuII/phenanthroline catalyst and BrN3, generated in situ from NBS and TMSN3 precursors, can achieve selective C-H bromination distal to a directing group. The current understanding of the mechanism of this reaction has left numerous questions unanswered. Here, we investigated the mechanism of Cu-catalyzed C(sp3)-H bromination with distal site selectivity using density functional theory calculations. We found that this reaction starts with the Br-atom transfer from BrN3 to the Cu center that occurs via a small energy barrier at the singlet-triplet state seam of crossing. In the course of this reaction, the presence of the N-H bond in the substrate is critically important and acts as a directing group for enhancing the stability of the catalyst-substrate interaction and for the recruitment of the substrate to the catalyst. The required C-centered radical substrate formation occurs via direct C-H dehydrogenation by the Cu-coordinated N3 radical, rather than via the previously proposed N-H bond dehydrogenation and then the 1,5-H transfer from the γ-(C-H) bond to the N-radical center pathway. The C-H bond activation by the azide radical is a regioselectivity-controlling step. The following bromination of the C-centered radical by the Cu-coordinated bromine completes the product formation. This reaction step is the rate-limiting step, occurs at the singlet-to-triplet state seam of the crossing point, and is exergonic.
Collapse
Affiliation(s)
- Manjaly
J. Ajitha
- Cherry L. Emerson Center for Scientific
Computation, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | | | - Djamaladdin G. Musaev
- Cherry L. Emerson Center for Scientific
Computation, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| |
Collapse
|
31
|
de Carvalho RL, Diogo EBT, Homölle SL, Dana S, da Silva Júnior EN, Ackermann L. The crucial role of silver(I)-salts as additives in C-H activation reactions: overall analysis of their versatility and applicability. Chem Soc Rev 2023; 52:6359-6378. [PMID: 37655711 PMCID: PMC10714919 DOI: 10.1039/d3cs00328k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Indexed: 09/02/2023]
Abstract
Transition-metal catalyzed C-H activation reactions have been proven to be useful methodologies for the assembly of synthetically meaningful molecules. This approach bears intrinsic peculiarities that are important to be studied and comprehended in order to achieve its best performance. One example is the use of additives for the in situ generation of catalytically active species. This strategy varies according to the type of additive and the nature of the pre-catalyst that is being used. Thus, silver(I)-salts have proven to play an important role, due to the resulting high reactivity derived from the pre-catalysts of the main transition metals used so far. While being powerful and versatile, the use of silver-based additives can raise concerns, since superstoichiometric amounts of silver(I)-salts are typically required. Therefore, it is crucial to first understand the role of silver(I) salts as additives, in order to wisely overcome this barrier and shift towards silver-free systems.
Collapse
Affiliation(s)
- Renato L de Carvalho
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais-UFMG, 31270-901, Belo Horizonte, MG, Brazil.
| | - Emilay B T Diogo
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais-UFMG, 31270-901, Belo Horizonte, MG, Brazil.
| | - Simon L Homölle
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany.
| | - Suman Dana
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany.
| | - Eufrânio N da Silva Júnior
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais-UFMG, 31270-901, Belo Horizonte, MG, Brazil.
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany.
| |
Collapse
|
32
|
Platt G, Aguiar PM, Athavan G, Bray JT, Scott NW, Fairlamb IJ, Perutz RN. Opening a Pandora's Flask on a Prototype Catalytic Direct Arylation Reaction of Pentafluorobenzene: The Ag 2CO 3/Pd(OAc) 2/PPh 3 System. Organometallics 2023; 42:2378-2394. [PMID: 37711884 PMCID: PMC10498494 DOI: 10.1021/acs.organomet.3c00309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Indexed: 09/16/2023]
Abstract
Direct C-H functionalization reactions have opened new avenues in catalysis, removing the need for prefunctionalization of at least one of the substrates. Although C-H functionalization catalyzed by palladium complexes in the presence of a base is generally considered to proceed by the CMD/AMLA-6 mechanism, recent research has shown that silver(I) salts, frequently used as bases, can function as C-H bond activators instead of (or in addition to) palladium(II). In this study, we examine the coupling of pentafluorobenzene 1 to 4-iodotoluene 2a (and its analogues) to form 4-(pentafluorophenyl)toluene 3a catalyzed by palladium(II) acetate with the commonplace PPh3 ligand, silver carbonate as base, and DMF as solvent. By studying the reaction of 1 with Ag2CO3/PPh3 and with isolated silver (triphenylphosphine) carbonate complexes, we show the formation of C-H activation products containing the Ag(C6F5)(PPh3)n unit. However, analysis is complicated by the lability of the Ag-PPh3 bond and the presence of multiple species in the solution. The speciation of palladium(II) is investigated by high-resolution-MAS NMR (chosen for its suitability for suspensions) with a substoichiometric catalyst, demonstrating the formation of an equilibrium mixture of Pd(Ar)(κ1-OAc)(PPh3)2 and [Pd(Ar)(μ-OAc)(PPh3)]2 as resting states (Ar = Ph, 4-tolyl). These two complexes react stoichiometrically with 1 to form coupling products. The catalytic reaction kinetics is investigated by in situ IR spectroscopy revealing a two-term rate law and dependence on [Pdtot/nPPh3]0.5 consistent with the dissociation of an off-cycle palladium dimer. The first term is independent of [1], whereas the second term is first order in [1]. The observed rates are very similar with Pd(PPh3)4, Pd(Ph)(κ1-OAc)(PPh3)2, and [Pd(Ph)(μ-OAc)(PPh3)]2 catalysts. The kinetic isotope effect varied significantly according to conditions. The multiple speciation of both AgI and PdII acts as a warning against specifying the catalytic cycles in detail. Moreover, the rapid dynamic interconversion of AgI species creates a level of complexity that has not been appreciated previously.
Collapse
Affiliation(s)
| | | | | | - Joshua T.W. Bray
- Department of Chemistry, University of York, York YO10 5DD, United
Kingdom
| | - Neil W.J. Scott
- Department of Chemistry, University of York, York YO10 5DD, United
Kingdom
| | - Ian J.S. Fairlamb
- Department of Chemistry, University of York, York YO10 5DD, United
Kingdom
| | - Robin N. Perutz
- Department of Chemistry, University of York, York YO10 5DD, United
Kingdom
| |
Collapse
|
33
|
Korábková T, Bartáček J, Marek L, Hanusek J, Růžička A, Váňa J. Switchable cyclopalladation of substrates containing two directing groups: on the way to non-symmetrical [2.2]-dipalladaparacyclophanes. Dalton Trans 2023; 52:11113-11119. [PMID: 37493412 DOI: 10.1039/d3dt02019c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Simple switching of the site-selectivity of C-H activation reactions of substrates containing multiple directing groups is particularly important for the so-called late stage functionalization synthetic approach. In this work, we verified the possibility of achieving this by adding acids of different strengths. Using a substrate containing two differently strong (and basic) directing groups, the influence of the addition of acids on the regioselectivity of the C-H activation step of the reaction with palladium acetate was thoroughly studied. The addition of no or weak acids results in cyclopalladation being controlled by a stronger directing group. However, the addition of a strong acid causes protonation of this group and the reaction is then controlled by a weaker directing group. Finally, this approach enables double C-H activation leading to a unique class of compounds: "non-symmetrical" [2.2]-dipalladaparacyclophanes.
Collapse
Affiliation(s)
- Tereza Korábková
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210 Pardubice, The Czech Republic.
| | - Jan Bartáček
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210 Pardubice, The Czech Republic.
| | - Lukáš Marek
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210 Pardubice, The Czech Republic.
| | - Jiří Hanusek
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210 Pardubice, The Czech Republic.
| | - Aleš Růžička
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210 Pardubice, The Czech Republic
| | - Jiří Váňa
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210 Pardubice, The Czech Republic.
| |
Collapse
|
34
|
Fnaiche A, Bueno B, McMullin CL, Gagnon A. On the Barton Copper-Catalyzed C3-Arylation of Indoles using Triarylbismuth bis(trifluoroacetate) Reagents. Chempluschem 2023; 88:e202200465. [PMID: 36843381 DOI: 10.1002/cplu.202200465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 02/28/2023]
Abstract
We disclose herein our detailed investigation into the Barton copper-promoted C3-arylation of indoles using triarylbismuth bis(trifluoroacetates). The arylation of unsubstituted 1H-indole using Barton's conditions gave a low yield of the C3-arylated indole, along with small amounts of the product of double C2/C3-arylation and traces of the product of C2 arylation. On the contrary, the arylation of indoles blocked at the C2 position is highly efficient, affording the desired products of C3-arylation in good to excellent yields. The reaction operates under simple conditions, shows good substrate scope, excellent functional group compatibility, and allows the transfer of electron-neutral or deficient aryl groups. Computational studies propose a mechanism involving a trifluoroacetate-assisted C-H activation step.
Collapse
Affiliation(s)
- Ahmed Fnaiche
- Département de chimie, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, H3C 3P8, Montréal, Québec, Canada
| | - Bianca Bueno
- Département de chimie, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, H3C 3P8, Montréal, Québec, Canada
| | - Claire L McMullin
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Alexandre Gagnon
- Département de chimie, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, H3C 3P8, Montréal, Québec, Canada
| |
Collapse
|
35
|
Salameh N, Valentini F, Baudoin O, Vaccaro L. A General Enantioselective C-H Arylation Using an Immobilized Recoverable Palladium Catalyst. CHEMSUSCHEM 2023:e202300609. [PMID: 37486306 DOI: 10.1002/cssc.202300609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/11/2023] [Accepted: 07/24/2023] [Indexed: 07/25/2023]
Abstract
We herein report a general and efficient enantioselective C-H arylation of aryl bromides based on the use of BozPhos as the bisphosphine ligand and SP-NHC-PdII as recoverable heterogeneous catalyst. By exploiting the "release and catch" mechanism of action of the catalytic system, we used BozPhos as a broadly applicable chiral ligand, furnishing high enantioselectivities across all types of examined substrates containing methyl, cyclopropyl and aryl C-H bonds. For each reaction, the reaction scope was investigated, giving rise to 30 enantioenriched products, obtained with high yields and enantioselectivities, and minimal palladium leaching. The developed catalytic system provides a more sustainable solution compared to homogeneous systems for the synthesis of high added-value chiral products through recycling of the precious metal.
Collapse
Affiliation(s)
- Nihad Salameh
- Laboratory of Green SOC, Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce di Sotto, 8, 06124, Perugia, Italy
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, CH-4056, Basel, Switzerland
| | - Federica Valentini
- Laboratory of Green SOC, Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce di Sotto, 8, 06124, Perugia, Italy
| | - Olivier Baudoin
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, CH-4056, Basel, Switzerland
| | - Luigi Vaccaro
- Laboratory of Green SOC, Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce di Sotto, 8, 06124, Perugia, Italy
| |
Collapse
|
36
|
Xi L, Wang M, Liang Y, Zhao Y, Shi Z. Tunably strained metallacycles enable modular differentiation of aza-arene C-H bonds. Nat Commun 2023; 14:3986. [PMID: 37414774 DOI: 10.1038/s41467-023-39753-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/23/2023] [Indexed: 07/08/2023] Open
Abstract
The precise activation of C-H bonds will eventually provide chemists with transformative methods to access complex molecular architectures. Current approaches to selective C-H activation relying on directing groups are effective for the generation of five-membered, six-membered and even larger ring metallacycles but show narrow applicability to generate three- and four-membered rings bearing high ring strain. Furthermore, the identification of distinct small intermediates remains unsolved. Here, we developed a strategy to control the size of strained metallacycles in the rhodium-catalysed C-H activation of aza-arenes and applied this discovery to tunably incorporate the alkynes into their azine and benzene skeletons. By merging the rhodium catalyst with a bipyridine-type ligand, a three-membered metallacycle was obtained in the catalytic cycle, while utilizing an NHC ligand favours the generation of the four-membered metallacycle. The generality of this method was demonstrated with a range of aza-arenes, such as quinoline, benzo[f]quinolone, phenanthridine, 4,7-phenanthroline, 1,7-phenanthroline and acridine. Mechanistic studies revealed the origin of the ligand-controlled regiodivergence in the strained metallacycles.
Collapse
Affiliation(s)
- Longlong Xi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Yong Liang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
| |
Collapse
|
37
|
Bennett MT, Jia X, Musgrave CB, Zhu W, Goddard WA, Gunnoe TB. Pd(II) and Rh(I) Catalytic Precursors for Arene Alkenylation: Comparative Evaluation of Reactivity and Mechanism Based on Experimental and Computational Studies. J Am Chem Soc 2023. [PMID: 37392467 DOI: 10.1021/jacs.3c04295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2023]
Abstract
We combine experimental and computational investigations to compare and understand catalytic arene alkenylation using the Pd(II) and Rh(I) precursors Pd(OAc)2 and [(η2-C2H4)2Rh(μ-OAc)]2 with arene, olefin, and Cu(II) carboxylate at elevated temperatures (>120 °C). Under specific conditions, previous computational and experimental efforts have identified heterotrimetallic cyclic PdCu2(η2-C2H4)3(μ-OPiv)6 and [(η2-C2H4)2Rh(μ-OPiv)2]2(μ-Cu) (OPiv = pivalate) species as likely active catalysts for these processes. Further studies of catalyst speciation suggest a complicated equilibrium between Cu(II)-containing complexes containing one Rh or Pd atom with complexes containing two Rh or Pd atoms. At 120 °C, Rh catalysis produces styrene >20-fold more rapidly than Pd. Also, at 120 °C, Rh is ∼98% selective for styrene formation, while Pd is ∼82% selective. Our studies indicate that Pd catalysis has a higher predilection toward olefin functionalization to form undesired vinyl ester, while Rh catalysis is more selective for arene/olefin coupling. However, at elevated temperatures, Pd converts vinyl ester and arene to vinyl arene, which is proposed to occur through low-valent Pd(0) clusters that are formed in situ. Regardless of arene functionality, the regioselectivity for alkenylation of mono-substituted arenes with the Rh catalyst gives an approximate 2:1 meta/para ratio with minimal ortho C-H activation. In contrast, Pd selectivity is significantly influenced by arene electronics, with electron-rich arenes giving an approximate 1:2:2 ortho/meta/para ratio, while the electron-deficient (α,α,α)-trifluorotoluene gives a 3:1 meta/para ratio with minimal ortho functionalization. Kinetic intermolecular arene ethenylation competition experiments find that Rh reacts most rapidly with benzene, and the rate of mono-substituted arene alkenylation does not correlate with arene electronics. In contrast, with Pd catalysis, electron-rich arenes react more rapidly than benzene, while electron-deficient arenes react less rapidly than benzene. These experimental findings, in combination with computational results, are consistent with the arene C-H activation step for Pd catalysis involving significant η1-arenium character due to Pd-mediated electrophilic aromatic substitution character. In contrast, the mechanism for Rh catalysis is not sensitive to arene-substituent electronics, which we propose indicates less electrophilic aromatic substitution character for the Rh-mediated arene C-H activation.
Collapse
Affiliation(s)
- Marc T Bennett
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Xiaofan Jia
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Charles B Musgrave
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125, United States
| | - Weihao Zhu
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - William A Goddard
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125, United States
| | - T Brent Gunnoe
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
38
|
Monot J, Marelli E, Martin-Vaca B, Bourissou D. (P,C)-cyclometalated complexes derived from naphthyl phosphines: versatile and powerful tools in organometallic chemistry. Chem Soc Rev 2023; 52:3543-3566. [PMID: 37129171 DOI: 10.1039/d2cs00564f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The chemistry of (P,C)-cyclometalated complexes derived from naphthyl phosphines [Np(P,C)M] is presented and analysed in this review. The three main synthetic approaches, namely P-chelation assisted C-H activation, oxidative addition and transmetalation, are described and compared. If a naphthyl framework inherently predisposes a phosphorus atom and transition metal to interact, a rigid metallacycle may induce some strain and distortion, as apparent from the survey of the single-crystal X-ray diffraction structures deposited in the Cambridge Structural Database (77 entries with metals from groups 7 to 11). Generally, the Np(P,C)-cyclometalation imparts high thermal and chemical robustness to the complexes, and a variety of stoichiometric reactions have been reported. In most cases, the metalacyclic structure is retained, but protodecyclometalation and ring-expansion have been sparingly observed. [Np(P,C)M] complexes have also proved to be competent and actually competitive catalysts in several transformations, and they act as key intermediates in some others. In addition, interesting phosphorescence properties have been occasionally pointed out.
Collapse
Affiliation(s)
- Julien Monot
- CNRS/Université Paul Sabatier, Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA, UMR 5069), 118 Route de Narbonne, 31062 Cedex 09 Toulouse, France.
| | - Enrico Marelli
- CNRS/Université Paul Sabatier, Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA, UMR 5069), 118 Route de Narbonne, 31062 Cedex 09 Toulouse, France.
| | - Blanca Martin-Vaca
- CNRS/Université Paul Sabatier, Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA, UMR 5069), 118 Route de Narbonne, 31062 Cedex 09 Toulouse, France.
| | - Didier Bourissou
- CNRS/Université Paul Sabatier, Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA, UMR 5069), 118 Route de Narbonne, 31062 Cedex 09 Toulouse, France.
| |
Collapse
|
39
|
Piszel PE, Orzolek BJ, Olszewski AK, Rotella ME, Spiewak AM, Kozlowski MC, Weix DJ. Protodemetalation of (Bipyridyl)Ni(II)-Aryl Complexes Shows Evidence for Five-, Six-, and Seven-Membered Cyclic Pathways. J Am Chem Soc 2023; 145:10.1021/jacs.3c00618. [PMID: 37026854 PMCID: PMC10558627 DOI: 10.1021/jacs.3c00618] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Protonation of C-M bonds and its microscopic reverse, metalation of C-H bonds, are fundamental steps in a variety of metal-catalyzed processes. As such, studies on protonation of C-M bonds can shed light on C-H activation. We present here studies on the rate of protodemetalation (PDM) of a suite of arylnickel(II) complexes with various acids that provide evidence for a concerted, cyclic transition state for the PDM of C-Ni bonds and demonstrate that five-, six-, and seven-membered transition states are particularly favorable. Our data show that while the rate of protodemetalation of arylnickel(II) complexes scales with acidity for many acids, several are faster than predicted by pKa. For example, while acetic acid and acetohydroxamic acid are much less acidic than HCl, they both protodemetalate arylnickel(II) complexes significantly faster than HCl. Our data also show how in the case of acetohydroxamic acid, a seven-membered cyclic transition state (CH3C(O)NHOH) can be more favorable than a six-membered transition state (CH3C(O)NHOH). Similarly, five-membered transition states, such as for pyrazole, are highly favorable as well. Comparison of transition state polarization (from density functional theory) compares these new nickel transition states to better-studied precious-metal systems and demonstrates how the base can change the polarization of the transition state giving rise to opposing electronic preferences. Collectively, these studies suggest several new avenues for study in C-H activation as well as approaches to accelerate or slow protodemetalation in nickel catalysis.
Collapse
Affiliation(s)
- Paige E. Piszel
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Brandon J. Orzolek
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Alyssa K. Olszewski
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Madeline E. Rotella
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Amanda M. Spiewak
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Marisa C. Kozlowski
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Daniel J. Weix
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
40
|
Naksomboon K, Gómez-Bengoa E, Mehara J, Roithová J, Otten E, Fernández-Ibáñez MÁ. Mechanistic studies of the palladium-catalyzed S,O-ligand promoted C-H olefination of aromatic compounds. Chem Sci 2023; 14:2943-2953. [PMID: 36937590 PMCID: PMC10016329 DOI: 10.1039/d2sc06840k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/16/2023] [Indexed: 02/18/2023] Open
Abstract
Pd-catalyzed C-H functionalization reactions of non-directed substrates have recently emerged as an attractive alternative to the use of directing groups. Key to the success of these transformations has been the discovery of new ligands capable of increasing both the reactivity of the inert C-H bond and the selectivity of the process. Among them, a new type of S,O-ligand has been shown to be highly efficient in promoting a variety of Pd-catalyzed C-H olefination reactions of non-directed arenes. Despite the success of this type of S,O-ligand, its role in the C-H functionalization processes is unknown. Herein, we describe a detailed mechanistic study focused on elucidating the role of the S,O-ligand in the Pd-catalyzed C-H olefination of non-directed arenes. For this purpose, several mechanistic tools, including isolation and characterization of reactive intermediates, NMR and kinetic studies, isotope effects and DFT calculations have been employed. The data from these experiments suggest that the C-H activation is the rate-determining step in both cases with and without the S,O-ligand. Furthermore, the results indicate that the S,O-ligand triggers the formation of more reactive Pd cationic species, which explains the observed acceleration of the reaction. Together, these studies shed light on the role of the S,O-ligand in promoting Pd-catalyzed C-H functionalization reactions.
Collapse
Affiliation(s)
- Kananat Naksomboon
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Enrique Gómez-Bengoa
- Department of Organic Chemistry I, Universidad País Vasco, UPV/EHU Apdo. 1072 20080 San Sebastian Spain
| | - Jaya Mehara
- Institute for Molecules and Materials, Radboud University Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| | - Jana Roithová
- Institute for Molecules and Materials, Radboud University Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| | - Edwin Otten
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - M Ángeles Fernández-Ibáñez
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| |
Collapse
|
41
|
Ma Z, Sun L, Zhou JS. Catalytic enantioselective alkenylation-heteroarylation of olefins: stereoselective syntheses of 5-7 membered azacycles and oxacycles. Chem Sci 2023; 14:3010-3017. [PMID: 36937582 PMCID: PMC10016361 DOI: 10.1039/d2sc07117g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/16/2023] [Indexed: 02/19/2023] Open
Abstract
Catalytic enantioselective domino alkenylation-heteroarylation of nonconjugated iododienes proceeded with excellent stereoselectivity and broad scope of substrates. The reaction enables stereoselective syntheses of substituted azacycles such as piperidine, pyrrolidine azepine and dihydropyrans carrying new quaternary stereocenters. Mechanistically, C-H bonds of heterocycles were activated by lithium alkoxides via reversible deprotonation, rather than conventional palladium(ii)-assisted metalation processes. Many types of heteroarenes can be used, including not only azoles (such as thiazoles, oxazoles, imidazoles and oxadiazoles), but also nonazoles (thiophene, furan and azine N-oxides).
Collapse
Affiliation(s)
- Zhaoming Ma
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Room F312, 2199 Lishui Road, Nanshan District Shenzhen 518055 China
| | - Lantian Sun
- Department of Chemistry, Hong Kong Baptist University 224 Waterloo Road, Kowloon Tong Hong Kong China
| | - Jianrong Steve Zhou
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Room F312, 2199 Lishui Road, Nanshan District Shenzhen 518055 China
| |
Collapse
|
42
|
Pati BV, Puthalath NN, Banjare SK, Nanda T, Ravikumar PC. Transition metal-catalyzed C-H/C-C activation and coupling with 1,3-diyne. Org Biomol Chem 2023; 21:2842-2869. [PMID: 36917476 DOI: 10.1039/d3ob00238a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
This review provides a broad overview of the recent developments in the field of transition metal-catalyzed C-H/C-C bond activation and coupling with 1,3-diyne for assembling alkynylated heterocycles, bis-heterocycles, and 1,3-enynes. Transition metal-catalyzed inert bond (C-H/C-C) activation has been the focus of attention among synthetic chemists in recent times. Enormous developments have taken place in C-H/C-C bond activation chemistry in the last two decades. In recent years the use of 2π-unsaturated units as coupling partners for the synthesis of heterocycles through C-H/C-C bond activation and annulation sequence has received immense attention. Among the unsaturated units employed for assembling heterocycles, the use of 1,3-diynes has garnered significant attention due to its ability to render bis-heterocycles in a straightforward manner. The C-H bond activation and coupling with 1,3-diyne has been very much explored in recent years. However, the development of strategies for the use of 1,3-diynes in the analogous C-C bond activation chemistry is less explored. Earlier methods employed to assemble bis-heterocycle used heterocycles that were preformed and pre-functionalized via transition metal-catalyzed coupling reactions. The expensive pre-functionalized halo-heterocycles and sensitive and expensive heterocyclic metal reagents limit its broad application. However, the transition metal-catalyzed C-H activation obviates the need for expensive heterocyclic metal reagents and pre-functionalized halo-heterocycles. The C-H bond activation strategy makes use of C-H bonds as functional groups for effecting the transformation. This renders the overall synthetic sequence both step and cost economic. Hence, this strategy of C-H activation and subsequent reaction with 1,3-diyne could be used for the larger-scale synthesis of chemicals in the pharmaceutical industry. Despite these advances, there is still the possibility of exploration of earth-abundant and cost-effective first-row transition metals (Ni, Cu, Mn. Fe, etc.) for the synthesis of bis-heterocycles. Moreover, the Cp*-ligand-free, simple metal-salt-mediated synthesis of bis-heterocycles is also less explored. Thus, more exploration of reaction conditions for the Cp*-free synthesis of bis-heterocycles is called for. We hope this review will inspire scientists to investigate these unexplored domains.
Collapse
Affiliation(s)
- Bedadyuti Vedvyas Pati
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Odisha 752050, India. .,Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Nitha Nahan Puthalath
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Odisha 752050, India. .,Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Shyam Kumar Banjare
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Odisha 752050, India. .,Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Tanmayee Nanda
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Odisha 752050, India. .,Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Ponneri C Ravikumar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Odisha 752050, India. .,Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
43
|
Wang FY, Li YX, Jiao L. Functionalized Cycloolefin Ligand as a Solution to Ortho-Constraint in the Catellani-Type Reaction. J Am Chem Soc 2023; 145:4871-4881. [PMID: 36795897 DOI: 10.1021/jacs.3c00329] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
The Catellani reaction, i.e., the Pd/norbornene (NBE) catalysis, has been evolved into a versatile approach to multisubstituted arenes via the ortho-functionalization/ipso-termination process of a haloarene. Despite significant advances over the past 25 years, this reaction still suffered from an intrinsic limitation in the substitution pattern of haloarene, referred to as "ortho-constraint". When an ortho substituent is absent, the substrate often fails to undergo an effective mono ortho-functionalization process, and either ortho-difunctionalization products or NBE-embedded byproducts predominate. To tackle this challenge, structurally modified NBEs (smNBEs) have been developed, which were proved effective for the mono ortho-aminative, -acylative, and -arylative Catellani reactions of ortho-unsubstituted haloarenes. However, this strategy is incompetent for solving the ortho-constraint in Catellani reactions with ortho-alkylation, and to date there lacks a general solution to this challenging but synthetically useful transformation. Recently, our group developed the Pd/olefin catalysis, in which an unstrained cycloolefin ligand served as a covalent catalytic module to enable the ortho-alkylative Catellani reaction without NBE. In this work, we show that this chemistry could afford a new solution to ortho-constraint in the Catellani reaction. A functionalized cycloolefin ligand bearing an amide group as the internal base was designed, which allowed for mono ortho-alkylative Catellani reaction of iodoarenes suffering from ortho-constraint before. Mechanistic study revealed that this ligand is capable of both accelerating the C-H activation and inhibiting side reactions, which accounts for its superior performance. The present work showcased the uniqueness of the Pd/olefin catalysis as well as the power of rational ligand design in metal catalysis.
Collapse
Affiliation(s)
- Feng-Yuan Wang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yu-Xiu Li
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Lei Jiao
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
44
|
Suárez-Lustres A, Martínez-Yáñez N, Velasco-Rubio Á, Varela JA, Saá C. Palladium-Catalyzed [5 + 2] Rollover Annulation of 1-Benzylpyrazoles with Alkynes: A Direct Entry to Tricyclic 2-Benzazepines. Org Lett 2023; 25:794-799. [PMID: 36720009 PMCID: PMC9926515 DOI: 10.1021/acs.orglett.2c04300] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The first Pd-catalyzed [5 + 2] rollover annulation of 1-benzylpyrazoles with alkynes to assemble 10H-benzo[e]pyrazolo[1,5-a]azepines (tricyclic 2-benzazepines) has been developed. The rollover annulation implies a twofold C-H activation of aryl and heteroaryl Csp2-H bonds (C-H/C-H) of 1-benzylpyrazoles (five-atom partners) and alkynes to give the [5 + 2] annulated compounds.
Collapse
|
45
|
Lin L, Zhang XJ, Xu X, Zhao Y, Shi Z. Ru 3 (CO) 12 -Catalyzed Modular Assembly of Hemilabile Ligands by C-H Activation of Phosphines with Isocyanates. Angew Chem Int Ed Engl 2023; 62:e202214584. [PMID: 36479789 DOI: 10.1002/anie.202214584] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/17/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022]
Abstract
Hemilabile ligands have been applied extensively in transition metal catalysis, but preparations of these molecules typically require multistep synthesis. Here, modular assembly of diverse phosphine-amide ligands, including related axially chiral compounds, is first reported through ruthenium-catalyzed C-H activation of phosphines with isocyanate directed by phosphorus(III) atoms. High reactivity and regioselectivity can be obtained by using a Ru3 (CO)12 catalyst with a mono-N-protected amino acid ligand. This transformation significantly expands the pool of phosphine-amide ligands, some of which have shown excellent efficiency for asymmetric catalysis. More broadly, the discovery constitutes a proof of principle for facile construction of hemilabile ligands directly from the parent monodentate phosphines by C-H activation with ideal atom, step and redox economy. Several dinuclear ruthenium complexes were characterized by single-crystal X-ray diffraction analysis revealing the key mechanistic features of this transformation.
Collapse
Affiliation(s)
- Lin Lin
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Xue-Jun Zhang
- Department of Orthopedic Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Xinyu Xu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
46
|
McEllin AJ, Goult CA, Whitwood AC, Lynam JM, Bruce DW. On the mercuration, palladation, transmetalation and direct auration of a C^N^C pincer ligand. Dalton Trans 2023; 52:872-876. [PMID: 36632828 DOI: 10.1039/d2dt04114f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The C^N^C ligand 2,6-bis(2,3-dialkoxyphenyl)pyridine forms dimercury and orthopalladated complexes, both of which may be transmetallated to gold(III) complexes; the gold complexes may also be formed directly in a Rh(III)-catalysed process, hence it is possible to circumvent the use of organomercury intermediates in the synthesis of this important class of compound.
Collapse
Affiliation(s)
- Alice Jane McEllin
- Department of Chemistry, University of York, Heslington, YORK YO10 5DD, UK.
| | | | - Adrian C Whitwood
- Department of Chemistry, University of York, Heslington, YORK YO10 5DD, UK.
| | - Jason M Lynam
- Department of Chemistry, University of York, Heslington, YORK YO10 5DD, UK.
| | - Duncan W Bruce
- Department of Chemistry, University of York, Heslington, YORK YO10 5DD, UK.
| |
Collapse
|
47
|
Zhang WW, Wang Q, Zhang SZ, Zheng C, You SL. (SCp)Rhodium-Catalyzed Asymmetric Satoh-Miura Reaction for Building-up Axial Chirality: Counteranion-Directed Switching of Reaction Pathways. Angew Chem Int Ed Engl 2023; 62:e202214460. [PMID: 36383091 DOI: 10.1002/anie.202214460] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 11/17/2022]
Abstract
Satoh-Miura reaction is an important method for extending π-systems by forging multi-substituted benzene rings via double aryl C-H activation and annulation with alkynes. However, the development of highly enantioselective Satoh-Miura reaction remains rather challenging. Herein, we report an asymmetric Satoh-Miura reaction between 1-aryl benzo[h]isoquinolines and internal alkynes enabled by a SCpRh-catalyst. Judiciously choosing the counteranion of the Rh-catalyst is crucial for the desired reactivity over the competitive formation of azoniahelicenes. Detailed mechanistic studies support the proposal of counteranion-directed switching of reaction pathways in Rh-catalyzed asymmetric C-H activation.
Collapse
Affiliation(s)
- Wen-Wen Zhang
- Chang-Kung Chuang Institute, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Qiang Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Su-Zhen Zhang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Shu-Li You
- Chang-Kung Chuang Institute, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| |
Collapse
|
48
|
Wu W, Zhao X, Chen G, Liu L, Li Y, Chen T, James TD, Liu Y. Overlooked potential of N, N-bidentate directing-groups in Ni-catalyzed C-H functionalization of benzamides. Chem Commun (Camb) 2023; 59:482-485. [PMID: 36530042 DOI: 10.1039/d2cc06177e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The Ni-catalyzed reactions of benzamides with bicyclic alkenes were explored using DFT calculations. An unprecedented "N-H deprotonation circumvented" catalytic mechanism was proposed, over the more common N-H/C-H activation mechanism, in which (i) the circumvention of N-H deprotonation ensures the presence of N-H⋯O hydrogen bond interaction, thereby stabilizing the critical ortho-C-H functionalization TS; and (ii) the N-H moiety retention results in a weak N⋯Ni σ-coordination, which is flexible to the configurational conversion during the key alkene insertion. These overlooked aspects of the functionalized N,N-bidentate directing groups will aid the design of new related catalytic reactions.
Collapse
Affiliation(s)
- Weirong Wu
- School of Environment and Chemical Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Xufang Zhao
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi' an 710021, China.
| | - Guang Chen
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi' an 710021, China.
| | - Lingjun Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China
| | - Yulin Li
- Key Laboratory of Tibetan Medicine Research & Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resuorces, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810001, Qinghai, P. R. China
| | - Tao Chen
- Key Laboratory of Tibetan Medicine Research & Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resuorces, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810001, Qinghai, P. R. China
| | - Tony D James
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK. .,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China
| | - Yuxia Liu
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi' an 710021, China.
| |
Collapse
|
49
|
Bora J, Dutta M, Chetia B. Cobalt catalyzed alkenylation/annulation reactions of alkynes via C–H activation: A review. Tetrahedron 2023. [DOI: 10.1016/j.tet.2023.133248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
50
|
Wakikawa T, Sekine D, Murata Y, Bunno Y, Kojima M, Nagashima Y, Tanaka K, Yoshino T, Matsunaga S. Native Amide-Directed C(sp 3 )-H Amidation Enabled by Electron-Deficient Rh III Catalyst and Electron-Deficient 2-Pyridone Ligand. Angew Chem Int Ed Engl 2022; 61:e202213659. [PMID: 36305194 DOI: 10.1002/anie.202213659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Indexed: 11/07/2022]
Abstract
Trivalent group-9 metal catalysts with a cyclopentadienyl-type ligand (CpMIII ; M=Co, Rh, Ir, Cp=cyclopentadienyl) have been widely used for directed C-H functionalizations, albeit that their application to challenging C(sp3 )-H functionalizations suffers from the limitations of the available directing groups. In this report, we describe directed C(sp3 )-H amidation reactions of simple amide substrates with a variety of substituents. The combination of an electron-deficient CpE Rh catalyst (CpE =1,3-bis(ethoxycarbonyl)-substituted Cp) and an electron-deficient 2-pyridone ligand is essential for high reactivity.
Collapse
Affiliation(s)
- Takumi Wakikawa
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan
| | - Daichi Sekine
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan
| | - Yuta Murata
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan
| | - Youka Bunno
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan
| | - Masahiro Kojima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan
| | - Yuki Nagashima
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Ken Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Tatsuhiko Yoshino
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan.,Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan
| | - Shigeki Matsunaga
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan.,Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan
| |
Collapse
|