1
|
Wu M, Wang Y, Lv X, Ma Z, Sheng X, Wang M, Zhang Y, An Z, Wang X. Direct α-C-H alkylation of alcohols via photoinduced hydrogen atom transfer. Org Biomol Chem 2025; 23:2365-2369. [PMID: 39907219 DOI: 10.1039/d4ob01874e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
A general approach for the α-C-H alkylation of alcohols has been established, offering access to highly functionalized alcohols via visible light irradiation with TBAP as a co-catalyst. The methodology exhibits excellent functional group tolerance and a wide substrate scope. Its practicality is underscored by successful gram-scale synthesis and a sunlight-driven reaction demonstration.
Collapse
Affiliation(s)
- Mingzhong Wu
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, Shandong, China.
| | - Yaru Wang
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University, Harbin, China
| | - Xin Lv
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, Shandong, China.
| | - Zhengxian Ma
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, Shandong, China.
| | - Xiaojing Sheng
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, Shandong, China.
| | - Mengjie Wang
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, Shandong, China.
| | - Yalin Zhang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry & Chemical Engineering, Liaocheng University, Liaocheng, Shandong, China
| | - Zhenyu An
- School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Xuekun Wang
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, Shandong, China.
| |
Collapse
|
2
|
Liaw MW, Hirata H, Zou GF, Wu J, Zhao Y. Borrowing Hydrogen/Chiral Enamine Relay Catalysis Enables Diastereo- and Enantioselective β-C-H Functionalization of Alcohols. J Am Chem Soc 2025; 147:7721-7728. [PMID: 39996277 DOI: 10.1021/jacs.4c17355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
We report herein an unprecedented borrowing hydrogen/chiral enamine relay catalysis strategy that enables a highly efficient enantioselective formal β-alkylation of simple alcohols using electron-deficient alkenes and especially nitroalkenes. A variety of 1,4-difunctional products such as nitro alcohols are readily accessible in one waste-free step from feedstock alcohols in excellent levels of stereoselectivity. It is important to note that the products are formed in much higher diastereoselectivity than the enamine catalysis step alone under identical conditions, highlighting the unique advantage of cascade borrowing hydrogen catalysis in achieving high efficiency, economy, and stereoselectivity.
Collapse
Affiliation(s)
- Ming Wai Liaw
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, 21 Lower Kent Ridge Road, 119077, Singapore
| | - Haruka Hirata
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Gong-Feng Zou
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Jie Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Yu Zhao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| |
Collapse
|
3
|
Kuloor C, Akash, Goyal V, Zbořil R, Beller M, Jagadeesh RV. Nickel-Catalyzed Reductive Hydrolysis of Nitriles to Alcohols. Angew Chem Int Ed Engl 2025; 64:e202414689. [PMID: 39639819 DOI: 10.1002/anie.202414689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/20/2024] [Accepted: 12/05/2024] [Indexed: 12/07/2024]
Abstract
Nitriles are an abundant class of compounds that are widely used as versatile feedstocks to produce various chemicals including pharmaceuticals, and agrochemicals as well as materials. Here we report Ni-catalyzed reductive hydrolysis of nitriles to alcohols in the presence of molecular hydrogen. This conversion likely occurs in a domino reaction sequence that first involves the hydrogenation of nitrile to primary imine, then the hydrolysis of imine, and subsequent deamination to the aldehyde, which is finally hydrogenated to the desired alcohol. Crucial for this reductive hydrolysis process is the commercially available triphos-ligated Ni-complex that enables highly efficient and selective transformation of aromatic, heterocyclic, and aliphatic nitriles including fatty nitriles to prepare functionalized primary alcohols. Further, the synthetic applicability of this Ni-based protocol is presented for the selective conversion of nitrile to alcoholic group in structurally diverse and complex drug molecules as well as agrochemicals. The resulting products, alcohols are indispensable chemicals commonly used in organic synthesis and life sciences as well as material and energy technologies.
Collapse
Affiliation(s)
- Chakreshwara Kuloor
- Leibniz-Institut für Katalyse, Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Akash
- Leibniz-Institut für Katalyse, Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Vishakha Goyal
- Leibniz-Institut für Katalyse, Albert-Einstein-Straße 29a, 18059, Rostock, Germany
- Nanotechnology Centre, Centre for Energy and Environmental Technologies, VŠB-Technical University of Ostrava, Ostrava-Poruba, Czech Republic
| | - Radek Zbořil
- Nanotechnology Centre, Centre for Energy and Environmental Technologies, VŠB-Technical University of Ostrava, Ostrava-Poruba, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Šlechtitelů 27, Olomouc, 783 71, Czech Republic
| | - Mathias Beller
- Leibniz-Institut für Katalyse, Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Rajenahally V Jagadeesh
- Leibniz-Institut für Katalyse, Albert-Einstein-Straße 29a, 18059, Rostock, Germany
- Nanotechnology Centre, Centre for Energy and Environmental Technologies, VŠB-Technical University of Ostrava, Ostrava-Poruba, Czech Republic
| |
Collapse
|
4
|
Mahala S, Singh S, Rakesh P, Bhuvanesh N, Joshi H. Manganese(I)-NNSe Pincer Complex Mediated Dehydrogenative Cyclization to Synthesize 2-Aryl-2,3-dihydroquinolin-4(1 H)-ones. J Org Chem 2025. [PMID: 40019182 DOI: 10.1021/acs.joc.4c02731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
A catalytic one-pot cascade dehydrogenative cyclization of 1-(2-aminophenyl)ethanone using primary alcohols is presented. The reaction is catalyzed by an earth-abundant manganese pincer complex of NNSe ligand, without any solvent, additives, base, or hydrogen acceptor, liberating dihydrogen and water as the only byproducts. Compared to an earlier reported four-step dehydrogenative coupling protocol, only a single step is required to synthesize 2-aryl-2,3-dihydroquinolin-4(1H)-ones.
Collapse
Affiliation(s)
- Suman Mahala
- ISC Laboratory, Department of Chemistry, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer, Rajasthan 305817, India
| | - Sohan Singh
- ISC Laboratory, Department of Chemistry, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer, Rajasthan 305817, India
| | - Palak Rakesh
- ISC Laboratory, Department of Chemistry, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer, Rajasthan 305817, India
| | - Nattamai Bhuvanesh
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012, United States
| | - Hemant Joshi
- ISC Laboratory, Department of Chemistry, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer, Rajasthan 305817, India
| |
Collapse
|
5
|
Bisarya A, Kathuria L, Das K, Yasmin E, Jasra RV, Dhole S, Kumar A. State-of-the-art advances in homogeneous molecular catalysis for the Guerbet upgrading of bio-ethanol to fuel-grade bio-butanol. Chem Commun (Camb) 2025; 61:2906-2925. [PMID: 39835652 DOI: 10.1039/d4cc05931j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The upgrading of ethanol to n-butanol marks a major breakthrough in the field of biofuel technology, offering the advantages of compatibility with existing infrastructure while simultaneously offering potential benefits in terms of transport efficiency and energy density. With its lower vapour pressure and reduced corrosiveness compared to ethanol, n-butanol is easier not only to manage but also to transport, eliminating the need for costly infrastructure changes. This leads to improved fuel efficiency and reduced fuel consumption. These features position n-butanol as a promising alternative to ethanol in the future of biodiesel. This review article delves into the cutting-edge advancements in upgrading ethanol to butanol, highlighting the critical importance of this transformation in enhancing the value and practical application of biofuels. While traditional methods for making butanol rely heavily on fossil fuels, those that employ ethanol as a starting material are dominated by heterogeneous catalysis, which is limited by the requirement of high temperatures and a lack of selectivity. Homogeneous catalysts have been pivotal in enhancing the efficiency and selectivity of this conversion, owing to their unique mode of operation at the molecular level. A comprehensive review of the various homogeneous catalytic processes employed in the transformation of feedstock-agnostic bio-ethanol to fuel-grade bio-n-butanol is provided here, with a major focus on the key advancements in catalyst design, reaction conditions and mechanisms that have significantly improved the efficiency and selectivity of these Guerbet reactions.
Collapse
Affiliation(s)
- Akshara Bisarya
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
| | - Lakshay Kathuria
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
| | - Kanu Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
| | - Eileen Yasmin
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
| | - Raksh Vir Jasra
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India
- Reliance Industries Limited, R&D Centre, Vadodara Manufacturing Division, Vadodara - 391346, Gujarat, India
| | - Sunil Dhole
- ChemDist Group of Companies, Plot No. 144 A, Sector 7, PCNTDA Bhosari, Pune - 411026, Maharashtra, India
| | - Akshai Kumar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India
| |
Collapse
|
6
|
Liu R, Hou Y, Bai M, Han Z, Hao Z, Lin J. Temperature-dependent switchable synthesis of imines and amines via coupling of alcohols and amines using pyrrolyl-imine ruthenium catalysts. J Catal 2025; 442:115895. [DOI: 10.1016/j.jcat.2024.115895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
7
|
Van Hoof M, Mayer RJ, Moran J, Lebœuf D. Triflic Acid-Catalyzed Dehydrative Amination of 2-Arylethanols with Weak N-Nucleophiles in Hexafluoroisopropanol. Angew Chem Int Ed Engl 2025; 64:e202417089. [PMID: 39431992 DOI: 10.1002/anie.202417089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/26/2024] [Accepted: 10/21/2024] [Indexed: 10/22/2024]
Abstract
The catalytic deoxyamination of readily available 2-arylethanols offers an appealing, simple, and straightforward means of accessing β-(hetero)arylethylamines of biological interest. Yet, it currently represents a great challenge to synthetic chemistry. In most cases, the alcohol has to be either pre-activated in situ or converted into a reactive carbonyl intermediate, limiting the substrate scope for some methods. Examples of direct dehydrative amination of 2-arylethanols are thus still scarce. Here, we describe a catalytic protocol based on the synergy of triflic acid and hexafluoroisopropanol, which enables the direct and stereospecific amination of a broad array of 2-arylethanols, and does not require any pre-activation of the alcohol. This approach yields high value-added products incorporating sulfonamide, amide, urea, and aniline functionalities. In addition, this approach was applied to the sulfidation of 2-arylethanols. Mechanistic experiments and DFT computations indicate the formation of phenonium ions as key intermediates in the reaction.
Collapse
Affiliation(s)
- Max Van Hoof
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS) CNRS UMR 7006, Université de Strasbourg, 8 Allée Gaspard Monge, 67000, Strasbourg, France
| | - Robert J Mayer
- Technical University of Munich, School of Natural Sciences, Department Chemie, 85748, Garching, Germany
| | - Joseph Moran
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS) CNRS UMR 7006, Université de Strasbourg, 8 Allée Gaspard Monge, 67000, Strasbourg, France
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
- Institut Universitaire de France (IUF), 75005, Paris, France
| | - David Lebœuf
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS) CNRS UMR 7006, Université de Strasbourg, 8 Allée Gaspard Monge, 67000, Strasbourg, France
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), CNRS UMR 7042, Université de Strasbourg, Université de Haute-Alsace, 25 rue Becquerel, 67000, Strasbourg, France
| |
Collapse
|
8
|
Tian K, Jin Z, Liu XL, He L, Liu HF, Yu PK, Chang X, Dong XQ, Wang CJ. Stereodivergent assembly of δ-valerolactones with an azaarene-containing quaternary stereocenter enabled by Cu/Ru relay catalysis. Chem Sci 2025; 16:1233-1240. [PMID: 39677940 PMCID: PMC11635979 DOI: 10.1039/d4sc05852f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 12/02/2024] [Indexed: 12/17/2024] Open
Abstract
Developing methodologies for the expedient construction of biologically important δ-valerolactones bearing a privileged azaarene moiety and a sterically congested all-carbon quaternary stereocenter is important and full of challenges. We present herein a novel multicatalytic strategy for the stereodivergent synthesis of highly functionalized chiral δ-valerolactones bearing 1,4-nonadjacent quaternary/tertiary stereocenters by orthogonally merging borrowing hydrogen and Michael addition between α-azaaryl acetates and allylic alcohols followed by lactonization in a one-pot manner. Enabled by Cu/Ru relay catalysis, this cascade protocol offers the advantages of atom/step economy, redox-neutrality, mild reaction conditions, and broad substrate tolerance. Scale-up experiments and synthetic transformations further demonstrated the potential for synthetic applications. Mechanistic experiments support the envisioned bimetallic relay catalytic mechanism, and the key role of Cs2CO3 in promoting lactonization was also revealed.
Collapse
Affiliation(s)
- Kui Tian
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 China
| | - Zhuan Jin
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 China
| | - Xin-Lian Liu
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 China
| | - Ling He
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 China
| | - Hong-Fu Liu
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 China
| | - Pin-Ke Yu
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 China
| | - Xin Chang
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 China
| | - Xiu-Qin Dong
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 China
| | - Chun-Jiang Wang
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry Shanghai 230021 China
| |
Collapse
|
9
|
Atreya V, Jalwal S, Chakraborty S. Chromium-catalyzed sustainable C-C and C-N bond formation: C-alkylation and Friedländer quinoline synthesis using alcohols. Dalton Trans 2025; 54:1212-1221. [PMID: 39611727 DOI: 10.1039/d4dt01481b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
The synthesis of a novel phosphine-based pincer chromium(II) complex CrCl2(PONNH) (Cr-1) is reported in this study. The complex exhibited promising catalytic performance in C-C and C-N bond formation using the borrowing hydrogen methodology. Cr-1 catalyzed the α-alkylation of ketones using primary alcohols as alkyl surrogates in the presence of catalytic amount of a base. Cr-1 was also found to catalyze the β-alkylation of secondary alcohols using primary alcohols. In addition, the dehydrogenative annulation of 2-aminobenzyl alcohols with ketones to form quinolines was achieved using Cr-1 as the catalyst. Based on the mechanistic investigation, a plausible mechanism based on metal-ligand cooperation is proposed. The reactions are redox-neutral, atom-efficient, and produce water as the only by-product, thus contributing to green chemistry.
Collapse
Affiliation(s)
- Vaishnavi Atreya
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Jodhpur, 342037, Rajasthan, India.
| | - Sachin Jalwal
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Jodhpur, 342037, Rajasthan, India.
| | - Subrata Chakraborty
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Jodhpur, 342037, Rajasthan, India.
| |
Collapse
|
10
|
Jalwal S, Das S, Chakraborty S. Terpenylation of Ketones and a Secondary Alcohol under Hydrogen-Borrowing Manganese Catalysis. J Org Chem 2025; 90:309-316. [PMID: 39680627 DOI: 10.1021/acs.joc.4c02260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
An Earth-abundant Mn-PNP pincer complex-catalyzed terpenylation of cyclic and acyclic ketones and secondary alcohol 1-phenylethanol using isoprenoid derivatives prenol, nerol, phytol, solanesol, and E-farnesol as allyl surrogates is reported. The C-C coupling reactions are green and atom-economic, proceeding via dehydrogenation of alcohols following a hydrogen autotransfer methodology aided by metal-ligand cooperation.
Collapse
Affiliation(s)
- Sachin Jalwal
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Jodhpur, Rajasthan 342037, India
| | - Sourajit Das
- School of Chemical Science, National Institute of Science Education and Research, Jatni, Khurda, Bhubaneswar, Odisha 752050, India
| | - Subrata Chakraborty
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Jodhpur, Rajasthan 342037, India
| |
Collapse
|
11
|
Diao H, Liu K, Yu R, Chen J, Liu Y, Yang BM, Zhao Y. Iridium-Catalyzed Enantioconvergent Construction of Piperidines and Tetrahydroisoquinolines from Racemic 1,5-Diols. J Am Chem Soc 2025; 147:610-618. [PMID: 39688857 DOI: 10.1021/jacs.4c12466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
We report herein a one-step synthesis of valuable enantioenriched piperidines and tetrahydroisoquinolines from readily available racemic 1,5-diols. Key to the success is the development of new iridacycle catalysts that enable efficient redox-neutral construction of two C-N bonds between diols and amines in an enantioconvergent fashion. Mechanistic studies identified an intriguing preferential oxidation of secondary versus primary alcohol in the diol substrate by the iridacycle catalyst, which set a challenging intermolecular amination of aryl-alkyl-substituted alcohol as the enantiodetermining step for this catalytic N-heterocycle synthesis. Application of this catalytic method to the preparation of important drugs and bioactive compounds is also demonstrated.
Collapse
Affiliation(s)
- Huanlin Diao
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Department of Chemistry, National University of Singapore, 117544, Republic of Singapore
| | - Kexin Liu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Department of Chemistry, National University of Singapore, 117544, Republic of Singapore
| | - Rong Yu
- Department of Chemistry, National University of Singapore, 117544, Republic of Singapore
| | - Jilin Chen
- Department of Chemistry, National University of Singapore, 117544, Republic of Singapore
| | - Yongbing Liu
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Bin-Miao Yang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| | - Yu Zhao
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Department of Chemistry, National University of Singapore, 117544, Republic of Singapore
| |
Collapse
|
12
|
Li H, Wang T, Wang S, Li X, Huang Y, Yan N. Chemical looping synthesis of amines from N 2 via iron nitride as a mediator. Nat Commun 2025; 16:257. [PMID: 39747068 PMCID: PMC11696923 DOI: 10.1038/s41467-024-55511-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 12/12/2024] [Indexed: 01/04/2025] Open
Abstract
Amines are commonly synthesized through the amination of organooxygenates using ammonia, frequently involving the use of noble metal catalysts. In this study, we present an alternative route to make amines using iron nitride (Fe2.5N) as the nitrogen source. Without any additional catalyst, Fe2.5N reacts with a range of alcohols at 250 °C under 1 or 10 bar H2 to produce amines as major products. Mechanistic investigations indicate that hydrogen activates the nitrogen species within iron nitride, converting them into surface NH and NH2 groups that then react with alcohols to form amines. Building on this foundation, we further demonstrate an iron nitride-mediated chemical looping pathway that utilizes N2 as the nitrogen source to synthesize octylamines. In this process, N2 first reacts with iron to form FexN by a ball-milling method at ambient temperature and 6 bar N2. The as-prepared FexN subsequently reacts with alcohols to yield amines, transferring over 80% of the nitrogen to organic compounds. This looping process proves stable across four cycles.
Collapse
Affiliation(s)
- Haoyue Li
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Tie Wang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Shifu Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Xuning Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yanqiang Huang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Ning Yan
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, China.
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore.
- Centre for Hydrogen Innovations, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
13
|
M V, Joshi H, A S A, Dey R. Supported Nickel Nanoparticles as Catalyst in Direct sp 3 C-H Alkylation of 9H-Fluorene Using Alcohols as Alkylating Agent. Chem Asian J 2025; 20:e202400989. [PMID: 39400506 DOI: 10.1002/asia.202400989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/29/2024] [Accepted: 10/12/2024] [Indexed: 10/15/2024]
Abstract
Herein, we report an inexpensive first-row transition metal Ni heterogeneous catalytic system for the Csp 3-mono alkylation of fluorene using alcohols as alkylating agents via borrowing hydrogen strategy. The catalytic protocol displayed versatility with high yields of the desired products using various types of primary alcohols, including aryl/hetero aryl methanols, and aliphatic alcohols as alkylating agents. The catalyst Ni NPs@N-C was synthesized via high-temperature pyrolysis strategy, using ZIF-8 as the sacrificial template. The Ni NPs@N-C catalyst was characterized by XPS, HR-TEM, HAADF-STEM, XRD and ICP-MS. The catalyst is stable even in the air at room temperature, displayed excellent activity and could be recycled 5 times without appreciable loss of its activity.
Collapse
Affiliation(s)
- Vageesh M
- Department of Chemistry, National Institute of Technology Calicut, 673601, Kozhikode, Kerala, India
| | - Harsh Joshi
- Department of Chemistry, National Institute of Technology Calicut, 673601, Kozhikode, Kerala, India
| | - Anupriya A S
- Department of Chemistry, National Institute of Technology Calicut, 673601, Kozhikode, Kerala, India
| | - Raju Dey
- Department of Chemistry, National Institute of Technology Calicut, 673601, Kozhikode, Kerala, India
| |
Collapse
|
14
|
Wani AA, Bhujbal SM, Sherpa D, Kathuria D, Chourasiya SS, Sahoo SC, Bharatam PV. An NNN Pd(II) pincer complex with 1,1-diaminoazine: a versatile catalyst for acceptorless dehydrogenative coupling reactions. Org Biomol Chem 2025; 23:343-351. [PMID: 39534965 DOI: 10.1039/d4ob01576b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
An azine-based, non-palindromic, neutral NNN-pincer ligand was synthesised in a single step with an yield of 85%. The palladation of the ligand, using Pd(OAc)2, was performed in acetonitrile at room temperature to obtain the pincer complex in 88% yield through a simple, cost-effective, and straightforward synthetic procedure. The structure of the complex was confirmed by 1H NMR, 13C NMR, FT-IR, and mass spectrometry. The variable temperature NMR spectra revealed the stability of the complex even at higher temperatures, a characteristic feature of pincer complexes. The generated complex proved to be a versatile catalyst for Acceptorless Dehydrogenative Coupling (ADC) to synthesize N-heterocycles: (i) 1,2-disubstituted benzimidazoles, (ii) 2-phenylquinolines, (iii) 2-phenylquinoxalines and (iv) 2-phenylquinazolinones. Since the side products of the reactions are H2O and H2 gas, the catalysis can be considered as a green catalytic process. Quantum chemical calculations indicated the participation of a possible nitrene-imide conversion process during the Metal-Ligand Cooperation (MLC) in ADC reactions.
Collapse
Affiliation(s)
- Aabid A Wani
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, Punjab 160062, India.
- Chandigarh College of Pharmacy, Chandigarh Group of Colleges, Landran, Punjab, India
| | - Shivkanya Madhavrao Bhujbal
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, Punjab 160062, India.
| | - Deekey Sherpa
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, Punjab 160062, India.
| | - Deepika Kathuria
- University Centre for Research and Development, Chandigarh University, Gharuan, Punjab 140413, India
| | - Sumit S Chourasiya
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, Punjab 160062, India.
| | - Subash C Sahoo
- Department of Chemistry, Panjab University, Chandigarh, Punjab 160014, India
| | - Prasad V Bharatam
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, Punjab 160062, India.
| |
Collapse
|
15
|
Rani S, Kamal, Muskan, Changotra A, Samanta S. Redox Noninnocent Copper(I) Complex Where Metal Is a Spectator and Ligand Is an Actor in the Glaser Coupling Reaction of Alkynes. Inorg Chem 2024; 63:24517-24531. [PMID: 39610221 DOI: 10.1021/acs.inorgchem.4c03210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
An extended trisazo dipyridyl ligand, L, and its copper(I) complex, [1]+, were synthesized and fully characterized. Complex [1]+ has five coordination geometry satisfied by ligand L. L has a low-lying π* orbital; thus, [1]+ showed very facile multiple ligand-based redox events. Moreover, due to the strong π-acceptor nature of L, the Cu(II)/Cu(I) redox potential of [1]+ was anodic (0.62 V). The redox events of both L and [1]+ were characterized using various spectroscopic studies and density functional theory (DFT) calculations. Taking advantage of the multiple facile ligand-based reductions in [1]+, the Glaser coupling reaction of terminal alkynes was explored. Various kinds of alkynes were found to be effective when using [1]+ as a precatalyst. The mechanism of the reaction was investigated thoroughly by several controlled experiments, isolation, and characterization of the intermediates using various spectroscopic studies as well as by single-crystal X-ray structure determination. These studies showed that the L in [1]+ acted not only in the electron transfer events but also as a locus for binding the substrate, breaking and forming bonds, and, finally, releasing the product. Thus, here, the metal mainly acted as a spectator and ligand L acted as an actor.
Collapse
Affiliation(s)
- Swati Rani
- Department of Chemistry, Indian Institute of Technology Jammu Jagti, Jammu 181221, India
| | - Kamal
- Department of Chemistry, Indian Institute of Technology Jammu Jagti, Jammu 181221, India
| | - Muskan
- Department of Chemistry, School of Sciences, Cluster University of Jammu, Canal Road, Jammu 180001, India
| | - Avtar Changotra
- Department of Chemistry, School of Sciences, Cluster University of Jammu, Canal Road, Jammu 180001, India
| | - Subhas Samanta
- Department of Chemistry, Indian Institute of Technology Jammu Jagti, Jammu 181221, India
| |
Collapse
|
16
|
Hans S, Adham M, Khatua M, Samanta S. Cu-ABNO Catalyst for the Synthesis of Quinolines and Pyrazines via Aerobic Double Dehydrogenation of Alcohols. J Org Chem 2024; 89:18090-18108. [PMID: 39609099 DOI: 10.1021/acs.joc.4c01906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
In this report, a new imidazole- and amide-functionalized pincer-like Cu(II) complex (1) was synthesized and characterized. By employing 1 and 9-azabicyclo[3.3.1]nonane NH-Oxyl (ABNOH), a catalytic protocol for alcohol oxidation and the subsequent alcohol oxidation-triggered synthesis of quinolines and pyrazines were explored. Alcohols such as 2-aminoaryl alcohols were also oxidized efficiently. As carbonyls from 2-arylaminobenzyl alcohols and secondary alcohols are synthons for quinolines, we explored their synthesis directly from alcohols. The protocol was quite efficient and completed the reaction in only ∼5-10 h. Combinations such as (a) primary 2-arylaminobenzyl alcohols with secondary alcohols or their ketones and (b) secondary 2-arylaminobenzyl alcohols with secondary alcohols or their ketones were found to be very effective for the synthesis of quinolines. The protocol was also successful for the synthesis of various pyrazines from 1,2-diols and 1,2-diaminobenzenes in 10 h. Mechanistic investigations showed that the generated complex acted as an active catalyst: it activated O2 and subsequently with the cooperation of 9-azabicyclo[3.3.1]nonane N-Oxyl (ABNO•) activated the α-CH hydrogen of coordinated alkoxide. Then, Cu(II)/Cu(I) reduction led to the formation of carbonyl compounds, which via successive C-C/C-N coupling reactions resulted in heterocycles in the presence of KOtBu and 1.
Collapse
Affiliation(s)
- Shivali Hans
- Department of Chemistry, Indian Institute of Technology (IIT) Jammu, Jagti, Jammu 181221, Jammu and Kashmir, India
| | - Mohd Adham
- Department of Chemistry, Indian Institute of Technology (IIT) Jammu, Jagti, Jammu 181221, Jammu and Kashmir, India
| | - Manas Khatua
- Central Instrumentation Facility, Indian Institute of Technology (IIT) Jammu, Paloura, Jammu 181121, Jammu and Kashmir, India
| | - Subhas Samanta
- Department of Chemistry, Indian Institute of Technology (IIT) Jammu, Jagti, Jammu 181221, Jammu and Kashmir, India
| |
Collapse
|
17
|
Wang HY, Liu ZY, Wang LX, Shao DY, Dong FY, Shen YB, Qiu B, Xiao J, An XD. Quinoline as an Intramolecular Hydride Shuttle in the Deoxygenative Coupling Reaction of Alcohol and the Inert Methyl C(sp 3)-H Bond. J Org Chem 2024; 89:18406-18411. [PMID: 39651762 DOI: 10.1021/acs.joc.4c02269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Reported herein is the C(sp3)-C(sp3) bond-forming at an unactivated C(sp3)-H bond via hydride transfer-initiated deoxygenative coupling reactions. Various polycyclic hydroquinolines were provided under metal-free conditions with excellent diastereoselectivity. Mechanistic study revealed that quinoline served as an intramolecular hydride shuttle to achieve the hydride abstraction and release in order. This methodology not only provides a practical strategy for direct deoxygenative coupling for the C(sp3)-C(sp3) bond-forming but also develops a new reaction type involving quinoline-enabled hydride transfer.
Collapse
Affiliation(s)
- Hui-Yun Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Zhen-Yuan Liu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Long-Xue Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Da-Ying Shao
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Feng-Ying Dong
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Yao-Bin Shen
- College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang 277160, China
| | - Bin Qiu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Jian Xiao
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiao-De An
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
18
|
Chen Z, Ouyang L, Wang N, Li W, Ke Z. Remote C-H bond cooperation strategy enabled silver catalyzed borrowing hydrogen reactions. Chem Sci 2024; 16:163-170. [PMID: 39620071 PMCID: PMC11603383 DOI: 10.1039/d4sc05486e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/21/2024] [Indexed: 12/20/2024] Open
Abstract
Metal-ligand cooperation (MLC) is an essential strategy in transition metal catalysis. Traditional NH-based and OH-based MLC catalysts, as well as the later developed (de)aromatization strategy, have been widely applied in atom-economic borrowing hydrogen/hydrogen auto-transfer (BH/HA) reactions. However, these conventional MLC approaches are challenging for low-coordination and low-activity coinage metal complexes, arising from the instability during (de)protonation on the coordination atom, the constraint in linear coordination, and possible poisoning due to extra functional sites. Herein, we demonstrate a remote C-H bond cooperation strategy that enables the unprecedented homogeneous Ag(i)-catalyzed BH/HA reaction. The covalent C-H bifunctional site well facilitates (de)hydrogenation, especially under the low coordination circumstances of d10 Ag(i). The strong electron-donating bis-N-heterocyclic carbene (NHC) ligand stabilizes the silver-hydride and stimulates the hydride activity on the trans-position of ligands. Mechanistic studies implicate the plausible remote assistance of the dissociative NHC arm in facilitating BH/HA reactions. Our findings emphasize the potential of the remote C-H bond cooperation strategy for low coordination metals in catalyzing BH/HA reactions and broadening MLC catalysts to d10 coinage metals.
Collapse
Affiliation(s)
- Zhe Chen
- School of Materials Science and Engineering, PCFM Lab, the Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province, Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Laofeng Ouyang
- School of Materials Science and Engineering, PCFM Lab, the Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province, Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Ning Wang
- School of Chemistry, Sun Yat-sen University Guangzhou 510275 P. R. China
| | - Weikang Li
- School of Materials Science and Engineering, PCFM Lab, the Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province, Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Zhuofeng Ke
- School of Materials Science and Engineering, PCFM Lab, the Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province, Sun Yat-sen University Guangzhou 510006 P. R. China
| |
Collapse
|
19
|
Saha SN, Ballav N, Ghosh S, Baidya M. Regioselective intermolecular carboamination of allylamines via nucleopalladation: empowering three-component synthesis of vicinal diamines. Chem Sci 2024; 16:386-392. [PMID: 39620079 PMCID: PMC11606157 DOI: 10.1039/d4sc07630c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 11/22/2024] [Indexed: 12/20/2024] Open
Abstract
An intermolecular carboamination reaction of allyl amines under Pd(ii)-catalysis is reported, expediting the synthesis of valuable vicinal diamines embedded in a functionally enriched linear carbon framework with high yields and exclusive Markovnikov selectivity. Central to our approach is the strategic use of a removable picolinamide auxiliary, which directs the regioselectivity during aminopalladation and stabilizes the crucial 5,5-palladacycle intermediate. This stabilization facilitates oxidative addition to carbon electrophiles, enabling the simultaneous incorporation of diverse aryl/styryl groups as well as important amine motifs, such as sulfoximines and anilines, across carbon-carbon double bonds. The protocol features broad substrate compatibility, tolerance to various functional groups, and scalability. The utility of this method is further demonstrated by the site-selective diversification of pharmaceutical agents. Additionally, these products serve as versatile intermediates for synthesizing heterocycles and function as effective ligands in catalytic transfer hydrogenation reactions. Notably, this work represents a rare instance of nucleopalladation-guided intermolecular carboamination of allylamines.
Collapse
Affiliation(s)
- Shib Nath Saha
- Department of Chemistry, Indian Institute of Technology Madras Chennai 600036 India
| | - Nityananda Ballav
- Department of Chemistry, Indian Institute of Technology Madras Chennai 600036 India
| | - Suman Ghosh
- Department of Chemistry, Indian Institute of Technology Madras Chennai 600036 India
| | - Mahiuddin Baidya
- Department of Chemistry, Indian Institute of Technology Madras Chennai 600036 India
| |
Collapse
|
20
|
Wang F, Chen C, Zhang F, Meng Q. Theoretical study of Ni(0)-catalyzed intermolecular hydroamination of branched 1,3-dienes: reaction mechanism, regioselectivity, enantioselectivity, and prediction of the ligand. J Mol Model 2024; 31:17. [PMID: 39661131 DOI: 10.1007/s00894-024-06217-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024]
Abstract
CONTEXT Nickel-catalyzed hydroamination of dienes with phenylmethanamines was studied theoretically to investigate reaction mechanism. These calculated results revealed that Ni-catalyzed hydroamination began with the O - H bond activation of trifluoroethanol, including three important elementary steps: the ligand-to-ligand hydrogen migration, the nucleophilic attack of phenylmethanamine, and hydrogen migration. The nucleophilic attack of phenylmethanamine was the rate-determining step, and the branched product of 3,4-addition with (S)-chirality was the most dominant. The N - H bond activation of phenylmethanamine occurred more difficultly than the O - H bond of trifluoroethanol, because of high ΔG and ΔG≠. In addition, the origin of regioselectivity and enantioselectivity, and prediction of the ligand were also discussed in this text. METHODS All computations were performed with Gaussian09 program. All geometries were optimized at the ωB97XD/6-31G(d,p) level (SDD for Ni), and to obtain more accurate potential energy, single-point calculation was carried out at the ωB97XD/cc-pVDZ level (SDD for Ni). The Cramer-Truhlar continuum solvation model (SMD) was used to evaluate solvation effect of mesitylene, and a correction of the translational entropy was made with the procedure of Whitesides group.
Collapse
Affiliation(s)
- Fen Wang
- College of Chemistry and Chemical Engineering, Taishan University, Taian, Shandong, 271000, People's Republic of China
| | - Changbao Chen
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Feng Zhang
- Technology Center, China Tobacco Fujian Industrial Co., Ltd., Xiamen, Fujian, People's Republic of China.
| | - Qingxi Meng
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China.
| |
Collapse
|
21
|
Vermeeren B, Van Praet S, Arts W, Narmon T, Zhang Y, Zhou C, Steenackers HP, Sels BF. From sugars to aliphatic amines: as sweet as it sounds? Production and applications of bio-based aliphatic amines. Chem Soc Rev 2024; 53:11804-11849. [PMID: 39365265 DOI: 10.1039/d4cs00244j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Aliphatic amines encompass a diverse group of amines that include alkylamines, alkyl polyamines, alkanolamines and aliphatic heterocyclic amines. Their structural diversity and distinctive characteristics position them as indispensable components across multiple industrial domains, ranging from chemistry and technology to agriculture and medicine. Currently, the industrial production of aliphatic amines is facing pressing sustainability, health and safety issues which all arise due to the strong dependency on fossil feedstock. Interestingly, these issues can be fundamentally resolved by shifting toward biomass as the feedstock. In this regard, cellulose and hemicellulose, the carbohydrate fraction of lignocellulose, emerge as promising feedstock for the production of aliphatic amines as they are available in abundance, safe to use and their aliphatic backbone is susceptible to chemical transformations. Consequently, the academic interest in bio-based aliphatic amines via the catalytic reductive amination of (hemi)cellulose-derived substrates has systematically increased over the past years. From an industrial perspective, however, the production of bio-based aliphatic amines will only be the middle part of a larger, ideally circular, value chain. This value chain additionally includes, as the first part, the refinery of the biomass feedstock to suitable substrates and, as the final part, the implementation of these aliphatic amines in various applications. Each part of the bio-based aliphatic amine value chain will be covered in this Review. Applying a holistic perspective enables one to acknowledge the requirements and limitations of each part and to efficiently spot and potentially bridge knowledge gaps between the different parts.
Collapse
Affiliation(s)
- Benjamin Vermeeren
- Center for Sustainable Catalysis and Engineering (CSCE), KU Leuven, Belgium.
| | - Sofie Van Praet
- Center for Sustainable Catalysis and Engineering (CSCE), KU Leuven, Belgium.
| | - Wouter Arts
- Center for Sustainable Catalysis and Engineering (CSCE), KU Leuven, Belgium.
| | - Thomas Narmon
- Center for Sustainable Catalysis and Engineering (CSCE), KU Leuven, Belgium.
| | - Yingtuan Zhang
- Center for Sustainable Catalysis and Engineering (CSCE), KU Leuven, Belgium.
| | - Cheng Zhou
- Center for Sustainable Catalysis and Engineering (CSCE), KU Leuven, Belgium.
| | | | - Bert F Sels
- Center for Sustainable Catalysis and Engineering (CSCE), KU Leuven, Belgium.
| |
Collapse
|
22
|
Liu Y, Ji P, Zou G, Liu Y, Yang BM, Zhao Y. Dynamic Asymmetric Diamination of Allylic Alcohols through Borrowing Hydrogen Catalysis: Diastereo-Divergent Synthesis of Tetrahydrobenzodiazepines. Angew Chem Int Ed Engl 2024; 63:e202410351. [PMID: 39305276 DOI: 10.1002/anie.202410351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Indexed: 11/03/2024]
Abstract
We present herein a catalytic enantioconvergent diamination of racemic allylic alcohols with the construction of two C-N bonds and 1,3-nonadjacent stereocenters. This iridium/chiral phosphoric acid cooperative catalytic system operates through an atom-economical borrowing hydrogen amination/aza-Michael cascade, and converts readily available phenylenediamines and racemic allylic alcohols to 1,5-tetrahydrobenzodiazepines in high enantioselectivity. An intriguing solvent-dependent switch of diastereoselectivity was also observed. Mechanistic studies suggested a dynamic kinetic resolution process involving racemization through a reversible Michael addition, making the last step of asymmetric imine reduction the enantiodetermining step of this cascade process.
Collapse
Affiliation(s)
- Yufeng Liu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, 350207, Fuzhou, China
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Republic of Singapore
| | - Peng Ji
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, 350207, Fuzhou, China
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Republic of Singapore
| | - Gongfeng Zou
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, 350207, Fuzhou, China
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Republic of Singapore
| | - Yongbing Liu
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Material Science, Hebei Normal University, 050024, Shijiazhuang, China
| | - Bin-Miao Yang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, 350207, Fuzhou, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 730000, Lanzhou, China
| | - Yu Zhao
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, 350207, Fuzhou, China
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Republic of Singapore
| |
Collapse
|
23
|
Saha R, Hembram BC, Panda S, Ghosh R, Bagh B. Iron-Catalyzed sp 3 C-H Alkylation of Fluorene with Primary and Secondary Alcohols: A Borrowing Hydrogen Approach. J Org Chem 2024; 89:16223-16241. [PMID: 39175426 DOI: 10.1021/acs.joc.4c00819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
The utilization of earth-abundant, cheap, and nontoxic transition metals in important catalytic transformations is essential for sustainable development, and iron has gained significant attention as the most abundant transition metal. A mixture of FeCl2 (3 mol %), phenanthroline (6 mol %), and KOtBu (0.4 eqivalent) was used as an effective catalyst for the sp3 C-H alkylation of fluorene using alcohol as a nonhazardous alkylating partner, and eco-friendly water was formed as the only byproduct. The substrate scope includes a wide range of substituted fluorenes and substituted benzyl alcohols. The reaction is equally effective with challenging secondary alcohols and unactivated aliphatic alcohols. Selective mono-C9-alkylation of fluorenes with alcohols yielded the corresponding products in good isolated yields. Various postfunctionalizations of C-9 alkylated fluorene products were performed to establish the practical utility of this catalytic alkylation. Control experiments suggested a homogeneous reaction path involving borrowing hydrogen mechanism with the formation and subsequent reduction of 9-alkylidene fluorene intermediate.
Collapse
Affiliation(s)
- Ratnakar Saha
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, PIN 752050, India
| | - Bhairab Chand Hembram
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, PIN 752050, India
| | - Surajit Panda
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, PIN 752050, India
| | - Rahul Ghosh
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, PIN 752050, India
| | - Bidraha Bagh
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, PIN 752050, India
| |
Collapse
|
24
|
Liu C, Wang L, Ge H. Multifunctionalization of Alkenyl Alcohols via a Sequential Relay Process. J Am Chem Soc 2024; 146:30733-30740. [PMID: 39470983 DOI: 10.1021/jacs.4c09522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Aryl-substituted aliphatic amines are widely recognized as immensely valuable molecules. Consequently, the development of practical strategies for the construction of these molecules becomes increasingly urgent and critical. Here, we have successfully achieved multifunctionalization reactions of alkenyl alcohols in a sequential relay process, which enables transformation patterns of arylamination, deuterated arylamination, and methylenated arylamination to the easy access of multifarious arylalkylamines. Notably, a novel functionalization mode for carbonyl groups has been developed to facilitate the processes of deuterium incorporation and methylene introduction, thereby providing new means for the diverse transformations of carbonyl groups. This methodology displays a wide tolerance toward functional groups, while also exhibiting good applicability across various skeletal structures of alkenols and amines.
Collapse
Affiliation(s)
- Chong Liu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Ling Wang
- Residual Department, Merieux Testing Technology (Qingdao) Co., Ltd., Qingdao, 266000, China
| | - Haibo Ge
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| |
Collapse
|
25
|
Zheng Y, Fu H, Zheng X, Chen H, Li R. Ruthenium-Catalyzed Synthesis of 2-Pyrazolines via Acceptorless Dehydrogenative Coupling of Allylic Alcohols with Hydrazines. Org Lett 2024; 26:9340-9345. [PMID: 39432013 DOI: 10.1021/acs.orglett.4c03525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Described herein is the synthesis of 2-pyrazolines via acceptorless dehydrogenative coupling of allylic alcohols with hydrazines based on a Ru3(CO)12/NHC-phosphine-phosphine ligand L catalytic system. The reaction not only exhibits low catalyst loading (only 0.3 mol %), wide substrate scope, good to excellent yields, and high selectivity but also omits the use of sacrificial hydrogen acceptor with only H2 and H2O as byproducts, making the reaction green and atom-economical.
Collapse
Affiliation(s)
- Yanling Zheng
- School of Pharmacy, North Sichuan Medical College, Nanchong 637000, P. R. China
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Haiyan Fu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Xueli Zheng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Hua Chen
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Ruixiang Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
26
|
Roca Jungfer M, Rominger F, Oeser T, Götz E, Hashmi ASK, Schaub T. Iron Complexes of 4,5-Bis(diorganophosphinomethyl)acridine Ligands. Inorg Chem 2024; 63:18655-18668. [PMID: 39324856 DOI: 10.1021/acs.inorgchem.4c02409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
The search for an iron analog of the established ruthenium-based catalysts containing methylene-extended 4,5-bis(diorganophosphinomethyl)acridine ligands, [FeHCl(CO)(LR)], resulted in the discovery of a bidentate coordination mode of these usually tridentate pincer ligands toward iron. The acridines nitrogen atom does not coordinate to iron, leading to the formation of iron diphos-type complexes with unusually large cis bite angles of up to 124° as well as trans bite angles around 155°. The iron-containing complexes [FeCl2(κ2-LR)] (R = iPr, Ph), [FeX2(κ2-LCy)] (X = Cl, Br) and [Fe(CO)3(κ2-LR)] (R = iPr, Cy) have been isolated in crystalline form and characterized by spectroscopic methods and mass spectrometry. Their structures were verified unambiguously through X-ray diffraction. The stability of the iron(II) complexes decreased in the order Cy > Ph > iPr and Cl > Br > I, although all iron(II) complexes were found to be relatively stable enough for short-term handling in air in the solid state. Notably, no iron(0) complex of the phenyl derivative could be isolated. The iron(0) complex [Fe(CO)3(κ2-LCy)] was found to be significantly more stable toward hydrolysis and oxygen compared to [Fe(CO)3(κ2-LiPr)] and can be stored in air for months without significant decomposition in the solid state, while [Fe(CO)3(κ2-LiPr)] decomposes in air within seconds. The decomposition products [FeI2(κ2-O2LCy)], [{Fe(CO)3(κ2-HLR)}2] (R = iPr, Cy) and [FeCl2(CO)2(κ1-LCy)(κ1-OLCy)] were identified and characterized crystallographically. The iron(0) complex [Fe(CO)3(κ2-LCy)] is oxidized by [Fe(Cp)2](BPh4) to give the paramagnetic, low-spin iron(I) cation [Fe(CO)3(κ2-LCy)]+. The electron paramagnetic resonance spectrum of the highly sensitive cation as well as density functional theory calculations suggest a partial delocalization of the unpaired electron over the three carbonyl ligands and the acridines aromatic ring system. The catalytic activity and photophysical properties of the complexes have been preliminarily investigated.
Collapse
Affiliation(s)
- Maximilian Roca Jungfer
- Catalysis Research Laboratory (CaRLa), Heidelberg University, Im Neuenheimer Feld 584, 69120 Heidelberg, Germany
| | - Frank Rominger
- Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 271, 69120 Heidelberg, Germany
| | - Thomas Oeser
- Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 271, 69120 Heidelberg, Germany
| | - Emilia Götz
- Rigaku Europe SE, Hugenottenallee 167, 63263 Neu-Isenburg, Germany
| | - A Stephen K Hashmi
- Catalysis Research Laboratory (CaRLa), Heidelberg University, Im Neuenheimer Feld 584, 69120 Heidelberg, Germany
- Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 271, 69120 Heidelberg, Germany
| | - Thomas Schaub
- Catalysis Research Laboratory (CaRLa), Heidelberg University, Im Neuenheimer Feld 584, 69120 Heidelberg, Germany
- Chemical Synthesis Research, BASF SE, Carl-Bosch-Str. 38, 67056 Ludwigshafen, Germany
| |
Collapse
|
27
|
Ramsden J, Zucoloto da Costa B, Heath RS, Marshall JR, Derrington SR, Mangas-Sanchez J, Montgomery SL, Mulholland KR, Cosgrove SC, Turner NJ. Bifunctional Imine Reductase Cascades for the Synthesis of Saturated N-Heterocycles. ACS Catal 2024; 14:14703-14710. [PMID: 39386922 PMCID: PMC11459430 DOI: 10.1021/acscatal.4c03832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/03/2024] [Accepted: 09/13/2024] [Indexed: 10/12/2024]
Abstract
Saturated N-heterocycles constitute a vital scaffold for pharmaceutical chemistry but are challenging to access synthetically, particularly asymmetrically. Here, we demonstrate how imine reductases can achieve annulation through tandem inter- and intramolecular reductive amination processes. Imine reductases were used in combination with further enzymes to access unsubstituted, α-substituted, and α,α'-disubstituted N-heterocycles from simple starting materials in one pot and under benign conditions. This work shows the remarkable flexibility of these enzymes to have broad activity against numerous substrates derived from singlular starting materials.
Collapse
Affiliation(s)
- Jeremy
I. Ramsden
- Manchester
Institute of Biotechnology, Department of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Bruna Zucoloto da Costa
- Manchester
Institute of Biotechnology, Department of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Rachel S. Heath
- Manchester
Institute of Biotechnology, Department of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - James R. Marshall
- Manchester
Institute of Biotechnology, Department of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Sasha R. Derrington
- Manchester
Institute of Biotechnology, Department of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Juan Mangas-Sanchez
- Manchester
Institute of Biotechnology, Department of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Sarah L. Montgomery
- Manchester
Institute of Biotechnology, Department of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Keith R. Mulholland
- Chemical
Development, Pharmaceutical Technology and Development, Operations, AstraZeneca, Silk Road Business Park, Macclesfield SK10 2NA, U.K.
| | - Sebastian C. Cosgrove
- Manchester
Institute of Biotechnology, Department of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
- School
of
Chemical and Physical Sciences and Keele Centre for Glycoscience, Keele University, Keele ST5 5BG, U.K.
| | - Nicholas J. Turner
- Manchester
Institute of Biotechnology, Department of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| |
Collapse
|
28
|
Bari MA, Elsherbeni SA, Maqbool T, Latham DE, Gushlow EB, Harper EJ, Morrill LC. Iron-Catalyzed Transfer Hydrogenation of Allylic Alcohols with Isopropanol. J Org Chem 2024; 89:14571-14576. [PMID: 39320102 PMCID: PMC11459429 DOI: 10.1021/acs.joc.4c01701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/10/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024]
Abstract
Herein, we report an iron-catalyzed transfer hydrogenation of allylic alcohols. The operationally simple protocol employs a well-defined bench stable (cyclopentadienone)iron(0) carbonyl complex as a precatalyst in combination with K2CO3 (4 mol %) and isopropanol as the hydrogen donor. A diverse range of allylic alcohols undergo transfer hydrogenation to form the corresponding alcohols in good yields (33 examples, ≤83% isolated yield). The scope and limitations of the method have been investigated, and experiments that shed light on the reaction mechanism have been conducted.
Collapse
Affiliation(s)
- Md Abdul Bari
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Salma A. Elsherbeni
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Tahir Maqbool
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
- Department
of Chemistry, Government College University
Faisalabad, Faisalabad 38000, Pakistan
| | - Daniel E. Latham
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Edward B. Gushlow
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Emily J. Harper
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Louis C. Morrill
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| |
Collapse
|
29
|
Danopoulou M, Zorba LP, Karantoni AP, Tzeli D, Vougioukalakis GC. Copper-Catalyzed α-Alkylation of Aryl Acetonitriles with Benzyl Alcohols. J Org Chem 2024; 89:14242-14254. [PMID: 39292689 PMCID: PMC11459520 DOI: 10.1021/acs.joc.4c01662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/26/2024] [Accepted: 09/11/2024] [Indexed: 09/20/2024]
Abstract
A highly efficient, in situ formed CuCl2/TMEDA catalytic system (TMEDA = N,N,N',N'-tetramethylethylene-diamine) for the cross-coupling reaction of aryl acetonitriles with benzyl alcohols is reported. This user-friendly protocol, employing a low catalyst loading and a catalytic amount of base, leads to the synthesis of α-alkylated nitriles in up to 99% yield. Experimental mechanistic investigations reveal that the key step of this transformation is the C(sp3)-H functionalization of the alcohol, taking place via a hydrogen atom abstraction, with the simultaneous formation of copper-hydride species. Detailed density functional theory studies shed light on all reaction steps, confirming the catalytic pathway proposed on the basis of the experimental findings.
Collapse
Affiliation(s)
- Marianna Danopoulou
- Laboratory
of Organic Chemistry, National and Kapodistrian
University of Athens, Panepistimiopolis, 15771 Athens, Greece
| | - Leandros P. Zorba
- Laboratory
of Organic Chemistry, National and Kapodistrian
University of Athens, Panepistimiopolis, 15771 Athens, Greece
| | - Athanasia P. Karantoni
- Laboratory
of Physical Chemistry, National and Kapodistrian
University of Athens, Panepistimiopolis, 15771 Athens, Greece
| | - Demeter Tzeli
- Laboratory
of Physical Chemistry, National and Kapodistrian
University of Athens, Panepistimiopolis, 15771 Athens, Greece
- Theoretical
and Physical Chemistry Institute, National
Hellenic Research Foundation, Vas. Constantinou, 48, 11635 Athens, Greece
| | - Georgios C. Vougioukalakis
- Laboratory
of Organic Chemistry, National and Kapodistrian
University of Athens, Panepistimiopolis, 15771 Athens, Greece
| |
Collapse
|
30
|
Li H, Fan M, Liu Q. Unveiling the Unique Reactivity of Anionic Mn(I) Complexes via Metal-Ligand Cooperation: Nucleophilic Attack on C(sp 3)-X Bonds. J Am Chem Soc 2024; 146:26649-26656. [PMID: 39295280 DOI: 10.1021/jacs.4c01683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Metal-ligand cooperation (MLC) has emerged as a pivotal strategy for the catalytic activation of small molecules within both synthetic and biological arenas. Leveraging this approach, a suite of potent catalytic reactions─encompassing hydrogenation, hydroelementation, and dehydrogenative processes─have been realized, with notable advances in manganese catalysis in recent years. However, the activation of alkyl halides by Mn complexes, which typically requires strong reductants to form Mn(-I) complexes that are incompatible with standard cross-coupling conditions, remains a significant challenge. This limitation underscores the urgent need to investigate alternative methods for activating C(sp3)-X bonds using higher valence state Mn complexes. In response to this challenge, we present the synthesis, characterization, and reactivity of a new anionic Mn(I) complex featuring a redox-active dianionic ligand that induces multiple MLC functionalities. We have discovered an innovative mechanism of MLC, characterized by a single ligand transferring two electrons to the metal center. This novel process facilitates an orbital-symmetry-allowed nucleophilic attack on C(sp3)-X bonds, preserving manganese's oxidative state at +1. To the best of our knowledge, this is the first instance where the MLC strategy via a two-electron transfer process has been utilized to execute an SN2 nucleophilic attack at a C(sp3)-X bond by a relatively electron-deficient metal center like Mn(I). Additionally, the dianionic ligand of the anionic Mn(I) complex exhibits ambident nucleophilicity by reacting with different electrophiles, further highlighting its versatile reactivity.
Collapse
Affiliation(s)
- Hengxu Li
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Mingjie Fan
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Qiang Liu
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
31
|
Hikawa H, Fukuda A, Kondo K, Nakayama T, Enda T, Kikkawa S, Azumaya I. Au(III)/TPPMS-catalyzed Friedel-Crafts benzylation of deactivated N-alkylanilines in water. Org Biomol Chem 2024; 22:7874-7879. [PMID: 39235437 DOI: 10.1039/d4ob01234h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
The Friedel-Crafts reaction of electronically deactivated anilines including those with strong electron-withdrawing NO2, CN or CO2H groups is challenging due to the reduced electron density of the aromatic ring. Here, we demonstrate the Au(III)/TPPMS-catalyzed Friedel-Crafts benzylation of deactivated anilines in water. This reaction exhibits operational simplicity and a broad substrate scope with high regioselectivity, enabling rapid access to 2-benzylanilines.
Collapse
Affiliation(s)
- Hidemasa Hikawa
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan.
| | - Akane Fukuda
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan.
| | - Kazuma Kondo
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan.
| | - Taku Nakayama
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan.
| | - Tomokatsu Enda
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan.
| | - Shoko Kikkawa
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan.
| | - Isao Azumaya
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan.
| |
Collapse
|
32
|
Fan J, Gao J, Zhou Y, Zhao XJ, Li G, He Y. Electrochemical Dimerization of o-Aminophenols and Hydrogen Borrowing-like Cascade to Synthesize N-Monoalkylated Aminophenoxazinones via Paired Electrolysis. J Org Chem 2024; 89:13071-13076. [PMID: 39254633 DOI: 10.1021/acs.joc.4c01130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
A novel electrocatalytic dimerization of o-aminphenols and a hydrogen borrowing-like cascade for synthesizing N-monoalkylated aminophenoxazinones have been developed. This electrocatalytic reaction uses a constant current mode in an undivided cell and is free of metal catalysis, open to the air, and eco-friendly. In particular, this protocol exhibits a wide substrate range and provides versatile N-monoalkylated aminophenoxazinones in medium to good yields. The results of our mechanistic research reveal that this protocol involves a cascade of electrochemical cyclocondensation of o-aminphenols and the hydrogen transfer process via paired electrolysis.
Collapse
Affiliation(s)
- Jiahui Fan
- Key Laboratory of Chemistry in Ethnic Medicinal Resources and Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, School of Ethnic Medicine, Yunnan Minzu University, Kunming 650500, China
| | - Jun Gao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources and Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, School of Ethnic Medicine, Yunnan Minzu University, Kunming 650500, China
| | - Ye Zhou
- Key Laboratory of Chemistry in Ethnic Medicinal Resources and Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, School of Ethnic Medicine, Yunnan Minzu University, Kunming 650500, China
| | - Xiao-Jing Zhao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources and Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, School of Ethnic Medicine, Yunnan Minzu University, Kunming 650500, China
| | - Ganpeng Li
- Key Laboratory of Chemistry in Ethnic Medicinal Resources and Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, School of Ethnic Medicine, Yunnan Minzu University, Kunming 650500, China
| | - Yonghui He
- Key Laboratory of Chemistry in Ethnic Medicinal Resources and Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, School of Ethnic Medicine, Yunnan Minzu University, Kunming 650500, China
| |
Collapse
|
33
|
Saha R, Maharana SK, Jana NC, Bagh B. Copper-catalyzed C(sp 3)-H alkylation of fluorene with primary and secondary alcohols using a borrowing hydrogen method. Chem Commun (Camb) 2024; 60:10144-10147. [PMID: 39189332 DOI: 10.1039/d4cc03310h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Despite the limited success of copper-catalyzed alkylations, (NNS)CuCl proved to be an effective catalyst for the sp3 C-H alkylation of fluorene with alcohols. Various primary alcohols and challenging secondary alcohols were successfully used. The practical applicability of the method was effectively tested with several post-functionalization reactions. This copper-catalyzed alkylation of fluorene involved a borrowing hydrogen mechanism.
Collapse
Affiliation(s)
- Ratnakar Saha
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, Jatni, Khurda, Odisha, 752050, India.
| | - Suraj Kumar Maharana
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, Jatni, Khurda, Odisha, 752050, India.
| | - Narayan Ch Jana
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, Jatni, Khurda, Odisha, 752050, India.
| | - Bidraha Bagh
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, Jatni, Khurda, Odisha, 752050, India.
| |
Collapse
|
34
|
He Y, Shi L, Dong B, Zhao G, Li F. β-Methylation of Primary Alcohols with Methanol Catalyzed by a Metal-Ligand Bifunctional Iridium Catalyst. J Org Chem 2024; 89:12392-12400. [PMID: 39087433 DOI: 10.1021/acs.joc.4c01323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
The development of efficient methods for the direct introduction of a methyl group into molecules is becoming increasingly important. Herein, the β-methylation of primary alcohols with methanol has been accomplished under environmentally benign conditions using [Cp*Ir(2,2'-bpyO)(H2O)] as a catalyst. It was found that functional groups in the ligand are crucially important for the activity of the iridium complex. Furthermore, the mechanistic research and application potential of our catalytic system are also presented.
Collapse
Affiliation(s)
- Yiqian He
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Lili Shi
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Beixuan Dong
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Guoqiang Zhao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Feng Li
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
35
|
Bindra S, Bose K, Thekkantavida AC, Grace Thomas Parambi D, Alsahli TG, Pant M, Pappachen LK, Kim H, Mathew B. FDA-approved drugs containing dimethylamine pharmacophore: a review of the last 50 years. RSC Adv 2024; 14:27657-27696. [PMID: 39224646 PMCID: PMC11367245 DOI: 10.1039/d4ra04730c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Dimethylamine (DMA) derivatives represent a promising class of compounds with significant potential in the field of medicinal chemistry. DMA derivatives exhibit a diverse range of pharmacological activities, including antimicrobial, antihistaminic, anticancer, and analgesic properties. Their unique chemical structure allows for the modulation of various biological targets, making them valuable candidates for the treatment of numerous diseases. Synthetic strategies for the preparation of DMA derivatives vary depending on the desired biological activity and target molecule. Common synthetic routes involve the modification of the DMA scaffold through functional group manipulation, scaffold hopping, or combinatorial chemistry approaches. Therapeutically, DMA derivatives have shown promise in the treatment of infectious diseases, especially bacterial infections. Additionally, by focusing on particular biochemical pathways involved in tumor growth and metastasis, DMA-based drugs have shown anticancer activity. In addition to their direct pharmacological effects, DMA derivatives can serve as valuable tools in drug delivery systems, prodrug design, and molecular imaging techniques, enhancing their utility in medicinal chemistry research. Overall, DMA derivatives represent a versatile class of compounds with immense potential in medicinal chemistry. Further research and development efforts are warranted to explore their full therapeutic capabilities and optimize their clinical utility in the treatment of various diseases. This article outlines the pharmacological properties, synthetic strategies, and therapeutic applications of DMA derivatives of FDA approved drugs, highlighting their importance in drug discovery and development.
Collapse
Affiliation(s)
- Sandeep Bindra
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham Amrita Health Science Campus Kochi 682041 India
| | - Kuntal Bose
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham Amrita Health Science Campus Kochi 682041 India
| | - Amrutha Chandran Thekkantavida
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham Amrita Health Science Campus Kochi 682041 India
| | - Della Grace Thomas Parambi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University Sakaka Aljouf 72341 Saudi Arabia
| | - Tariq G Alsahli
- Department of Pharmacology, College of Pharmacy, Jouf University Sakaka Aljouf 72341 Saudi Arabia
| | - Manu Pant
- School of Pharmacy, Graphic Era Hill University Dehradun 248002 India
- Graphic Era Hill University (Deemed to be University) Clement Town Dehradun 248002 India
| | - Leena K Pappachen
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham Amrita Health Science Campus Kochi 682041 India
| | - Hoon Kim
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University Suncheon 57922 Republic of Korea
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham Amrita Health Science Campus Kochi 682041 India
| |
Collapse
|
36
|
Joseph E, Tunge JA. Cobalt-Catalyzed Allylic Alkylation at sp 3-Carbon Centers. Chemistry 2024; 30:e202401707. [PMID: 38869446 DOI: 10.1002/chem.202401707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/14/2024]
Abstract
The rising demand and financial costs of noble transition metal catalysts have emphasized the need for sustainable catalytic approaches. Over the past few years, base-metal catalysts have emerged as ideal candidates to replace their noble-metal counterparts because of their abundance and easiness of handling. Despite the significant advancements achieved with precious transition metals, earth-abundant cobalt catalysts have emerged as efficient alternatives for allylic substitution reactions. In this review, allylic alkylations at sp3-carbon centers mediated by cobalt will be discussed, with a special focus on the mechanistic features, scope, and limitations.
Collapse
Affiliation(s)
- Ebbin Joseph
- Department of Chemistry, The University of Kansas, 1567 Irving Rd., Lawrence, KS 66045, USA
| | - Jon A Tunge
- Department of Chemistry, The University of Kansas, 1567 Irving Rd., Lawrence, KS 66045, USA
| |
Collapse
|
37
|
Mahala S, Gupta N, Singh S, Sharma AK, Bhuvanesh N, Joshi H. Designing Cobalt(II) Complex for Chemoselective Synthesis of 2-Aryl-3-Formyl Indoles from Amino Alcohols and Alcohols †. Chemistry 2024; 30:e202401698. [PMID: 38899378 DOI: 10.1002/chem.202401698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/20/2024] [Accepted: 06/20/2024] [Indexed: 06/21/2024]
Abstract
An air-stable, inexpensive, and isolable cobalt(II) complex (C1) of N-((1-methyl-1H-imidazol-2-yl)methyl)-2-(phenylselanyl)ethan amine (L1) was synthesized and characterized. The complex was used to catalyze a one-pot cascade reaction between 2-(2-aminophenyl)ethanols and benzyl alcohol derivatives. Interestingly, 2-aryl-3-formylindole derivatives were formed instead of N-alkylated or C-3 alkylated indoles. A broad substrate scope can be activated using this protocol with only 5.0 mol % catalyst loading to achieve up to 87 % yield of 2-aryl-3-formylindole derivatives. The mechanistic studies suggested that the reaction proceeds through tandem imine formation followed by cyclization.
Collapse
Affiliation(s)
- Suman Mahala
- ISC Laboratory, Department of Chemistry, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer, Rajasthan, 305817, India
| | - Navya Gupta
- ISC Laboratory, Department of Chemistry, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer, Rajasthan, 305817, India
| | - Sohan Singh
- ISC Laboratory, Department of Chemistry, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer, Rajasthan, 305817, India
| | - Alpesh K Sharma
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Nattamai Bhuvanesh
- Department of Chemistry, Texas A&M University, PO Box 30012, College Station, Texas, 77842-3012, USA
| | - Hemant Joshi
- ISC Laboratory, Department of Chemistry, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer, Rajasthan, 305817, India
| |
Collapse
|
38
|
Lu Y, Zhu M, Chen S, Yao J, Li T, Wang X, Tang C. Single-Atom Fe-Catalyzed Acceptorless Dehydrogenative Coupling to Quinolines. J Am Chem Soc 2024; 146:23338-23347. [PMID: 39105742 DOI: 10.1021/jacs.4c06145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
A single-atom iron catalyst was found to exhibit exceptional reactivity in acceptorless dehydrogenative coupling for quinoline synthesis, outperforming known homogeneous and nanocatalyst systems. Detailed characterizations, including aberration-corrected HAADF-STEM, XANES, and EXAFS, jointly confirmed the presence of atomically dispersed iron centers. Various functionalized quinolines were efficiently synthesized from different amino alcohols and a range of ketones or alcohols. The iron single-atom catalyst achieved a turnover number (TON) of up to 105, far exceeding the results of current homogeneous and nanocatalyst systems. Detailed mechanistic studies verified the significance of single-atom Fe sites in the dehydrogenation process.
Collapse
Affiliation(s)
- Yanze Lu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Meiling Zhu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Sanxia Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Jiewen Yao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Ting Li
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Xu Wang
- Institute of Advanced Science Facilities, Shenzhen (IASF), No. 268 Zhenyuan Road, Guangming District, Shenzhen 518107, China
| | - Conghui Tang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| |
Collapse
|
39
|
Chen J, Lin Y, Wu WQ, Hu WQ, Xu J, Shi H. Amination of Aminopyridines via η 6-Coordination Catalysis. J Am Chem Soc 2024; 146:22906-22912. [PMID: 39120946 DOI: 10.1021/jacs.4c07306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
Pyridine, a widespread aromatic heterocycle, features a sp2-hybridized nitrogen atom that can readily coordinate to metals, leading to distinctive achievements in catalysis. In stark contrast, π-coordination of pyridine and derivatives with transition metals is notably scarce, and the involvement of such activation mode in catalysis remains to be developed. Herein, we present amination reactions of aminopyridines that leverages the reversible π coordination with a ruthenium catalyst as the arenophilic π acid, rather than relying on the conventional κ-N coordination. Specifically, a transient η6-pyridine complex functions as the electrophile in the nucleophilic aromatic substitution with amines, providing a diverse array of products via the cleavage of the pyridyl C-N bond. In addition, this method can be employed to incorporate chiral amines and 15N-labeled amines.
Collapse
Affiliation(s)
- Jiajia Chen
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310030, Zhejiang Province, China
| | - Yunzhi Lin
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310030, Zhejiang Province, China
| | - Wen-Qiang Wu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310030, Zhejiang Province, China
| | - Wei-Qiang Hu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310030, Zhejiang Province, China
| | - Jingkai Xu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310030, Zhejiang Province, China
| | - Hang Shi
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310030, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
40
|
Sekar PK, Rengan R, Sundarraman B. NNO Pincer-Supported Pd(II)-Catalyzed Reductive N-Alkylation of Challenging Nitroarenes with Alcohols via Borrowing Hydrogen Strategy. J Org Chem 2024; 89:11161-11172. [PMID: 39081033 DOI: 10.1021/acs.joc.4c00621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
A sustainable catalytic synthesis of selective monoalkylated amines from nitroarenes and alcohols by new palladium(II)-NNO pincer-type complexes has been described. Herein, a series of Pd(II) complexes [Pd(NNO)PPh3] (1-3) are synthesized and characterized by analytical and spectroscopic (IR, NMR, and HR-MS) methods. The solid-state molecular structures of two complexes are established by X-ray single-crystal diffraction. Furthermore, the catalytic N-alkylation of challenging nitroarenes with primary and secondary alcohols has been performed by the well-defined palladium(II) complexes via borrowing hydrogen strategy. The current protocol offers a wide range of monoalkylated amines (26 examples) with a maximum yield of 87% utilizing 1 mol % of catalyst loading. Gratifyingly, the catalytic system works well under mild reaction conditions and atom economy with water is the only byproduct. Furthermore, control experiments confirm the formation of probable intermediates (aniline, aldehyde, and imine), and deuterium labeling authenticates the borrowing hydrogen mechanism. A gram-scale synthesis of an alkylated product clearly demonstrates the synthetic efficacy of the present catalytic methodology.
Collapse
Affiliation(s)
- Pranesh Kavin Sekar
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli, Tamilnadu 620 024, India
| | - Ramesh Rengan
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli, Tamilnadu 620 024, India
| | - Balaji Sundarraman
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam 781039, India
| |
Collapse
|
41
|
Liu X, Huang L, Ma Y, She G, Zhou P, Zhu L, Zhang Z. Enable biomass-derived alcohols mediated alkylation and transfer hydrogenation. Nat Commun 2024; 15:7012. [PMID: 39147765 PMCID: PMC11327299 DOI: 10.1038/s41467-024-51307-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 07/31/2024] [Indexed: 08/17/2024] Open
Abstract
A single-atom catalyst with generally regarded inert Zn-N4 motifs derived from ZIF-8 is unexpectedly efficient for the activation of alcohols, enabling alcohol-mediated alkylation and transfer hydrogenation. C-alkylation of nitriles, ketones, alcohols, N-heterocycles, amides, keto acids, and esters, and N-alkylation of amines and amides all go smoothly with the developed method. Taking the α-alkylation of nitriles with alcohols as an example, the α-alkylation starts from the (1) nitrogen-doped carbon support catalyzed dehydrogenation of alcohols into aldehydes, which further condensed with nitriles to give vinyl nitriles, followed by (2) transfer hydrogenation of C=C bonds in vinyl nitriles on Zn-N4 sites. The experimental results and DFT calculations reveal that the Lewis acidic Zn-N4 sites promote step (2) by activating the alcohols. This is the first example of highly efficient single-atom catalysts for various organic transformations with biomass-derived alcohols as the alkylating reagents and hydrogen donors.
Collapse
Affiliation(s)
- Xixi Liu
- Key Laboratory of Catalysis and Materials Sciences of the Ministry of Education, South-Central Minzu University, Wuhan, China
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, China
| | - Liang Huang
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, China
| | - Yuandie Ma
- Key Laboratory of Catalysis and Materials Sciences of the Ministry of Education, South-Central Minzu University, Wuhan, China
| | - Guoqiang She
- Key Laboratory of Catalysis and Materials Sciences of the Ministry of Education, South-Central Minzu University, Wuhan, China
| | - Peng Zhou
- Key Laboratory of Catalysis and Materials Sciences of the Ministry of Education, South-Central Minzu University, Wuhan, China
| | - Liangfang Zhu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, China
| | - Zehui Zhang
- Key Laboratory of Catalysis and Materials Sciences of the Ministry of Education, South-Central Minzu University, Wuhan, China.
| |
Collapse
|
42
|
Dong B, Wu X, Shen L, He Y, Chen X, Zhang S, Li F. Poly(2,2'-Bibenzimidazole)-Supported Iridium Complex: A Recyclable Metal-Polymer Ligand Bifunctional Catalyst for the N-Methylation of Amines with Methanol. Inorg Chem 2024; 63:15072-15080. [PMID: 39066706 DOI: 10.1021/acs.inorgchem.4c02053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The design and development of new types of catalysts is one of the most important topics for modern chemistry. Herein, a polymer-supported iridium complex Cp*Ir@Poly(2,2'-BiBzIm) was designed and synthesized by the coordinative immobilization of [Cp*IrCl2]2 on 2,2'-bibenzimidazoles. In the presence of the catalyst (0.5 mol % Ir) and Cs2CO3 (0.3 equiv), a variety of N-methylated amines were obtained in high yields with complete selectivity. More importantly, the catalyst could be recycled without an obvious loss of activity for six cycles. Apparently, the designed catalyst combines the advantages of both homogeneous and heterogeneous catalysis.
Collapse
Affiliation(s)
- Beixuan Dong
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, PR China
| | - Xingliang Wu
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, PR China
| | - Lu Shen
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, PR China
| | - Yiqian He
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, PR China
| | - Xiaozhong Chen
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, PR China
| | - Shouhai Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, PR China
| | - Feng Li
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, PR China
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, PR China
| |
Collapse
|
43
|
Yu K, Nie Q, Chen Q, Liu W. Manganese-catalyzed cyclopropanation of allylic alcohols with sulfones. Nat Commun 2024; 15:6798. [PMID: 39122745 PMCID: PMC11315923 DOI: 10.1038/s41467-024-51188-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Cyclopropanes are among the most important structural units in natural products, pharmaceuticals, and agrochemicals. Herein, we report a manganese-catalyzed cyclopropanation of allylic alcohols with sulfones as carbene alternative precursors via a borrowing hydrogen strategy under mild conditions. Various allylic alcohols and arylmethyl trifluoromethyl sulfones work efficiently in this borrowing hydrogen transformation and thereby deliver the corresponding cyclopropylmethanol products in 58% to 99% yields. Importantly, a major benefit of this transformation is that the versatile free alcohol moiety is retained in the resultant products, which can undergo a wide range of downstream transformations to provide access to a series of functional molecules. Mechanistic studies support a sequential reaction mechanism that involves catalytic dehydrogenation, Michael addition, cyclization, and catalytic hydrogenation.
Collapse
Affiliation(s)
- Ke Yu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, 201620, Shanghai, P. R. China
| | - Qin Nie
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, 201620, Shanghai, P. R. China
| | - Qianjin Chen
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, 201620, Shanghai, P. R. China
| | - Weiping Liu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, 201620, Shanghai, P. R. China.
| |
Collapse
|
44
|
Jana D, Roy S, Naskar S, Halder S, Kanrar G, Pramanik K. Potent pincer-zinc catalyzed homogeneous α-alkylation and Friedländer quinoline synthesis reaction of secondary alcohols/ketones with primary alcohols. Org Biomol Chem 2024; 22:6393-6408. [PMID: 39056136 DOI: 10.1039/d4ob00988f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Herein, we describe an air- and moisture-stable, homogeneous zinc catalyst stabilised using an electron deficient N^N^N pincer-type ligand. This ternary, penta-coordinated neutral molecular catalyst [Zn(N^N^N)Cl2] selectively produces α-alkylated ketone derivatives (14 examples) through a one-pot acceptorless dehydrogenative coupling (ADC) reaction between secondary and primary alcohols using the borrowing hydrogen (BH) approach in good to excellent isolated yields (up to 93%). It is worth noting that this catalyst also provides an eco-friendly route for the synthesis of quinoline derivatives (30 examples) using 2-aminobenzyl alcohols as alkylating agents via successive dehydrogenative coupling and N-annulation reactions. This cost effective, easy to synthesize and environmentally benign catalyst shows excellent stability in catalytic cycles under open-air conditions, as evident from its high turnover number (∼104), and is activated by using a catalytic amount of base under milder conditions.
Collapse
Affiliation(s)
- Debashis Jana
- Department of Chemistry, Jadavpur University, Kolkata 700032, India.
| | - Sima Roy
- Department of Chemistry, Jadavpur University, Kolkata 700032, India.
| | - Srijita Naskar
- Department of Chemistry, Jadavpur University, Kolkata 700032, India.
| | - Supriyo Halder
- Department of Chemistry, Jadavpur University, Kolkata 700032, India.
| | - Gopal Kanrar
- Department of Chemistry, St. Xavier's College (Autonomous), Kolkata-700016, India
| | | |
Collapse
|
45
|
Saha R, Hembram BC, Panda S, Jana NC, Bagh B. Iron- and base-catalyzed C(α)-alkylation and one-pot sequential alkylation-hydroxylation of oxindoles with secondary alcohols. Org Biomol Chem 2024; 22:6321-6330. [PMID: 39039931 DOI: 10.1039/d4ob00957f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
The utilization of economical and environmentally benign transition metals in crucial catalytic processes is pivotal for sustainable advancement in synthetic organic chemistry. Iron, as the most abundant transition metal in the Earth's crust, has gained significant attention for this purpose. A combination of FeCl2 (5 mol%) in the presence of phenanthroline (10 mol%) and NaOtBu (1.5 equivalent) proved effective for the C(α)-alkylation of oxindole, employing challenging secondary alcohol as a non-hazardous alkylating agent. The C(α)-alkylation of oxindole was optimized in green solvent or under neat conditions. The substrate scope encompasses a broad array of substituted oxindoles with various secondary alcohols. Further post-functionalization of the C(α)-alkylated oxindole products demonstrated the practical utility of this catalytic alkylation. One-pot C-H hydroxylation of alkylated oxindoles yielded 3-alkyl-3-hydroxy-2-oxindoles using air as the most sustainable oxidant. Low E-factors (3.61 to 4.19) and good Eco-scale scores (74 to 76) of these sustainable catalytic protocols for the alkylation and one-pot sequential alkylation-hydroxylation of oxindoles demonstrated minimum waste generation. Plausible catalytic paths are proposed on the basis of past reports and control experiments, which suggested that a borrowing hydrogen pathway is involved in this alkylation.
Collapse
Affiliation(s)
- Ratnakar Saha
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, Jatni, Khurda, Odisha, PIN 752050, India.
| | - Bhairab Chand Hembram
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, Jatni, Khurda, Odisha, PIN 752050, India.
| | - Surajit Panda
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, Jatni, Khurda, Odisha, PIN 752050, India.
| | - Narayan Ch Jana
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, Jatni, Khurda, Odisha, PIN 752050, India.
| | - Bidraha Bagh
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, Jatni, Khurda, Odisha, PIN 752050, India.
| |
Collapse
|
46
|
Kataoka S, Morimoto H, Ohshima T. Primary Allylic Amine Synthesis via Pd-Catalyzed Direct Amination of Allylic Alcohols with Ammonium Acetate. J Org Chem 2024; 89:10693-10697. [PMID: 39008521 DOI: 10.1021/acs.joc.4c00921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Pd/DPEphos-catalyzed direct amination of allylic alcohols with readily available ammonium acetate as a nitrogen source provides access to convenient and scalable syntheses of primary allylic amines with high monoallylation selectivity. Mechanistic studies revealed that ammonium acetate functions as a Brønsted acid to activate the hydroxyl groups and inhibit overreaction.
Collapse
Affiliation(s)
- Shunsuke Kataoka
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Hiroyuki Morimoto
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata-ku, Kitakyushu 804-8550, Japan
| | - Takashi Ohshima
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
47
|
Xuan Y, Yang C, Jiang H, Zeng W. Mn(I)-Catalyzed Carbon-Skeleton Rearrangement of Tertiary Alcohol-Based Aldol Reaction with Aldehydes. J Org Chem 2024; 89:10603-10613. [PMID: 38990146 DOI: 10.1021/acs.joc.4c00835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
A Mn-catalyzed ligand-directed Csp3-Csp2 coupling of tertiary allylic alcohols with arylaldehydes has been developed. The method provides an efficient approach to access 1,5-diarylpent-1-en-3-ones via carbon-skeleton rearrangement-based aldol reaction.
Collapse
Affiliation(s)
- Yanshuo Xuan
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Can Yang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Wei Zeng
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
48
|
Kulyabin P, Magdysyuk OV, Naden AB, Dawson DM, Pancholi K, Walker M, Vassalli M, Kumar A. Manganese-Catalyzed Synthesis of Polyketones Using Hydrogen-Borrowing Approach. ACS Catal 2024; 14:10624-10634. [PMID: 39050896 PMCID: PMC11264210 DOI: 10.1021/acscatal.4c03019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 07/27/2024]
Abstract
We report here a method of making polyketones from the coupling of diketones and diols using a manganese pincer complex. The methodology allows us to access various polyketones (polyarylalkylketone) containing aryl, alkyl, and ether functionalities, bridging the gap between the two classes of commercially available polyketones: aliphatic polyketones and polyaryletherketones. Using this methodology, 12 polyketones have been synthesized and characterized using various analytical techniques to understand their chemical, physical, morphological, and mechanical properties. Based on previous reports and our studies, we suggest that the polymerization occurs via a hydrogen-borrowing mechanism that involves the dehydrogenation of diols to dialdehyde followed by aldol condensation of dialdehyde with diketones to form chalcone derivatives and their subsequent hydrogenation to form polyarylalkylketones.
Collapse
Affiliation(s)
- Pavel
S. Kulyabin
- EaStCHEM,
School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K.
| | - Oxana V. Magdysyuk
- EaStCHEM,
School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K.
| | - Aaron B. Naden
- EaStCHEM,
School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K.
| | - Daniel M. Dawson
- EaStCHEM,
School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K.
| | - Ketan Pancholi
- The
Sir Ian Wood Building, Robert Gordon University, Garthdee Rd, Garthdee, Aberdeen AB10 7GE, U.K.
| | - Matthew Walker
- Centre
for the Cellular Microenvironment, Advanced Research Centre, University of Glasgow, Glasgow G116EW, U.K.
| | - Massimo Vassalli
- James
Watt School of Engineering, University of
Glasgow, Glasgow G12 8QQ, U.K.
| | - Amit Kumar
- EaStCHEM,
School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K.
| |
Collapse
|
49
|
Xia Q, Miao Y, Hu Y, Xie Y, Luo J. Copper-Catalyzed Borrowing Hydrogen Reaction for α-Alkylation of Amides with Alcohols. J Org Chem 2024; 89:9654-9660. [PMID: 38900965 DOI: 10.1021/acs.joc.4c00404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
We report the first example of copper-catalyzed α-alkylation of acetamides with alcohols via a borrowing hydrogen strategy. Catalyzed by the in situ-generated copper particles, acetamides and various substituted benzyl or alkyl alcohols were transformed into functionalized amides in good yields with excellent selectivity. Compared with previous work, this process is simple using commercially available Cu(OAc)2 as a precatalyst, without an additional ligand or a metal complex, and easier. Mechanistic studies revealed that aldehyde and α,β-unsaturated amides were the intermediates of this reaction and also disclosed the role of copper in alcohol dehydrogenation and C═C bond hydrogenation.
Collapse
Affiliation(s)
- Qiuling Xia
- Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. China
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering of the Chinese Academy of Sciences (CAS), Ningbo 315201, P. R. China
| | - Yulong Miao
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering of the Chinese Academy of Sciences (CAS), Ningbo 315201, P. R. China
| | - Yue Hu
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering of the Chinese Academy of Sciences (CAS), Ningbo 315201, P. R. China
| | - Yinjun Xie
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering of the Chinese Academy of Sciences (CAS), Ningbo 315201, P. R. China
| | - Junfei Luo
- Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. China
| |
Collapse
|
50
|
Yang HR, Cheng X, Chang X, Wang ZF, Dong XQ, Wang CJ. Copper/ruthenium relay catalysis enables 1,6-double chiral inductions with stereodivergence. Chem Sci 2024; 15:10135-10145. [PMID: 38966363 PMCID: PMC11220595 DOI: 10.1039/d4sc01804d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/11/2024] [Indexed: 07/06/2024] Open
Abstract
The dual catalysis strategy is an efficient and powerful tool to fulfill the stereodivergent synthesis of stereoisomeric products from the same set of starting materials. Great attention has been given to the construction of chiral compounds with two contiguous stereocenters. However, the synthesis of two remote noncontiguous stereocenters is more challenging and is less developed, despite the high demand for synthetic tactics. We herein developed an unprecedented example of the stereodivergent preparation of synthetically useful and biologically important chiral ζ-hydroxy amino ester derivatives containing remote 1,6-noncontiguous stereocenters and a unique β,γ-unsaturation moiety. This cascade dehydrogenation/1,6-Michael addition/hydrogenation protocol between readily-available ketoimine esters and racemic branched dienyl carbinols was rationally realized with bimetallic copper/ruthenium relay catalysis. The key features of the process were atom economy, step economy, and redox-neutrality. All four stereoisomers of chiral ζ-hydroxy amino ester derivatives were easily achieved by the orthogonal permutations of a chiral copper catalyst and chiral ruthenium catalyst. Importantly, a much more challenging stereodivergent synthesis of all eight stereoisomers of chiral peptide products containing three remote stereocenters was accomplished with excellent results through the cooperation of two chiral catalyst pairs and substrate enantiomers.
Collapse
Affiliation(s)
- Hao-Ran Yang
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Xiang Cheng
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Xin Chang
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Zuo-Fei Wang
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Xiu-Qin Dong
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Chun-Jiang Wang
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University Wuhan Hubei 430072 P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry Shanghai 230021 China
| |
Collapse
|