1
|
Tao Y, Ma W, Sun R, Huang C, Lu Q. Asymmetric Paired Electrolysis: Enantioselective Alkylation of Sulfonylimines via C(sp 3)-H Functionalization. Angew Chem Int Ed Engl 2024; 63:e202409222. [PMID: 38958225 DOI: 10.1002/anie.202409222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/04/2024]
Abstract
Enantioselective transformation of ubiquitous C(sp3)-H bonds into three-dimensional chiral scaffolds is of longstanding interest to synthetic chemists. Herein, an asymmetric paired electrolysis enables a highly efficient and sustainable approach to the enantioselective alkylation of sulfonylimines via C(sp3)-H functionalization. In this protocol, anodic oxidation for benzylic radical formation and Lewis acid-catalyzed sulfonylimine reduction on the cathode were seamlessly cross-coupled (up to 88 % yield). Enantioenriched chiral amines containing a tetrasubstituted carbon stereocenter are accessed with high enantioselectivity (up to 96 % ee). Mechanistic studies suggest that the amine generated in situ could serve as a base to deprotonate phenols and decrease the oxidation potential of the reaction, allowing phenols with lower potentials to be preferentially oxidized.
Collapse
Affiliation(s)
- Yongsheng Tao
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Wan Ma
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Rui Sun
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Cheng Huang
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Qingquan Lu
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
- Wuhan University Shenzhen Research Institute, Shenzhen, 518000, P. R. China
| |
Collapse
|
2
|
Zou L, Sun R, Tao Y, Wang X, Zheng X, Lu Q. Photoelectrochemical Fe/Ni cocatalyzed C-C functionalization of alcohols. Nat Commun 2024; 15:5245. [PMID: 38898017 PMCID: PMC11187109 DOI: 10.1038/s41467-024-49557-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024] Open
Abstract
The simultaneous activation of reactants on the anode and cathode via paired electrocatalysis has not been extensively demonstrated. This report presents a paired oxidative and reductive catalysis based on earth-abundant iron/nickel cocatalyzed C-C functionalization of ubiquitous alcohols. A variety of alcohols (i.e., primary, secondary, tertiary, or unstrained cyclic alcohols) can be activated at very low oxidation potential of (~0.30 V vs. Ag/AgCl) via photoelectrocatalysis coupled with versatile electrophiles. This reactivity yields a wide range of structurally diverse molecules with broad functional group compatibility (more than 50 examples).
Collapse
Affiliation(s)
- Long Zou
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei, P. R. China
| | - Rui Sun
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei, P. R. China
| | - Yongsheng Tao
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei, P. R. China
| | - Xiaofan Wang
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei, P. R. China
| | - Xinyue Zheng
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei, P. R. China
| | - Qingquan Lu
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei, P. R. China.
| |
Collapse
|
3
|
Kim JE, Son GE, Lim HJ, Jang YS, Song CH, Park CP. Cascade Sequence of Photooxygenation-Epoxidation for the Flow Synthesis of Epoxy Alcohols. J Org Chem 2024; 89:6960-6965. [PMID: 38700900 DOI: 10.1021/acs.joc.4c00322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
A photooxygenation-epoxidation cascade sequence converting alkenes to epoxy alcohols was developed and evaluated in batch and continuous-flow systems. In the batch system, the undesired interactions between the photooxygenation and epoxidation catalysts resulted in suboptimal yields, whereas the fine control of reaction parameters in the flow system allowed the allyl hydroperoxides produced through photooxygenation of alkenes to be rapidly converted to epoxy alcohols in yields of up to 93%. The developed procedure allows one to avoid an important synthetic bottleneck, works well where traditional batch synthesis fails, and can be scaled up to meet the needs of industrial production, thus presenting a valuable addition to the toolbox of practicing organic chemists.
Collapse
Affiliation(s)
- Ji Eun Kim
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, South Korea
| | - Go Eun Son
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, South Korea
| | - Hyo Jin Lim
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, South Korea
| | - Yea Seul Jang
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, South Korea
| | - Chan Ho Song
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, South Korea
| | - Chan Pil Park
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, South Korea
| |
Collapse
|
4
|
Zhang N, Cheng Z, Xia Y, Chen Z, Xue F, Zhang Y, Wang B, Wu S, Liu C. Electrochemical Oxidative 1,2-Dithiocyanation: Access to Functionalized Alkenes and Alkynes. J Org Chem 2024. [PMID: 38757807 DOI: 10.1021/acs.joc.4c00707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Reported herein is the 1,2-dithiocyanation of alkenes and alkynes via an efficient and facile electrochemical method. This approach not only showed a broad substrate scope and good functional-group compatibility but also avoided stoichiometric oxidants. Different from previous reports, various internal alkynes could be tolerated to provide tetra-substituted alkenes. Further gram-scale-up experiments and synthetic transformation demonstrated a potential application in organic synthesis. This process underwent a radical pathway, as evidenced by our mechanistic studies.
Collapse
Affiliation(s)
- Ning Zhang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Zhen Cheng
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Yu Xia
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Ziren Chen
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Fei Xue
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Yonghong Zhang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Bin Wang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Shaofeng Wu
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Chenjiang Liu
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| |
Collapse
|
5
|
Ariga K. Materials Nanoarchitectonics at Dynamic Interfaces: Structure Formation and Functional Manipulation. MATERIALS (BASEL, SWITZERLAND) 2024; 17:271. [PMID: 38204123 PMCID: PMC10780059 DOI: 10.3390/ma17010271] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024]
Abstract
The next step in nanotechnology is to establish a methodology to assemble new functional materials based on the knowledge of nanotechnology. This task is undertaken by nanoarchitectonics. In nanoarchitectonics, we architect functional material systems from nanounits such as atoms, molecules, and nanomaterials. In terms of the hierarchy of the structure and the harmonization of the function, the material created by nanoarchitectonics has similar characteristics to the organization of the functional structure in biosystems. Looking at actual biofunctional systems, dynamic properties and interfacial environments are key. In other words, nanoarchitectonics at dynamic interfaces is important for the production of bio-like highly functional materials systems. In this review paper, nanoarchitectonics at dynamic interfaces will be discussed, looking at recent typical examples. In particular, the basic topics of "molecular manipulation, arrangement, and assembly" and "material production" will be discussed in the first two sections. Then, in the following section, "fullerene assembly: from zero-dimensional unit to advanced materials", we will discuss how various functional structures can be created from the very basic nanounit, the fullerene. The above examples demonstrate the versatile possibilities of architectonics at dynamic interfaces. In the last section, these tendencies will be summarized, and future directions will be discussed.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan;
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Chiba, Japan
| |
Collapse
|
6
|
Zou L, Xiang S, Sun R, Lu Q. Selective C(sp 3)-H arylation/alkylation of alkanes enabled by paired electrocatalysis. Nat Commun 2023; 14:7992. [PMID: 38042911 PMCID: PMC10693613 DOI: 10.1038/s41467-023-43791-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 11/20/2023] [Indexed: 12/04/2023] Open
Abstract
We report a combination of electrocatalysis and photoredox catalysis to perform selective C(sp3)-H arylation/alkylation of alkanes, in which a binary catalytic system based on earth-abundant iron and nickel is applied. Reaction selectivity between two-component C(sp3)-H arylation and three-component C(sp3)-H alkylation is tuned by modulating the applied current and light source. Importantly, an ultra-low anodic potential (~0.23 V vs. Ag/AgCl) is applied in this protocol, thus enabling compatibility with a variety of functional groups (>70 examples). The robustness of the method is further demonstrated on a preparative scale and applied to late-stage diversification of natural products and pharmaceutical derivatives.
Collapse
Affiliation(s)
- Long Zou
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Siqi Xiang
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Rui Sun
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Qingquan Lu
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei, 430072, P. R. China.
| |
Collapse
|
7
|
Moeller KD. Concluding remarks: A summary of the Faraday Discussion on electrosynthesis. Faraday Discuss 2023; 247:342-359. [PMID: 37747692 DOI: 10.1039/d3fd00148b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
A summary of the Faraday Discussion presented in this issue and a perspective on that discussion is presented. The work highlights the specific science contributions made and the key conclusions associated with those findings so that readers can identify papers that they would like to explore in more detail.
Collapse
Affiliation(s)
- Kevin D Moeller
- Department of Chemistry, Washington University in St. Louis, St. Louis 63130, MO, USA.
| |
Collapse
|
8
|
Sciortino F, Rydzek G, Boulmedais F. Electrochemical Assembly Strategies of Polymer and Hybrid Thin Films for (Bio)sensors, Charge Storage, and Triggered Release. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:11149-11165. [PMID: 37542435 DOI: 10.1021/acs.langmuir.3c00860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2023]
Abstract
In the context of functional and hierarchical materials, electrode reactions coupled with one or more chemical reactions constitute the most powerful bottom-up process for the electrosynthesis of film components and their electrodeposition, enabling the localized functionalization of conductive surfaces using an electrical stimulus. In analogy with developmental biological processes, our group introduced the concept of morphogen-driven film buildup. In this approach, the gradient of a diffusing reactive molecule or ion (called a morphogen) is controlled by an electrical stimulus to locally induce a chemical process (solubility change, hydrolysis, complexation, and covalent reaction) that induces a film assembly. One of the prominent advantages of this technique is the conformal nature of the deposits toward the electrode. This Feature Article presents the contributions made by our group and other researchers to develop strategies for the assembly of different polymer and nanoparticle/polymer hybrid films by using electrochemically generated reagents and/or catalysts. The main electrochemical-chemical approaches for conformal films are described in the case where (i) the products are noncovalent aggregates that spontaneously precipitate on the electrode (film electrodeposition) or (ii) new chemical compounds are generated, which do not necessarily spontaneously precipitate and enable the formation of covalent or noncovalent films (film electrosynthesis). The applications of those electrogenerated films will be described with a focus on charge storage/transport, (bio)sensing, and stimuli-responsive cargo delivery systems.
Collapse
Affiliation(s)
- Flavien Sciortino
- University of Basel, Department of Chemistry Basel, Basel-Stadt 4001, Switzerland
| | - Gaulthier Rydzek
- ICGM, CNRS, ENSCM, Université de Montpellier, 34000 Montpellier, France
| | - Fouzia Boulmedais
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR 22, 67034 Strasbourg, France
| |
Collapse
|
9
|
Capaldo L, Wen Z, Noël T. A field guide to flow chemistry for synthetic organic chemists. Chem Sci 2023; 14:4230-4247. [PMID: 37123197 PMCID: PMC10132167 DOI: 10.1039/d3sc00992k] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/15/2023] [Indexed: 03/17/2023] Open
Abstract
Flow chemistry has unlocked a world of possibilities for the synthetic community, but the idea that it is a mysterious "black box" needs to go. In this review, we show that several of the benefits of microreactor technology can be exploited to push the boundaries in organic synthesis and to unleash unique reactivity and selectivity. By "lifting the veil" on some of the governing principles behind the observed trends, we hope that this review will serve as a useful field guide for those interested in diving into flow chemistry.
Collapse
Affiliation(s)
- Luca Capaldo
- Flow Chemistry Group, Van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam 1098 XH Amsterdam The Netherlands
| | - Zhenghui Wen
- Flow Chemistry Group, Van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam 1098 XH Amsterdam The Netherlands
| | - Timothy Noël
- Flow Chemistry Group, Van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam 1098 XH Amsterdam The Netherlands
| |
Collapse
|
10
|
Wang B, Zhang X, Cao Y, Zou L, Qi X, Lu Q. Electrooxidative Activation of B-B Bond in B 2 cat 2 : Access to gem-Diborylalkanes via Paired Electrolysis. Angew Chem Int Ed Engl 2023; 62:e202218179. [PMID: 36722684 DOI: 10.1002/anie.202218179] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/19/2023] [Accepted: 01/30/2023] [Indexed: 02/02/2023]
Abstract
This report describes the unprecedented electrooxidation of a solvent (e.g., DMF)-ligated B2 cat2 complex, whereby a solvent-stabilized boryl radical is formed via quasi-homolytic cleavage of the B-B bond in a DMF-ligated B2 cat2 radical cation. Cyclic voltammetry and density functional theory provide evidence to support this novel B-B bond activation strategy. Furthermore, a strategy for the electrochemical gem-diborylation of gem-bromides via paired electrolysis is developed for the first time, affording a range of versatile gem-diborylalkanes, which are widely used in synthetic society. Notably, this reaction approach is scalable, transition-metal-free, and requires no external activator.
Collapse
Affiliation(s)
- Bingbing Wang
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Xiangyu Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Yangmin Cao
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Long Zou
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Xiaotian Qi
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Qingquan Lu
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
11
|
Zhang D, Yang Q, Cai J, Ni C, Wang Q, Wang Q, Yang J, Geng R, Fang Z. Synthesis of 3-Thiocyanobenzothiophene via Difunctionalization of Active Alkyne Promoted by Electrochemical-Oxidation. Chemistry 2023; 29:e202203306. [PMID: 36453091 DOI: 10.1002/chem.202203306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022]
Abstract
A novel and green method for the synthesis of 3-thiocyanatobenzothiophenes via electrochemical-oxidation promoted difunctionalization of active alkyne has been developed. In this protocol, inexpensive and easily available potassium thiocyanate was chosen as the thiocyanation reagent, 2-alkynylthioanisoles as the substrates, a variety of 3-thiocyanatobenzothiophenes were obtained in moderate to good yields under oxidant- and catalyst-free conditions. Moreover, the continuous flow system has good applicability for this transformation, the use of continuous flow system has overcome the disadvantage of low efficiency in traditional electrochemical amplification, and realized the stable and excellent yields of target products in the scale-up reactions.
Collapse
Affiliation(s)
- Dong Zhang
- School of Pharmacy, Yancheng Teachers University, 224007, Yancheng, China
| | - Qijun Yang
- School of Pharmacy, Yancheng Teachers University, 224007, Yancheng, China
| | - Jinlin Cai
- School of History and Public Administration, Yancheng Teachers University, 224007, Yancheng, China
| | - Chunjie Ni
- School of Pharmacy, Yancheng Teachers University, 224007, Yancheng, China
| | - Qingdong Wang
- School of Pharmacy, Yancheng Teachers University, 224007, Yancheng, China
| | - Qingming Wang
- School of Pharmacy, Yancheng Teachers University, 224007, Yancheng, China
| | - Jinming Yang
- School of Pharmacy, Yancheng Teachers University, 224007, Yancheng, China
| | - Rongqing Geng
- School of Pharmacy, Yancheng Teachers University, 224007, Yancheng, China
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., 211816, Nanjing, P. R. China
| |
Collapse
|
12
|
Sato E, Tachiwaki G, Fujii M, Mitsudo K, Washio T, Takizawa S, Suga S. Electrochemical Carbon-Ferrier Rearrangement Using a Microflow Reactor and Machine Learning-Assisted Exploration of Suitable Conditions. Org Process Res Dev 2023. [DOI: 10.1021/acs.oprd.2c00267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Eisuke Sato
- Faculty of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Gaku Tachiwaki
- Faculty of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Mayu Fujii
- Faculty of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Koichi Mitsudo
- Faculty of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Takashi Washio
- Department of Reasoning for Intelligence, SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
- Artificial Intelligence Research Center, SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Shinobu Takizawa
- Department of Reasoning for Intelligence, SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
- Department of Synthetic Organic Chemistry, SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Seiji Suga
- Faculty of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
13
|
Mitsudo K, Tachibana Y, Sato E, Suga S. Electrochemical Synthesis of Dibenzothiophenes via Intramolecular C-S Cyclization with a Halogen Mediator. Org Lett 2022; 24:8547-8552. [PMID: 36367294 DOI: 10.1021/acs.orglett.2c03574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Electrochemical synthesis of dibenzothiophene derivatives was achieved. Several bis(biaryl) disulfides are efficiently converted to dibenzothiophenes by electrochemical oxidation. The use of Bu4NBr as a halogen mediator was essential, and wide varieties of dibenzothiophene derivatives were obtained in good yields.
Collapse
Affiliation(s)
- Koichi Mitsudo
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Yuri Tachibana
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Eisuke Sato
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Seiji Suga
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
14
|
Wu YX, Wu SY, Dong ZB. Green and Practical Synthesis of Thioenamines and Chromones via Iodine-Catalyzed Cross-Dehydrogenation Coupling Reaction. J Org Chem 2022; 87:15350-15357. [DOI: 10.1021/acs.joc.2c01924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yue-Xiao Wu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Shi-Ya Wu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Zhi-Bing Dong
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
- Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
- Key Laboratory of Green Chemical Process, Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
- Engineering Research Center of Phosphorus Resources Development and Utilization, Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
| |
Collapse
|
15
|
Matsumoto K, Hayashi Y, Hamasaki K, Matsuse M, Suzuki H, Nishiwaki K, Kawashita N. Electrogenerated base-promoted cyclopropanation using alkyl 2-chloroacetates. Beilstein J Org Chem 2022; 18:1116-1122. [PMID: 36105721 PMCID: PMC9443391 DOI: 10.3762/bjoc.18.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 08/11/2022] [Indexed: 11/23/2022] Open
Abstract
The electrochemical reduction conditions of the reaction of alkyl 2-chloroacetates in Bu4NBr/DMF using a divided cell equipped with Pt electrodes to produce the corresponding cyclopropane derivatives in moderate yields were discovered. The reaction conditions were optimized, the scope and limitations, as well as scale-up reactions were investigated. The presented method for the electrochemical production of cyclopropane derivatives is an environmentally friendly and easy to perform synthetic procedure.
Collapse
Affiliation(s)
- Kouichi Matsumoto
- Department of Chemistry, School of Science and Engineering, Kindai University 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
| | - Yuta Hayashi
- Department of Chemistry, School of Science and Engineering, Kindai University 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
| | - Kengo Hamasaki
- Department of Chemistry, School of Science and Engineering, Kindai University 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
| | - Mizuki Matsuse
- Department of Chemistry, School of Science and Engineering, Kindai University 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
| | - Hiyono Suzuki
- Department of Chemistry, School of Science and Engineering, Kindai University 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
| | - Keiji Nishiwaki
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
| | - Norihito Kawashita
- Department of Life Science, School of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
| |
Collapse
|
16
|
Luo K, Zhao Y, Tang Z, Li W, Lin J, Jin Y. Visible-Light-Induced Dual C(sp 3)-H Bond Functionalization of Tertiary Amine via Hydrogen Transfer to Carbene and Subsequent Cycloaddition. Org Lett 2022; 24:6335-6340. [PMID: 35985018 DOI: 10.1021/acs.orglett.2c02557] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, we describe the dual C(sp3)-H bond functionalization of a tertiary amine through hydride-transfer-induced dehydrogenation, followed by cycloaddition, using an easily preparable diazoester as a new type hydride-acceptor precursor under mild, redox-neutral conditions. With carbene as a hydrogen acceptor, this method was demonstrated by the preparation of a broad range of functionalized isoxazoldines in moderate to good yields.
Collapse
Affiliation(s)
- Kaixiu Luo
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Yongqiang Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Zhiliang Tang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Weina Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Jun Lin
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Yi Jin
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| |
Collapse
|
17
|
Takumi M, Sakaue H, Shibasaki D, Nagaki A. Rapid access to organic triflates based on flash generation of unstable sulfonium triflates in flow. Chem Commun (Camb) 2022; 58:8344-8347. [PMID: 35797717 DOI: 10.1039/d2cc02344j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Flash (extremely fast) electrochemical generation of unstable arylbis(arylthio)sulfonium triflates [ArS(ArSSAr)]+ [OTf]- that are unsuitable for accumulation in batch processes was achieved within 10 s in a divided-type flow electrochemcial reactor, enabling one-flow access to vinyl triflates, short-lived oxocarbenium triflates and glycosyl triflates.
Collapse
Affiliation(s)
- Masahiro Takumi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - Hodaka Sakaue
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - Daiki Shibasaki
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - Aiichiro Nagaki
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| |
Collapse
|
18
|
Luan S, Castanheiro T, Poisson T. Electrochemical Synthesis of Iodohydrins. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
19
|
Electropolymerization without an electric power supply. Commun Chem 2022; 5:66. [PMID: 36697589 PMCID: PMC9814265 DOI: 10.1038/s42004-022-00682-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/06/2022] [Indexed: 01/28/2023] Open
Abstract
Electrifying synthesis is now a common slogan among synthetic chemists. In addition to the conventional two- or three-electrode systems that use batch-type cells, recent progress in organic electrochemical processes has been significant, including microflow electrochemical reactors, Li-ion battery-like technology, and bipolar electrochemistry. Herein we demonstrate an advanced electrosynthesis method without the application of electric power based on the concept of streaming potential-driven bipolar electrochemistry. As a proof-of-concept study, the electrochemical oxidative polymerization of aromatic monomers successfully yielded the corresponding polymer films on an electrode surface, which acted as an anode under the flow of electrolyte in a microchannel without an electric power supply.
Collapse
|
20
|
Sakagami H, Takenaka H, Iwai S, Shida N, Villani E, Gotou A, Isogai T, Yamauchi A, Kishikawa Y, Fuchigami T, Tomita I, Inagi S. A Flow Electrochemical Cell with Split Bipolar Electrode for Anodic Oxidation of Organic Compounds. ChemElectroChem 2022. [DOI: 10.1002/celc.202200084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hiroki Sakagami
- Department of Chemical Science and Engineering Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku 226-8502 Yokohama Kanagawa Japan
| | - Hiroaki Takenaka
- Department of Chemical Science and Engineering Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku 226-8502 Yokohama Kanagawa Japan
| | - Suguru Iwai
- Department of Chemical Science and Engineering Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku 226-8502 Yokohama Kanagawa Japan
| | - Naoki Shida
- Department of Chemistry and Life Science Yokohama National University 79-5 Tokiwadai, Hodogaya-ku 240-8501 Yokohama Kanagawa Japan
| | - Elena Villani
- Department of Chemical Science and Engineering Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku 226-8502 Yokohama Kanagawa Japan
| | - Akihiro Gotou
- Daikin Industries Ltd. 1-1 Nishi-Hitotsuya 566-8585 Settsu Osaka Japan
| | - Tomohiro Isogai
- Daikin Industries Ltd. 1-1 Nishi-Hitotsuya 566-8585 Settsu Osaka Japan
| | - Akiyoshi Yamauchi
- Daikin Industries Ltd. 1-1 Nishi-Hitotsuya 566-8585 Settsu Osaka Japan
| | - Yosuke Kishikawa
- Daikin Industries Ltd. 1-1 Nishi-Hitotsuya 566-8585 Settsu Osaka Japan
| | - Toshio Fuchigami
- Department of Chemical Science and Engineering Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku 226-8502 Yokohama Kanagawa Japan
| | - Ikuyoshi Tomita
- Department of Chemical Science and Engineering Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku 226-8502 Yokohama Kanagawa Japan
| | - Shinsuke Inagi
- Department of Chemical Science and Engineering Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku 226-8502 Yokohama Kanagawa Japan
- PRESTO Japan Science and Technology Agency (JST) 4-1-8 Honcho 332-0012 Kawaguchi Saitama Japan
| |
Collapse
|
21
|
Feng E, Jing Q, Moeller KD. Lessons from an Array: Using an Electrode Surface to Control the Selectivity of a Solution-Phase Chemical Reaction. Angew Chem Int Ed Engl 2022; 61:e202116351. [PMID: 34982848 PMCID: PMC8863644 DOI: 10.1002/anie.202116351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Indexed: 11/10/2022]
Abstract
Electrochemistry offers a variety of novel means by which selectivity can be introduced into synthetic organic transformations. In the work reported, it is shown how methods used to confine chemical reactions to specific sites on a microelectrode array can also be used to confine a preparative reaction to the surface of an electrode inserted into a bulk reaction solution. In so doing, the surface of a modified electrode can be used to introduce new selectivity into a preparative reaction that is not observed in the absence of either the modified electrode surface or the effort to confine the reaction to that surface. The observed selectivity can be optimized in the same way that confinement is optimized on an array and is dependent on the nature of the functionalized surface.
Collapse
Affiliation(s)
- Enqi Feng
- Department of Chemistry, Washington University, St. Louis, MO 63130
| | - Qiwei Jing
- Department of Chemistry, Washington University, St. Louis, MO 63130
| | - Kevin D. Moeller
- Department of Chemistry, Washington University, St. Louis, MO 63130,
| |
Collapse
|
22
|
Abstract
Herein, the electrochemical hydrosilylation of alkynes is reported. In the presence of the Suginome reagent (PhMe2Si-Bpin), a large panel of terminal alkynes and internal alkynes was successfully converted into the hydrosilylated product in good to excellent yields and good selectivity in favor of the linear product. Preliminary mechanistic study supported the involvement of a silyl radical, which reacted on the alkyne.
Collapse
Affiliation(s)
- Tony Biremond
- Normandie
Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France
| | - Philippe Jubault
- Normandie
Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France
| | - Thomas Poisson
- Normandie
Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France,Institut
Universitaire de France, 1 rue Descartes, 75231 Paris, France,
| |
Collapse
|
23
|
Feng E, Jing Q, Moeller KD. Lessons from an Array: Using an Electrode Surface to Control the Selectivity of a Solution‐Phase Chemical Reaction. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Enqi Feng
- Department of Chemistry Washington University St. Louis MO 63130 USA
| | - Qiwei Jing
- Department of Chemistry Washington University St. Louis MO 63130 USA
| | - Kevin D. Moeller
- Department of Chemistry Washington University St. Louis MO 63130 USA
| |
Collapse
|
24
|
Schotten C, Manson J, Chamberlain TW, Bourne RA, Nguyen BN, Kapur N, Willans CE. Development of a multistep, electrochemical flow platform for automated catalyst screening. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00587e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An integrated flow platform enables the electrochemical synthesis of base-metal catalysts with high-throughput screening and rapid data generation.
Collapse
Affiliation(s)
| | - Jamie Manson
- School of Chemistry, University of Leeds, Leeds LS2 9JT, UK
| | | | - Richard A. Bourne
- School of Chemistry, University of Leeds, Leeds LS2 9JT, UK
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK
| | - Bao N. Nguyen
- School of Chemistry, University of Leeds, Leeds LS2 9JT, UK
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK
| | - Nik Kapur
- School of Mechanical Engineering, University of Leeds, Leeds LS2 9JT, UK
| | | |
Collapse
|
25
|
Ke J, Gao C, Folgueiras-Amador AA, Jolley KE, de Frutos O, Mateos C, Rincón JA, Brown RCD, Poliakoff M, George MW. Self-Optimization of Continuous Flow Electrochemical Synthesis Using Fourier Transform Infrared Spectroscopy and Gas Chromatography. APPLIED SPECTROSCOPY 2022; 76:38-50. [PMID: 34911387 DOI: 10.1177/00037028211059848] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A continuous-flow electrochemical synthesis platform has been developed to enable self-optimization of reaction conditions of organic electrochemical reactions using attenuated total reflection Fourier transform infrared spectroscopy (ATR FT-IR) and gas chromatography (GC) as online real-time monitoring techniques. We have overcome the challenges in using ATR FT-IR as the downstream analytical methods imposed when a large amount of hydrogen gas is produced from the counter electrode by designing two types of gas-liquid separators (GLS) for analysis of the product mixture flowing from the electrochemical reactor. In particular, we report an integrated GLS with an ATR FT-IR probe at the reactor outlet to give a facile and low-cost solution to determining the concentrations of products in gas-liquid two-phase flow. This approach provides a reliable method for quantifying low-volatile analytes, which can be problematic to be monitored by GC. Two electrochemical reactions the methoxylation of 1-formylpyrrolidine and the oxidation of 3-bromobenzyl alcohol were investigated to demonstrate that the optimal conditions can be located within the pre-defined multi-dimensional reaction parameter spaces without intervention of the operator by using the stable noisy optimization by branch and FIT (SNOBFIT) algorithm.
Collapse
Affiliation(s)
- Jie Ke
- School of Chemistry, 6123University of Nottingham, Nottingham, UK
| | - Chuang Gao
- School of Chemistry, 6123University of Nottingham, Nottingham, UK
- Department of Chemical and Environmental Engineering, The University of Nottingham Ningbo China, Ningbo, China
| | | | - Katherine E Jolley
- School of Chemistry, 6123University of Nottingham, Nottingham, UK
- School of Chemistry, University of Southampton, Southampton, UK
| | - Oscar de Frutos
- Centro de Investigación Lilly S.A., Alcobendas-Madrid, Spain
| | - Carlos Mateos
- Centro de Investigación Lilly S.A., Alcobendas-Madrid, Spain
| | - Juan A Rincón
- Centro de Investigación Lilly S.A., Alcobendas-Madrid, Spain
| | | | - Martyn Poliakoff
- School of Chemistry, 6123University of Nottingham, Nottingham, UK
| | - Michael W George
- School of Chemistry, 6123University of Nottingham, Nottingham, UK
- Department of Chemical and Environmental Engineering, The University of Nottingham Ningbo China, Ningbo, China
| |
Collapse
|
26
|
Baravkar MD, Prasad BLV. Selective electro-oxidation of phenol to 1,4-hydroquinone employing carbonaceous electrodes: surface modification is the key. NEW J CHEM 2022. [DOI: 10.1039/d1nj04640c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The oxidation of phenol to 1,4-hydroquinone with high conversion, remarkable selectivity and an excellent yield (87% isolated) has been accomplished under electrolytic conditions in an aqueous medium with surface modified carbon-based electrodes.
Collapse
Affiliation(s)
- Mayur D. Baravkar
- Physical and Materials Chemistry Division, National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovation Research (AcSIR), Ghaziabad 201002, India
| | - Bhagavatula L. V. Prasad
- Physical and Materials Chemistry Division, National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovation Research (AcSIR), Ghaziabad 201002, India
- Center for Nano and Soft Matter Sciences, Bangalore 562162, India
| |
Collapse
|
27
|
McKenzie ECR, Hosseini S, Petro AGC, Rudman KK, Gerroll BHR, Mubarak MS, Baker LA, Little RD. Versatile Tools for Understanding Electrosynthetic Mechanisms. Chem Rev 2021; 122:3292-3335. [PMID: 34919393 DOI: 10.1021/acs.chemrev.1c00471] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Electrosynthesis is a popular, green alternative to traditional organic methods. Understanding the mechanisms is not trivial yet is necessary to optimize reaction processes. To this end, a multitude of analytical tools is available to identify and quantitate reaction products and intermediates. The first portion of this review serves as a guide that underscores electrosynthesis fundamentals, including instrumentation, electrode selection, impacts of electrolyte and solvent, cell configuration, and methods of electrosynthesis. Next, the broad base of analytical techniques that aid in mechanism elucidation are covered in detail. These methods are divided into electrochemical, spectroscopic, chromatographic, microscopic, and computational. Technique selection is dependent on predicted reaction pathways and electrogenerated intermediates. Often, a combination of techniques must be utilized to ensure accuracy of the proposed model. To conclude, future prospects that aim to enhance the field are discussed.
Collapse
Affiliation(s)
- Eric C R McKenzie
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Seyyedamirhossein Hosseini
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Ana G Couto Petro
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Kelly K Rudman
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Benjamin H R Gerroll
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | | | - Lane A Baker
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - R Daniel Little
- Department of Chemistry, University of California Santa Barbara, Building 232, Santa Barbara, California 93106, United States
| |
Collapse
|
28
|
Krueger R, Moeller KD. Capitalizing on Mediated Electrolyses for the Construction of Complex, Addressable Molecular Surfaces. J Org Chem 2021; 86:15847-15865. [PMID: 34617752 PMCID: PMC8802379 DOI: 10.1021/acs.joc.1c01609] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Synthetic organic chemists are beginning to exploit electrochemical methods in increasingly creative ways. This is leading to a surge in productivity that is only now starting to take advantage of the full-potential of electrochemistry for accessing new structures in novel, more efficient ways. In this perspective, we provide insight into the potential of electrochemistry as a synthetic tool gained through studies of both direct anodic oxidation reactions and more recent indirect methods, and highlight how the development of new electrochemical methods can expand the nature of synthetic problems our community can tackle.
Collapse
Affiliation(s)
- Ruby Krueger
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130
| | - Kevin D. Moeller
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130
| |
Collapse
|
29
|
Electrochemical C-N bond activation for deaminative reductive coupling of Katritzky salts. Nat Commun 2021; 12:6745. [PMID: 34799580 PMCID: PMC8604921 DOI: 10.1038/s41467-021-27060-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 10/27/2021] [Indexed: 11/29/2022] Open
Abstract
Electrosynthesis has received great attention among researchers in both academia and industry as an ideal technique to promote single electron reduction without the use of expensive catalysts. In this work, we report the electrochemical reduction of Katritzky salts to alkyl radicals by sacrificing the easily accessible metal anode. This catalyst and electrolyte free platform has broad applicability to single electron transfer chemistry, including fluoroalkenylation, alkynylation and thiolation. The deaminative functionalization is facilitated by the rapid molecular diffusion across microfluidic channels, demonstrating the practicality that outpaces the conventional electrochemistry setups. Electrochemical transformations use electrons and electron holes instead of chemical oxidants and reductants as reagents. Here, the authors report an electrochemical reductive deaminative cross-coupling of Katrizky salts with various radical acceptors, including examples of fluoroalkenylation, alkynylation and thiolation.
Collapse
|
30
|
Baudis S, Behl M. High-Throughput and Combinatorial Approaches for the Development of Multifunctional Polymers. Macromol Rapid Commun 2021; 43:e2100400. [PMID: 34460146 DOI: 10.1002/marc.202100400] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/18/2021] [Indexed: 01/22/2023]
Abstract
High-throughput (HT) development of new multifunctional polymers is accomplished by the combination of different HT tools established in polymer sciences in the last decade. Important advances are robotic/HT synthesis of polymer libraries, the HT characterization of polymers, and the application of spatially resolved polymer library formats, explicitly microarray and gradient libraries. HT polymer synthesis enables the generation of material libraries with combinatorial design motifs. Polymer composition, molecular weight, macromolecular architecture, etc. may be varied in a systematic, fine-graded manner to obtain libraries with high chemical diversity and sufficient compositional resolution as model systems for the screening of these materials for the functions aimed. HT characterization allows a fast assessment of complementary properties, which are employed to decipher quantitative structure-properties relationships. Moreover, these methods facilitate the HT determination of important surface parameters by spatially resolved characterization methods, including time-of-flight secondary ion mass spectrometry and X-ray photoelectron spectroscopy. Here current methods for the high-throughput robotic synthesis of multifunctional polymers as well as their characterization are presented and advantages as well as present limitations are discussed.
Collapse
Affiliation(s)
- Stefan Baudis
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, 14513, Teltow, Germany
| | - Marc Behl
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, 14513, Teltow, Germany
| |
Collapse
|
31
|
Hu J, Wang T, Zhang WJ, Hao H, Yu Q, Gao H, Zhang N, Chen Y, Xia XH, Chen HY, Xu JJ. Dissecting the Flash Chemistry of Electrogenerated Reactive Intermediates by Microdroplet Fusion Mass Spectrometry. Angew Chem Int Ed Engl 2021; 60:18494-18498. [PMID: 34129259 DOI: 10.1002/anie.202106945] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Indexed: 11/06/2022]
Abstract
A novel mass spectrometric method for probing the flash chemistry of electrogenerated reactive intermediates was developed based on rapid collision mixing of electrosprayed microdroplets by using a theta-glass capillary. The two individual microchannels of the theta-glass capillary are asymmetrically or symmetrically fabricated with a carbon bipolar electrode to produce intermediates in situ. Microdroplets containing the newly formed intermediates collide with those of the invoked reactants at sub-10 microsecond level, making it a powerful tool for exploring their ultrafast initial transformations. As a proof-of-concept, we present the identification of the key radical cation intermediate in the oxidative dimerization of 8-methyl-1,2,3,4-tetrahydroquinoline and also the first disclosure of previously hidden nitrenium ion involved reaction pathway in the C-H/N-H cross-coupling between N,N'-dimethylaniline and phenothiazine.
Collapse
Affiliation(s)
- Jun Hu
- State Key Laboratory of Reproductive Medicine and Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Ting Wang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Wen-Jun Zhang
- State Key Laboratory of Reproductive Medicine and Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Han Hao
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| | - Qiao Yu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Hang Gao
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Nan Zhang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yun Chen
- State Key Laboratory of Reproductive Medicine and Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
32
|
Hu J, Wang T, Zhang W, Hao H, Yu Q, Gao H, Zhang N, Chen Y, Xia X, Chen H, Xu J. Dissecting the Flash Chemistry of Electrogenerated Reactive Intermediates by Microdroplet Fusion Mass Spectrometry. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jun Hu
- State Key Laboratory of Reproductive Medicine and Key Laboratory of Cardiovascular & Cerebrovascular Medicine School of Pharmacy Nanjing Medical University Nanjing 211166 China
| | - Ting Wang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Wen‐Jun Zhang
- State Key Laboratory of Reproductive Medicine and Key Laboratory of Cardiovascular & Cerebrovascular Medicine School of Pharmacy Nanjing Medical University Nanjing 211166 China
| | - Han Hao
- Department of Chemistry University of Toronto 80 St. George Street Toronto ON M5S 3H6 Canada
| | - Qiao Yu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Hang Gao
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Nan Zhang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Yun Chen
- State Key Laboratory of Reproductive Medicine and Key Laboratory of Cardiovascular & Cerebrovascular Medicine School of Pharmacy Nanjing Medical University Nanjing 211166 China
| | - Xing‐Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Hong‐Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Jing‐Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| |
Collapse
|
33
|
Sato E, Fujii M, Tanaka H, Mitsudo K, Kondo M, Takizawa S, Sasai H, Washio T, Ishikawa K, Suga S. Application of an Electrochemical Microflow Reactor for Cyanosilylation: Machine Learning-Assisted Exploration of Suitable Reaction Conditions for Semi-Large-Scale Synthesis. J Org Chem 2021; 86:16035-16044. [PMID: 34355889 DOI: 10.1021/acs.joc.1c01242] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cyanosilylation of carbonyl compounds provides protected cyanohydrins, which can be converted into many kinds of compounds such as amino alcohols, amides, esters, and carboxylic acids. In particular, the use of trimethylsilyl cyanide as the sole carbon source can avoid the need for more toxic inorganic cyanides. In this paper, we describe an electrochemically initiated cyanosilylation of carbonyl compounds and its application to a microflow reactor. Furthermore, to identify suitable reaction conditions, which reflect considerations beyond simply a high yield, we demonstrate machine learning-assisted optimization. Machine learning can be used to adjust the current and flow rate at the same time and identify the conditions needed to achieve the best productivity.
Collapse
Affiliation(s)
- Eisuke Sato
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Mayu Fujii
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Hiroki Tanaka
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Koichi Mitsudo
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Masaru Kondo
- Department of Quantum Beam Science, Graduate School of Science and Engineering, Ibaraki University, 4-12-1 Nakanarusawa, Hitachi, Ibaraki 316-8511, Japan
| | - Shinobu Takizawa
- Department of Synthetic Organic Chemistry, The Institute of Scientific and Industrial Research (ISIR), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan.,Artificial Intelligence Research Center, ISIR, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Hiroaki Sasai
- Department of Synthetic Organic Chemistry, The Institute of Scientific and Industrial Research (ISIR), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Takeshi Washio
- Artificial Intelligence Research Center, ISIR, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan.,Department of Reasoning for Intelligence, The Institute of Scientific and Industrial Research (ISIR), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Kazunori Ishikawa
- Department of Reasoning for Intelligence, The Institute of Scientific and Industrial Research (ISIR), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Seiji Suga
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
34
|
Moniruzzaman M, Yano Y, Ono T, Imamura K, Shiota Y, Yoshizawa K, Hisaeda Y, Shimakoshi H. Electrochemical Synthesis of Cyanoformamides from Trichloroacetonitrile and Secondary Amines Mediated by the B 12 Derivative. J Org Chem 2021; 86:16134-16143. [PMID: 34137621 DOI: 10.1021/acs.joc.1c00837] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The B12 derivative, heptamethyl cobyrinate, -mediated electrochemical synthesis of cyanoformamides has been developed. Aerobic oxygenation of the carbon-centered radical initiated in situ generation of the reactive acyl chloride intermediate, which led to cyanoformamides in the presence of an amine. This one-pot and scalable synthetic method has been demonstrated with 41 examples up to 94% yields with 21 new compounds. The mechanism of electrolysis mediated by the B12 derivative has been proposed based on the DFT calculations.
Collapse
Affiliation(s)
- Mohammad Moniruzzaman
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Yoshio Yano
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Toshikazu Ono
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | | | - Yoshihito Shiota
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Yoshio Hisaeda
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Hisashi Shimakoshi
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
35
|
Medcalf Z, Moeller KD. Anodic Olefin Coupling Reactions: Elucidating Radical Cation Mechanisms and the Interplay between Cyclization and Second Oxidation Steps. CHEM REC 2021; 21:2442-2452. [PMID: 34117713 DOI: 10.1002/tcr.202100118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/18/2021] [Indexed: 12/13/2022]
Abstract
Anodic olefin coupling reactions generate new bonds and ring skeletons through a net two electron process that reverses the polarity of a known, electron-rich functional group. While much of the early work on the mechanism of these reactions focused on the initial oxidation and cyclization steps of the process, the second oxidation step also plays a central role in determining the success of the reaction. Evidence supporting this observation is presented, along with evidence that optimization of this second oxidation step is not enough to pull a poor cyclization to the desired product. Successful cyclization reactions require optimization of both processes.
Collapse
Affiliation(s)
- Zach Medcalf
- Department of Chemistry, Washington University in Saint Louis, One Brookings Drive, 63130-4899, St Louis, MO, USA
| | - Kevin D Moeller
- Department of Chemistry, Washington University in Saint Louis, One Brookings Drive, 63130-4899, St Louis, MO, USA
| |
Collapse
|
36
|
Gleede B, Selt M, Franke R, Waldvogel SR. Developments in the Dehydrogenative Electrochemical Synthesis of 3,3',5,5'-Tetramethyl-2,2'-biphenol. Chemistry 2021; 27:8252-8263. [PMID: 33453091 PMCID: PMC8248109 DOI: 10.1002/chem.202005197] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/02/2021] [Indexed: 11/16/2022]
Abstract
The symmetric biphenol 3,3′,5,5′‐tetramethyl‐2,2′‐biphenol is a well‐known ligand building block and is used in transition‐metal catalysis. In the literature, there are several synthetic routes for the preparation of this exceptional molecule. Herein, the focus is on the sustainable electrochemical synthesis of 3,3′,5,5′‐tetramethyl‐2,2′‐biphenol. A brief overview of the developmental history of this inconspicuous molecule, which is of great interest for technical applications, but has many challenges for its synthesis, is provided. The electro‐organic method is a powerful, sustainable, and efficient alternative to conventional synthesis to obtain this symmetric biphenol up to the kilogram scale. Another section of this article is devoted to different process management strategies in batch‐type and flow electrolysis and their respective advantages.
Collapse
Affiliation(s)
- Barbara Gleede
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Maximilian Selt
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany.,Material Science IN MainZ (MAINZ), Graduate School of Excellence, Staudingerweg 9, 55128, Mainz, Germany
| | - Robert Franke
- Evonik Performance Materials GmbH, Paul-Baumann-Straße 1, 45772, Marl, Germany.,Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780, Bochum, Germany
| | - Siegfried R Waldvogel
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany.,Material Science IN MainZ (MAINZ), Graduate School of Excellence, Staudingerweg 9, 55128, Mainz, Germany
| |
Collapse
|
37
|
Villani E, Inagi S. Mapping the Distribution of Potential Gradient in Bipolar Electrochemical Systems through Luminol Electrochemiluminescence Imaging. Anal Chem 2021; 93:8152-8160. [PMID: 34081445 DOI: 10.1021/acs.analchem.0c05397] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Bipolar electrochemistry has been regarded as a powerful and sustainable electrochemical process for the synthesis of novel functional materials. The appealing features of this electrochemical technology, such as the wireless nature of the bipolar electrode (BPE) and the possibility to drive simultaneously electrochemical reactions on multiple BPEs placed in the same electrochemical cell, together with the possibility to change the shape and positioning of the driving electrodes, give significant freedom to design reaction systems. Nevertheless, the cell geometry dramatically affects the distribution and intensity of the potential gradient generated on the BPE surface and its monitoring is hampered due to the wireless nature of the BPE. In the present study, we propose the use of electrochemiluminescence (ECL) as an electrochemical imaging technique to map the distribution of potential gradient in bipolar electrochemical cells with different geometries. The proposed approach exploits the strong ECL emission of luminol/hydrogen peroxide (H2O2) system generated at the anodic pole of the BPE, when the total applied voltage (Etot) is strong enough to trigger the electrochemical reaction. Since luminol ECL emission is rather intense and relatively stable, the evolution of the potential distribution as a function of Etot can be monitored using a digital camera, allowing the elucidation of the potential distribution profile in every bipolar configuration. The suggested approach represents a valuable and reliable method to map the potential gradient in bipolar electrochemical systems and can be readily employed in every type of bipolar configuration.
Collapse
Affiliation(s)
- Elena Villani
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
| | - Shinsuke Inagi
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan.,PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
38
|
Shimakoshi H, Hisaeda Y. Bioinspired Electrolysis for Green Molecular Transformations of Organic Halides Catalyzed by B 12 Complex. CHEM REC 2021; 21:2080-2094. [PMID: 34075694 DOI: 10.1002/tcr.202100077] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 12/27/2022]
Abstract
Naturally-occurring B12 -dependent enzymes catalyze various molecular transformations that are of particular interest from the viewpoint of biological chemistry as well as synthetic organic chemistry. Inspired by the unique property of the B12 -dependent enzymes, various catalytic reactions have been developed using its model complex. Among the B12 model complexes, heptamethyl cobyrinate, synthesized from natural vitamin B12 , is highly soluble in various organic solvents and a redox active cobalt complex with an excellent catalysis in electroorganic synthesis. The electrochemical dechlorination of pollutant organic chlorides, such as DDT, was effectively catalyzed by the B12 complex. Modification of the electrode surface by the sol-gel method to immobilize the B12 complex was also developed. The B12 modified electrodes were effective for the dehalogenation of organic halides with high turnover numbers based on the immobilized B12 complex. Electrolysis of an organic halide catalyzed by the B12 complex provided dechlorinated products under anaerobic conditions, while the electrolysis under aerobic conditions afforded oxygen incorporated products, such as an ester and amide along with dechlorination. Benzotrichloride was transformed into ethylbenzoate or N,N-diethylbenzamide in the presence of ethanol or diethylamine, respectively. This amide formation was further expanded to a unique paired electrolysis. Electrochemical reductions of an alkene and alkyne were also catalyzed by the B12 complex. A cobalt-hydrogen complex should be formed as a bioinspired intermediate. Using the B12 complex, light-assisted electrosynthesis was also developed to save the applied energy.
Collapse
Affiliation(s)
- Hisashi Shimakoshi
- Department of Chemistry and Biochemistry, Kyushu University, Nishi-ku Motooka 744, Fukuoka, 819-0395, Japan
| | - Yoshio Hisaeda
- Department of Chemistry and Biochemistry, Kyushu University, Nishi-ku Motooka 744, Fukuoka, 819-0395, Japan
| |
Collapse
|
39
|
Wu T, Moeller KD. Organic Electrochemistry: Expanding the Scope of Paired Reactions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Tiandi Wu
- Department of Chemistry Washington University St. Louis MO 63130 USA
| | - Kevin D. Moeller
- Department of Chemistry Washington University St. Louis MO 63130 USA
| |
Collapse
|
40
|
Wu T, Moeller KD. Organic Electrochemistry: Expanding the Scope of Paired Reactions. Angew Chem Int Ed Engl 2021; 60:12883-12890. [PMID: 33768678 DOI: 10.1002/anie.202100193] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/23/2021] [Indexed: 12/31/2022]
Abstract
Paired electrochemical reactions allow the optimization of both atom and energy economy of oxidation and reduction reactions. While many paired electrochemical reactions take advantage of perfectly matched reactions at the anode and cathode, this matching of substrates is not necessary. In constant current electrolysis, the potential at both electrodes adjusts to the substrates in solution. In principle, any oxidation reaction can be paired with any reduction reaction. Various oxidation reactions conducted on the anodic side of the electrolysis were paired with the generation and use of hydrogen gas at the cathode, showing the generality of the anodic process in a paired electrolysis and how the auxiliary reaction required for the oxidation could be used to generate a substrate for a non-electrolysis reaction. This is combined with variations on the cathodic side of the electrolysis to complete the picture and illustrate how oxidation and reduction reactions can be combined.
Collapse
Affiliation(s)
- Tiandi Wu
- Department of Chemistry, Washington University, St. Louis, MO, 63130, USA
| | - Kevin D Moeller
- Department of Chemistry, Washington University, St. Louis, MO, 63130, USA
| |
Collapse
|
41
|
Aelterman M, Sayes M, Jubault P, Poisson T. Electrochemical Hydroboration of Alkynes. Chemistry 2021; 27:8277-8282. [PMID: 33945175 PMCID: PMC8251609 DOI: 10.1002/chem.202101132] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Indexed: 12/21/2022]
Abstract
Herein we reported the electrochemical hydroboration of alkynes by using B2Pin2 as the boron source. This unprecedented reaction manifold was applied to a broad range of alkynes, giving the hydroboration products in good to excellent yields without the need of a metal catalyst or a hydride source. This transformation relied on the possible electrochemical oxidation of an in situ formed borate. This anodic oxidation performed in an undivided cell allowed the formation of a putative boryl radical, which reacted on the alkyne.
Collapse
Affiliation(s)
- Maude Aelterman
- Normandie Université, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000, Rouen, France
| | - Morgane Sayes
- Centre in Green Chemistry and Catalysis, Faculty of Arts and Sciences, Department of Chemistry, Université de Montréal, P.O. Box 6128, Station Downtown, Montréal, Québec, H3 C3 J7, Canada
| | - Philippe Jubault
- Normandie Université, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000, Rouen, France
| | - Thomas Poisson
- Normandie Université, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000, Rouen, France.,Institut Universitaire de France, 1 rue Descartes, 75231, Paris, France
| |
Collapse
|
42
|
Senboku H. Electrochemical Fixation of Carbon Dioxide: Synthesis of Carboxylic Acids. CHEM REC 2021; 21:2354-2374. [PMID: 33955143 DOI: 10.1002/tcr.202100081] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 01/25/2023]
Abstract
In the past three decades, we have focused on the fixation of carbon dioxide by electrochemical method with a carbon-carbon bond forming reaction to yield carboxylic acid, so-called electrochemical carboxylation. Vinyl bromides and triflates, difluoroethylbenzenes, polyfluoroarenes, benzal diacetates, phenyl-substituted alkenes and enamides, and α-aminosulfones were found to be effective as substrates for electrochemical carboxylation. Phenylacetic acids and phenylpropanoic acids including non-steroidal anti-inflammatory agents and their fluorinated analogues, polyfluorobenzoic acids, mandel acetates, and α- and β-amino acids were successfully synthesized. Electrochemical double carboxylation of dibenzyl carbonates, reuse of carbon dioxide in benzyl carbonates for fixation of carbon dioxide (recycle-electrochemical carboxylation), sequential aryl/vinyl radical cyclization-electrochemical carboxylation, sacrificial anode-free electrochemical carboxylation, and the use of supercritical carbon dioxide both as a reaction media and a reagent were also developed. In this personal account, our efforts in and results of electrochemical fixation of carbon dioxide to organic compounds with carbon-carbon bond forming reactions yielding novel and useful carboxylic acids are introduced along with their applications and some new results.
Collapse
Affiliation(s)
- H Senboku
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido, 0608628, Japan
| |
Collapse
|
43
|
Bityukov OV, Vil' VA, Nikishin GI, Terent'ev AO. Alkene, Bromide, and ROH – How To Achieve Selectivity? Electrochemical Synthesis of Bromohydrins and Their Ethers. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100161] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Oleg V. Bityukov
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, 47 Leninsky prosp. 119991 Moscow Russian Federation
- All-Russian Research Institute for Phytopathology B. Vyazyomy Moscow Region 143050 Russian Federation
| | - Vera A. Vil'
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, 47 Leninsky prosp. 119991 Moscow Russian Federation
- All-Russian Research Institute for Phytopathology B. Vyazyomy Moscow Region 143050 Russian Federation
| | - Gennady I. Nikishin
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, 47 Leninsky prosp. 119991 Moscow Russian Federation
| | - Alexander O. Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, 47 Leninsky prosp. 119991 Moscow Russian Federation
- All-Russian Research Institute for Phytopathology B. Vyazyomy Moscow Region 143050 Russian Federation
| |
Collapse
|
44
|
Schotten C, Bourne RA, Kapur N, Nguyen BN, Willans CE. Electrochemical Generation of
N
‐Heterocyclic Carbenes for Use in Synthesis and Catalysis. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100264] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
| | - Richard A. Bourne
- School of Chemical and Process Engineering University of Leeds Leeds LS2 9JT UK
| | - Nikil Kapur
- School of Mechanical Engineering University of Leeds Leeds LS2 9JT UK
| | - Bao N. Nguyen
- School of Chemistry University of Leeds Leeds LS2 9JT UK
| | | |
Collapse
|
45
|
Kakiuchi F, Kochi T. Palladium-Catalyzed Aromatic C-H Functionalizations Utilizing Electrochemical Oxidations. CHEM REC 2021; 21:2320-2331. [PMID: 33835682 DOI: 10.1002/tcr.202100050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 12/28/2022]
Abstract
Transition-metal-catalyzed electrochemical C-H functionalizations have been extensively studied as atom- and step-economical clean methods in organic synthesis. In this account, we described our efforts on the palladium-catalyzed electrochemical C-H functionalizations, including C-H halogenations of arylpyridines and benzamide derivatives using HCl/HBr and I2 as a halogen source, a one-pot process giving teraryls via the palladium-catalyzed electrochemical C-H iodination and subsequent Suzuki-Miyaura coupling, and an iodine-mediated oxidative homo-coupling reaction of arylpyridines.
Collapse
Affiliation(s)
- Fumitoshi Kakiuchi
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| | - Takuya Kochi
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| |
Collapse
|
46
|
Singh B, Sharma V, Gaikwad RP, Fornasiero P, Zbořil R, Gawande MB. Single-Atom Catalysts: A Sustainable Pathway for the Advanced Catalytic Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006473. [PMID: 33624397 DOI: 10.1002/smll.202006473] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/29/2020] [Indexed: 06/12/2023]
Abstract
A heterogeneous catalyst is a backbone of modern sustainable green industries; and understanding the relationship between its structure and properties is the key for its advancement. Recently, many upscaling synthesis strategies for the development of a variety of respectable control atomically precise heterogeneous catalysts are reported and explored for various important applications in catalysis for energy and environmental remediation. Precise atomic-scale control of catalysts has allowed to significantly increase activity, selectivity, and in some cases stability. This approach has proved to be relevant in various energy and environmental related technologies such as fuel cell, chemical reactors for organic synthesis, and environmental remediation. Therefore, this review aims to critically analyze the recent progress on single-atom catalysts (SACs) application in oxygen reduction reaction, oxygen evolution reaction, hydrogen evolution reaction, and chemical and/or electrochemical organic transformations. Finally, opportunities that may open up in the future are summarized, along with suggesting new applications for possible exploitation of SACs.
Collapse
Affiliation(s)
- Baljeet Singh
- CICECO-Aveiro Institute of Materials, University of Aveiro, Department of Chemistry, Aveiro, 3810-193, Portugal
| | - Vikas Sharma
- Centre for Converging Technologies, University of Rajasthan, Jaipur, 302004, India
| | - Rahul P Gaikwad
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Mumbai-Marathwada Campus, Jalna, Maharashtra, 431213, India
| | - Paolo Fornasiero
- Department of Chemical and Pharmaceutical Sciences, INSTM Trieste Research Unit and ICCOM-CNR Trieste Research Unit, University of Trieste, Trieste, I-34127, Italy
| | - Radek Zbořil
- Regional Centre of Advanced Technologies and Materials, Palacky University, Šlechtitelů 27, Olomouc, 783 71, Czech Republic
- Nanotechnology Centre, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba, 708 00, Czech Republic
| | - Manoj B Gawande
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Mumbai-Marathwada Campus, Jalna, Maharashtra, 431213, India
| |
Collapse
|
47
|
Mitsudo K. Electro-Oxidative Coupling Reactions Leading to π-Conjugated Compounds. CHEM REC 2021; 21:2269-2276. [PMID: 33735536 DOI: 10.1002/tcr.202100033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/09/2021] [Accepted: 03/09/2021] [Indexed: 12/21/2022]
Abstract
Electrochemical reactions are rapidly gaining attention today as a powerful and environmentally benign reaction processes for organic synthesis. We found that the electro-oxidation of palladium acetate afforded cationic palladium species and thus-generated cationic Pd species were efficient mediators for electro-oxidative coupling reactions. Homo-coupling of arylboronic acids and terminal alkynes proceeded efficiently to afford biaryls and butadiyne, respectively. Cross-coupling reactions between terminal alkynes and arylboronic acids were also achieved with the use of a Ag anode. As an advantage of electrochemical reactions, we developed a sequential reaction system switched between oxidative and neutral conditions by the on/off application of electricity, and several π-extended butadiynes were obtained in one-sequence by the system. Electrochemical intramolecular C-S coupling for the synthesis of thienoacene was also developed. The use of Bu4 NBr as a halogen mediator was essential for the reaction.
Collapse
Affiliation(s)
- Koichi Mitsudo
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan
| |
Collapse
|
48
|
Shida N, Nakamura Y, Atobe M. Electrosynthesis in Laminar Flow Using a Flow Microreactor. CHEM REC 2021; 21:2164-2177. [PMID: 33734573 DOI: 10.1002/tcr.202100016] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/11/2021] [Accepted: 02/11/2021] [Indexed: 01/08/2023]
Abstract
Electrosynthesis and microflow synthesis have become essential tools in their own rights in modern organic synthesis. In this personal account, we summarize our works on the integrated use of these techniques, i. e., electrosynthesis in a flow microreactor. Our group has developed an electrochemical microflow system composed of a pair of electrodes that face each other to form a micrometer-scale gap for the flow path, through which solution passes in laminar flow. By the aid of laminar flow, unprecedented chemo- and electrochemical selectivity has been observed, which is not achievable with conventional batch-type electrochemical cells. In addition, we showcase various unique electrochemical systems and reactions achieved with the flow microreactor, including self-supported electrolysis, efficient paired electrolysis, in situ generation of active species and its flash use, the spaciotemporal control of electropolymerization, and combinatorial screening of the reaction conditions.
Collapse
Affiliation(s)
- Naoki Shida
- Department of Chemistry and Life Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa, Japan
| | - Yuto Nakamura
- Department of Chemistry and Life Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa, Japan
| | - Mahito Atobe
- Department of Chemistry and Life Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa, Japan
| |
Collapse
|
49
|
Sacramento M, Costa GP, Barcellos AM, Perin G, Lenardão EJ, Alves D. Transition-metal-free C-S, C-Se, and C-Te Bond Formation from Organoboron Compounds. CHEM REC 2021; 21:2855-2879. [PMID: 33735500 DOI: 10.1002/tcr.202100021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/23/2022]
Abstract
The present review describes the successful application of organoboron compounds in transition-metal-free C-S, C-Se, and C-Te bond formations. We presented studies regarding these C-Chalcogen bond formations using organoboron reagents, such as boronic acids, boronic esters, borate anions, and several sources of chalcogen atoms/moieties. Moreover, a broad range of transition-metal-free approaches to synthesize sulfides, selenides, and tellurides were described using conventional heating methods, which are sometimes green since they use green solvents, safe reagents, among others. Furthermore, protocols using alternative energy sources, including ultrasound, microwave irradiation, photocatalysis, and electrolytic processes, were also shown to be suitable. These protocols were applied to prepare a broad scope of functionalized chalcogenides with high molecular diversity. These studies and their proposed mechanisms were also reported herein in addition to the reuse of reaction promoters.
Collapse
Affiliation(s)
- Manoela Sacramento
- Laboratório de Síntese Orgânica Limpa - LASOL, CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Gabriel P Costa
- Laboratório de Síntese Orgânica Limpa - LASOL, CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Angelita M Barcellos
- Laboratório de Síntese Orgânica Limpa - LASOL, CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Gelson Perin
- Laboratório de Síntese Orgânica Limpa - LASOL, CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Eder J Lenardão
- Laboratório de Síntese Orgânica Limpa - LASOL, CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Diego Alves
- Laboratório de Síntese Orgânica Limpa - LASOL, CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| |
Collapse
|
50
|
Yamamoto K, Kuriyama M, Onomura O. Shono-Type Oxidation for Functionalization of N-Heterocycles. CHEM REC 2021; 21:2239-2253. [PMID: 33656281 DOI: 10.1002/tcr.202100031] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 01/05/2023]
Abstract
The development of facile synthetic methods for stereodefined aliphatic cyclic amines is an important research field in synthetic organic chemistry since such scaffolds constitute a variety of natural products and biologically active compounds. N-Acyl cyclic N,O-acetals which prepared by electrochemical oxidation of the corresponding cyclic amines have proven to be useful and versatile precursors for the synthesis of such skeletons. In this Personal Account, we introduce our efforts toward the development of synthetic strategies for the diastereo- and/or enantioselective synthesis of cyclic amines by using electrochemically prepared cyclic N,O-acetals. In addition, the investigation of the "memory of chirality" in the electrooxidative methoxylation of N-acyl amino acid derivatives, the strategy for the synthesis of chiral azabicyclic compounds by utilizing electrochemical oxidation, and halogen cation-mediated synthesis of nitrogen-containing heterocycles are also described.
Collapse
Affiliation(s)
- Kosuke Yamamoto
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Masami Kuriyama
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Osamu Onomura
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| |
Collapse
|