1
|
Xu N, Chen J, Sun K, Han W. Ligand-Free Iron-Catalyzed Carbonylation of Aryl Iodides with Alkenyl Boronic Acids: Access to α,β-Unsaturated Ketones. Org Lett 2024. [PMID: 39471048 DOI: 10.1021/acs.orglett.4c03376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
The application of earth-abundant and low-toxicity iron catalysts as replacements for palladium in carbonylative coupling reactions remains challenging and largely unexplored. Reported here is a highly efficient iron-catalyzed carbonylation of aryl iodides with alkenyl boronic acids under ligand-free conditions, enabling the synthesis of α,β-unsaturated ketones even at atmospheric CO pressure. The broad applicability, including its effectiveness with α-branched enones and biologically active molecules, along with high yields and selectivity, underlines the general applicability of this catalytic system.
Collapse
Affiliation(s)
- Ning Xu
- Inner Mongolia Key Laboratory of the Natural Products Chemistry and Functional Molecular Synthesis, College of Chemistry, and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Junjie Chen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Kangkang Sun
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Wei Han
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
2
|
Zhang J, Wu J. Recent progress in asymmetric radical reactions enabled by chiral iron catalysts. Chem Commun (Camb) 2024; 60:12633-12649. [PMID: 39380541 DOI: 10.1039/d4cc03047h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Transition-metal-catalyzed radical asymmetric reactions offer a versatile and effective platform for accessing chiral organic molecules with high enantiopurity. Given that iron is the most abundant and less toxic transition metalic element available, the application of iron catalysts is considered to be a more sustainable and attractive approach. Over the last decade, several exciting and notable achievements have been witnessed. In this highlight, we aim to provide an overview of the progress in ligand-enabled iron-catalyzed asymmetric radical reactions, with an emphasis on the reaction mechanisms.
Collapse
Affiliation(s)
- Jun Zhang
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China.
| | - Jie Wu
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China.
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
3
|
Li H, Fan M, Liu Q. Unveiling the Unique Reactivity of Anionic Mn(I) Complexes via Metal-Ligand Cooperation: Nucleophilic Attack on C(sp 3)-X Bonds. J Am Chem Soc 2024; 146:26649-26656. [PMID: 39295280 DOI: 10.1021/jacs.4c01683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Metal-ligand cooperation (MLC) has emerged as a pivotal strategy for the catalytic activation of small molecules within both synthetic and biological arenas. Leveraging this approach, a suite of potent catalytic reactions─encompassing hydrogenation, hydroelementation, and dehydrogenative processes─have been realized, with notable advances in manganese catalysis in recent years. However, the activation of alkyl halides by Mn complexes, which typically requires strong reductants to form Mn(-I) complexes that are incompatible with standard cross-coupling conditions, remains a significant challenge. This limitation underscores the urgent need to investigate alternative methods for activating C(sp3)-X bonds using higher valence state Mn complexes. In response to this challenge, we present the synthesis, characterization, and reactivity of a new anionic Mn(I) complex featuring a redox-active dianionic ligand that induces multiple MLC functionalities. We have discovered an innovative mechanism of MLC, characterized by a single ligand transferring two electrons to the metal center. This novel process facilitates an orbital-symmetry-allowed nucleophilic attack on C(sp3)-X bonds, preserving manganese's oxidative state at +1. To the best of our knowledge, this is the first instance where the MLC strategy via a two-electron transfer process has been utilized to execute an SN2 nucleophilic attack at a C(sp3)-X bond by a relatively electron-deficient metal center like Mn(I). Additionally, the dianionic ligand of the anionic Mn(I) complex exhibits ambident nucleophilicity by reacting with different electrophiles, further highlighting its versatile reactivity.
Collapse
Affiliation(s)
- Hengxu Li
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Mingjie Fan
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Qiang Liu
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
4
|
Rajput S, Sahoo RK, M T N, Nembenna S. Zinc catalyzed chemoselective hydrofunctionalization of cyanamides. Chem Commun (Camb) 2024; 60:11148-11151. [PMID: 39291297 DOI: 10.1039/d4cc03972f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The zinc-catalyzed hydrosilylation and hydroboration of cyanamides have been described. Chemoselective reduction of cyanamides with Ph2SiH2 and partial or complete hydroboration of cyanamides with pinacolborane (HBpin) have been successfully carried out. The active catalyst/intermediate in the catalytic reactions, i.e., the bis-guanidinate zinc amidinate compound, has been isolated and structurally characterized.
Collapse
Affiliation(s)
- Sagrika Rajput
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, 752050, India.
| | - Rajata Kumar Sahoo
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, 752050, India.
| | - Nithya M T
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, 752050, India.
| | - Sharanappa Nembenna
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, 752050, India.
| |
Collapse
|
5
|
Wang X, He J, Wang YN, Zhao Z, Jiang K, Yang W, Zhang T, Jia S, Zhong K, Niu L, Lan Y. Strategies and Mechanisms of First-Row Transition Metal-Regulated Radical C-H Functionalization. Chem Rev 2024; 124:10192-10280. [PMID: 39115179 DOI: 10.1021/acs.chemrev.4c00188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Radical C-H functionalization represents a useful means of streamlining synthetic routes by avoiding substrate preactivation and allowing access to target molecules in fewer steps. The first-row transition metals (Ti, V, Cr, Mn, Fe, Co, Ni, and Cu) are Earth-abundant and can be employed to regulate radical C-H functionalization. The use of such metals is desirable because of the diverse interaction modes between first-row transition metal complexes and radical species including radical addition to the metal center, radical addition to the ligand of metal complexes, radical substitution of the metal complexes, single-electron transfer between radicals and metal complexes, hydrogen atom transfer between radicals and metal complexes, and noncovalent interaction between the radicals and metal complexes. Such interactions could improve the reactivity, diversity, and selectivity of radical transformations to allow for more challenging radical C-H functionalization reactions. This review examines the achievements in this promising area over the past decade, with a focus on the state-of-the-art while also discussing existing limitations and the enormous potential of high-value radical C-H functionalization regulated by these metals. The aim is to provide the reader with a detailed account of the strategies and mechanisms associated with such functionalization.
Collapse
Affiliation(s)
- Xinghua Wang
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Jing He
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Ya-Nan Wang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, P. R. China
| | - Zhenyan Zhao
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Kui Jiang
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Wei Yang
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Tao Zhang
- Institute of Intelligent Innovation, Henan Academy of Sciences, Zhengzhou, Henan 451162, P. R. China
| | - Shiqi Jia
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Kangbao Zhong
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Linbin Niu
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Yu Lan
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, P. R. China
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| |
Collapse
|
6
|
Ma Z, Kuloor C, Kreyenschulte C, Bartling S, Malina O, Haumann M, Menezes PW, Zbořil R, Beller M, Jagadeesh RV. Development of Iron-Based Single Atom Materials for General and Efficient Synthesis of Amines. Angew Chem Int Ed Engl 2024; 63:e202407859. [PMID: 38923207 DOI: 10.1002/anie.202407859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/12/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
Earth abundant metal-based heterogeneous catalysts with highly active and at the same time stable isolated metal sites constitute a key factor for the advancement of sustainable and cost-effective chemical synthesis. In particular, the development of more practical, and durable iron-based materials is of central interest for organic synthesis, especially for the preparation of chemical products related to life science applications. Here, we report the preparation of Fe-single atom catalysts (Fe-SACs) entrapped in N-doped mesoporous carbon support with unprecedented potential in the preparation of different kinds of amines, which represent privileged class of organic compounds and find increasing application in daily life. The optimal Fe-SACs allow for the reductive amination of a broad range of aldehydes and ketones with ammonia and amines to produce diverse primary, secondary, and tertiary amines including N-methylated products as well as drugs, agrochemicals, and other biomolecules (amino acid esters and amides) utilizing green hydrogen.
Collapse
Affiliation(s)
- Zhuang Ma
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, Rostock, D-18059, Germany
| | - Chakreshwara Kuloor
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, Rostock, D-18059, Germany
| | - Carsten Kreyenschulte
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, Rostock, D-18059, Germany
| | - Stephan Bartling
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, Rostock, D-18059, Germany
| | - Ondrej Malina
- Nanotechnology Centre, Centre for Energy and Environmental Technologies, VŠB-Technical University of Ostrava, Ostrava-Poruba, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Palacky University Olomouc, Olomouc, Czech Republic
| | - Michael Haumann
- Physics Department, Freie Universität Berlin, Berlin, Germany
| | - Prashanth W Menezes
- Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany
- Department of Chemistry, Technical University of Berlin, Berlin, Germany
| | - Radek Zbořil
- Nanotechnology Centre, Centre for Energy and Environmental Technologies, VŠB-Technical University of Ostrava, Ostrava-Poruba, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Palacky University Olomouc, Olomouc, Czech Republic
| | - Matthias Beller
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, Rostock, D-18059, Germany
| | - Rajenahally V Jagadeesh
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, Rostock, D-18059, Germany
- Nanotechnology Centre, Centre for Energy and Environmental Technologies, VŠB-Technical University of Ostrava, Ostrava-Poruba, Czech Republic
| |
Collapse
|
7
|
Zhang C, Mazet C. Access to Cyclic Borates by Cu-Catalyzed Borylation of Unactivated Vinylcyclopropanes. Org Lett 2024; 26:5386-5390. [PMID: 38870414 PMCID: PMC11217945 DOI: 10.1021/acs.orglett.4c01938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/15/2024]
Abstract
We report the copper-catalyzed borylation of unactivated vinylcyclopropanes to form six-membered cyclic borate salts. A copper complex bearing an N-heterocyclic ligand in combination with bis(pinacolato)diboron and LiOtBu catalyzes the ring-opening of the substrate under mild reaction conditions. The protocol can be applied to aryl- and heteroaryl-substituted vinylcyclopropanes and can be conducted on a gram scale. The synthetic utility of the lithium salts of the cyclic borate has been demonstrated through regioselective ring-opening functionalizations.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Organic Chemistry, University of Geneva, 30 quai Ernest Ansermet, 1211 Geneva, Switzerland
| | - Clément Mazet
- Department of Organic Chemistry, University of Geneva, 30 quai Ernest Ansermet, 1211 Geneva, Switzerland
| |
Collapse
|
8
|
Wang H, Chen L, Chen Y, Zhang Y. Highly efficient iron-catalyzed conjugate reduction of α,β-unsaturated ketones with polymethylhydrosiloxane. Org Biomol Chem 2024; 22:5097-5100. [PMID: 38855819 DOI: 10.1039/d4ob00664j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
An iron-catalyzed ligand free conjugate reduction of α,β-unsaturated ketones with PMHS (polymethylhydrosiloxane) was reported to deliver the corresponding carbonyl compounds with up to 93% yield. This operationally simple protocol shows a broad substrate scope using readily available PMHS as a cost-effective and easy-to-handle reductive reagent.
Collapse
Affiliation(s)
- Hang Wang
- College of Chemistry, Chongqing Normal University, Chongqing 401331, China.
| | - Libo Chen
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China.
| | - Yushuang Chen
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China.
| | - Yulong Zhang
- College of Chemistry, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
9
|
Tseng CC, Ding YW, Chen ZY, Lan HY, Li HJ, Cheng YS, Kuo TS, Chen PL, Wu WC, Shi FK, Yang T, Liu HJ. A Bis-Cyclopentadienyl Ligand-Supported Di-Iron Trihydride Motif as a Synthon for Access to Heterobimetallic Trinuclear Complexes. Inorg Chem 2024; 63:11361-11368. [PMID: 38815165 PMCID: PMC11190976 DOI: 10.1021/acs.inorgchem.4c01420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 06/01/2024]
Abstract
Herein, we report the synthesis of a flexible bis-cyclopentadienyl ligand L (the doubly deprotonated form of H2L (1,3-bis(2,4-di-tert-butylcyclopentadienyldimethylsilyl)benzene)), demonstrating its ability to stabilize a series of di-iron hydrido complexes. Notably, this ligand facilitates the isolation of an unprecedented anionic cyclopentadienyl ligand-supported di-iron trihydride complex, LFe2(μ-H)3Li(THF) (2), functioning as a synthon for the [Fe2(μ-H)3]- core and providing access to heterobimetallic complexes 4-6 with coinage metals.
Collapse
Affiliation(s)
- Chung-Ching Tseng
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, 1001 Daxue Rd, East District, Hsinchu City 300093, Taiwan
| | - Yi-Wun Ding
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, 1001 Daxue Rd, East District, Hsinchu City 300093, Taiwan
| | - Zhong-Yue Chen
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, 1001 Daxue Rd, East District, Hsinchu City 300093, Taiwan
| | - Hao-Yuan Lan
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, 1001 Daxue Rd, East District, Hsinchu City 300093, Taiwan
| | - Han-Jung Li
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, 1001 Daxue Rd, East District, Hsinchu City 300093, Taiwan
| | - You-Song Cheng
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, 1001 Daxue Rd, East District, Hsinchu City 300093, Taiwan
| | - Ting-Shen Kuo
- Department
of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Pei-Lin Chen
- Department
of Chemistry, National Tsing Hua University, Hsinchu City 300044, Taiwan
| | - Wen-Chun Wu
- Rezwave
Technology Inc., 3F-5,
79, Hsin Tai Wu Rd., Sec.1, HsiChih District, New Taipei City 221432, Taiwan
| | - Fong-Ku Shi
- Rezwave
Technology Inc., 3F-5,
79, Hsin Tai Wu Rd., Sec.1, HsiChih District, New Taipei City 221432, Taiwan
| | - Tzuhsiung Yang
- Department
of Chemistry, National Tsing Hua University, Hsinchu City 300044, Taiwan
| | - Hsueh-Ju Liu
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, 1001 Daxue Rd, East District, Hsinchu City 300093, Taiwan
- Center
for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 Daxue Rd, East District, Hsinchu City 300093, Taiwan
| |
Collapse
|
10
|
Neshat A, Mousavizadeh Mobarakeh A, Yousefshahi MR, Varmaghani F, Dusek M, Eigner V, Kucerakova M. Introducing Novel Redox-Active Bis(phenolate) N-Heterocyclic Carbene Proligands: Investigation of Their Coordination to Fe(II)/Fe(III) and Their Catalytic Activity in Transfer Hydrogenation of Carbonyl Compounds. ACS OMEGA 2024; 9:25135-25145. [PMID: 38882110 PMCID: PMC11170717 DOI: 10.1021/acsomega.4c02602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 06/18/2024]
Abstract
A simple and efficient procedure for synthesizing novel pincer-type tridentate N-heterocyclic carbene bisphenolate ligands is reported. The synthesis of pincer proligands with N,N'-disubstituted imidazoline core, 5 and 6, was carried out via triethylorthoformate-promoted cyclization of either N,N'-bis(2-hydroxy-3,5-di-tert-butylphenyl)cyclohexanediamine, 3, or N,N'-bis(2-hydroxyphenyl)cyclohexanediamine, 4, in the presence of concentrated hydrochloric acid. Cyclic voltammograms of the ligands revealed ligand-centered redox activity, indicating the noninnocent nature of the ligands. The voltammograms of the ligands exhibit two successive one-electron oxidations and two consecutive one-electron reductions. In contrast to previous reports, the redox-active ligands in this study exhibit one-electron oxidation and reduction processes. All products were thoroughly characterized by using 1H and 13C NMR spectroscopy. The base-promoted deprotonation of the proligands and subsequent reaction with iron(II) and iron(III) chlorides yielded compounds 7 and 8. These compounds are binuclear and tetranuclear iron(III) complexes that do not contain carbene functional groups. Complexes 7 and 8 were characterized by using elemental analysis and single-crystal X-ray crystallography. At low catalyst loadings, both 7 and 8 exhibited high catalytic activity in the transfer hydrogenation of selected aldehydes and ketones.
Collapse
Affiliation(s)
- Abdollah Neshat
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), 444 Prof. Sobouti Blvd., Gava Zang, Zanjan 45137-66731, Iran
| | - Ali Mousavizadeh Mobarakeh
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), 444 Prof. Sobouti Blvd., Gava Zang, Zanjan 45137-66731, Iran
| | - Mohammad Reza Yousefshahi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), 444 Prof. Sobouti Blvd., Gava Zang, Zanjan 45137-66731, Iran
| | - Fahimeh Varmaghani
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), 444 Prof. Sobouti Blvd., Gava Zang, Zanjan 45137-66731, Iran
| | - Michal Dusek
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 18221 Prague 8, The Czech Republic
| | - Vaclav Eigner
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 18221 Prague 8, The Czech Republic
| | - Monika Kucerakova
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 18221 Prague 8, The Czech Republic
| |
Collapse
|
11
|
Zeng XW, Lin JN, Shu W. Hydrogen Source Tuned Regiodivergent Asymmetric Hydroalkylations of 2-Substituted 1,3-Dienes with Aldehydes by Cobalt-Catalysis. Angew Chem Int Ed Engl 2024; 63:e202403073. [PMID: 38567830 DOI: 10.1002/anie.202403073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Indexed: 05/03/2024]
Abstract
Catalytic methods allowing for the reliable prediction and control of diverse regioselectivity along with the control of enantioselectivity to access different regio- and enantiomers by switching the least reaction parameters are one of the most attractive ways in organic synthesis, which provide access to diverse enantioenriched architectures from identical starting materials. Herein, a Co-catalyzed regiodivergent and enantioselective reductive hydroalkylation of 1,3-dienes with aldehydes has been achieved, furnishing different enantioenriched homoallylic alcohol architectures in good levels of enantioselectivity. The reaction features the switch of regioselectivity tuned by the selection of proton source. The use of an acid as proton source provided asymmetric 1,2-hydroalkylation products under reductive conditions, yet asymmetric 4,3-hydroalkylation products were obtained with silane as hydride source. This catalytic protocol allows for the access of homoallylic alcohols with two continuous saturated carbon centers in good levels of regio-, diastereo-, and enantioselectivity.
Collapse
Affiliation(s)
- Xian-Wang Zeng
- Department of Chemistry, Guangming Advanced Research Institute and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, P. R. China
| | - Jia-Ni Lin
- Department of Chemistry, Guangming Advanced Research Institute and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, P. R. China
| | - Wei Shu
- Department of Chemistry, Guangming Advanced Research Institute and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, P. R. China
| |
Collapse
|
12
|
Li Z, Zeng G, He Y, Zhou S, Chen J, Chen Z, Chen J, Lv N. Markovnikov Hydrochlorination of Unactivated Alkenes with FeCl 3 via a HAT/XAT Sequence. Org Lett 2024. [PMID: 38780034 DOI: 10.1021/acs.orglett.4c01647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Hydrochlorination of alkenes is a practical strategy for accessing organic chlorides. Herein, we report the hydrochlorination of unactivated alkenes via a hydrogen atom transfer/halogen atom transfer process using earth-abundant and biocompatible FeCl3 as a chlorine source under extraordinarily mild reaction conditions. The protocol is easy to operate with notable features such as excellent chemoselectivity, remarkable efficiency, a broad substrate scope, and good functional group tolerance. Importantly, the synthetic utility is highlighted by scaled-up reactions, late-stage derivatizations of products, and the modification of sulfonamides.
Collapse
Affiliation(s)
- Zhefeng Li
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Ge Zeng
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yequan He
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Si Zhou
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Juehong Chen
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Zhongyan Chen
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
- Key Lab of Biohealth Materials and Chemistry of Wenzhou, Wenzhou 325035, China
| | - Jiuxi Chen
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Ningning Lv
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
- Key Lab of Biohealth Materials and Chemistry of Wenzhou, Wenzhou 325035, China
| |
Collapse
|
13
|
Li J, Mao A, Hu X, Wang L, Wang D, Duan ZC. Preparation of a novel cadmium-containing coordination polymer and catalytic application in the synthesis of N-alkylated aminoquinoline derivatives via the borrowing hydrogen approach. Dalton Trans 2024; 53:5064-5072. [PMID: 38375833 DOI: 10.1039/d3dt04221a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Herein, we report an efficient and straightforward approach for the synthesis of N-alkylated aminoquinoline derivatives by recyclable Cd-containing coordination polymer-catalyzed reactions of aminoquinolines with primary alcohols via the borrowing hydrogen strategy. In this work, a new type of coordination polymer [Cd(CIA)(phen)2(H2O)]n was successfully designed and fabricated. The molecular structure was corroborated by single-crystal X-ray diffraction and fully characterized by PXRD, FT-IR, TGA, and XPS. Importantly, this polymer revealed high catalytic activity for the N-alkylation reaction of 2-aminoquinoline and 8-aminoquinoline with inexpensive and low-toxicity alcohols as alkylating agents in excellent yields up to 95%. Interestingly, the present synthetic protocol was successfully applied for the gram-level synthesis of several biologically active compounds. In addition, several control reactions were carried out to investigate the possible mechanisms of this transformation. Finally, recycling experiments indicated that the cadmium coordination polymer showed good recovery performance for borrowing hydrogen reactions.
Collapse
Affiliation(s)
- Jiahao Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China.
| | - Anruo Mao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China.
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Xinyu Hu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China.
| | - Likui Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China.
| | - Dawei Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China.
| | - Zheng-Chao Duan
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China.
- School of Chemical and Environmental Engineering, Hubei Minzu University, Enshi 445000, PR China
| |
Collapse
|
14
|
Komuro T, Hayasaka K, Takahashi K, Ishiwata N, Yamauchi K, Tobita H, Hashimoto H. Iron complexes supported by silyl-NHC chelate ligands: synthesis and use for double hydroboration of nitriles. Dalton Trans 2024; 53:4041-4047. [PMID: 38333906 DOI: 10.1039/d3dt03605g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Iron complexes bearing new silyl-NHC bidentate ligands were synthesised by treating Fe3(CO)12 with a mixture of N-(hydrosilyl)methyl imidazolium salts and a base. These complexes showed high performance in the catalytic double hydroboration of nitrile with pinacolborane (HBpin) to produce N,N-bis(boryl)amine by a combination of UV irradiation and mild heating (60 °C). The product yields for the hydroboration of aromatic and aliphatic nitriles reached 85%-95% (NMR) using an iron complex (5 mol%). Reducing the loading amount of the iron complex to 0.5 mol% still afforded the products in high yields. An analogous ruthenium complex, which was similarly synthesised using Ru3(CO)12, showed lower activity. Stoichiometric reactions of the iron complex with nitriles afforded Fe(0)-N-silylimine complexes, which may be dormant states in nitrile hydroboration. A catalytic mechanism including Fe(0) N-silylimine species is proposed.
Collapse
Affiliation(s)
- Takashi Komuro
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.
| | - Kohei Hayasaka
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.
| | - Kasumi Takahashi
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.
| | - Nozomu Ishiwata
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.
| | - Kota Yamauchi
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.
| | - Hiromi Tobita
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.
| | - Hisako Hashimoto
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.
| |
Collapse
|
15
|
Chowdhury D, Goswami S, Krishna GR, Mukherjee A. Transfer semi-hydrogenation of terminal alkynes with a well-defined iron complex. Dalton Trans 2024; 53:3484-3489. [PMID: 38312066 DOI: 10.1039/d3dt03248e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
The synthesis and characterization of a bis-iron(II) complex was accomplished upon treatment of a phosphine free NNN-pincer ligand (L) with FeCl2·4H2O under ambient conditions. The deep greenish colored iron(II) complex (Fe-1) was characterized by a single-crystal X-ray diffraction study along with IR spectroscopy, UV-Vis spectroscopy, mass spectrometry, and elemental analysis. The Fe-1 complex was tested for the transfer semi-hydrogenation of terminal alkynes to the corresponding alkenes through the dehydrogenation of dimethyl amine-borane. This procedure enables the conversion of various structurally different terminal alkynes to alkenes under mild conditions. Control experiments were performed to shed light on the possible intermediates generated during the present protocol.
Collapse
Affiliation(s)
- Deep Chowdhury
- Department of Chemistry, Indian Institute of Technology Bhilai, GEC Campus, Sejbahar, Raipur, Chhattisgarh 492015, India.
| | - Souvik Goswami
- Department of Chemistry, Indian Institute of Technology Bhilai, GEC Campus, Sejbahar, Raipur, Chhattisgarh 492015, India.
| | - Gamidi Rama Krishna
- Centre for X-ray Crystallography, CSIR-National Chemical Laboratory, Pune-411008, India
| | - Arup Mukherjee
- Department of Chemistry, Indian Institute of Technology Bhilai, GEC Campus, Sejbahar, Raipur, Chhattisgarh 492015, India.
| |
Collapse
|
16
|
Li T, Sun Z, Zhang S, Ma Q, Chen Y, Yuan Y, Jia X. Single-Electron Reduction of "Push-Pull" C-C Single Bond and Decyanation Using Tertiary Amines as the Organic Electron Donor. J Org Chem 2024; 89:2516-2524. [PMID: 38319086 DOI: 10.1021/acs.joc.3c02542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Using commercially available tertiary amines as an organic electron donor (OED), the reduction of "push-pull" C-C single bond and reductive decyanation of tetrahydroisoquinolines were realized. These reactions exhibited higher reaction efficiency and better functional group tolerance compared with those of metallic reductants, and the mechanistic study indicated that a radical intermediate was involved in the reduction of the C-C single bond, which provides a new way to the OED-enabled mild reduction.
Collapse
Affiliation(s)
- Tong Li
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, China
| | - Zheng Sun
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, China
- Economic Development Bureau, Jiangsu Hangji Hi-tech Industrial Development Zone, Yangzhou 225111, Jiangsu, China
| | - Shuwei Zhang
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, China
| | - Qiyuan Ma
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, China
| | - Yuqin Chen
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, China
| | - Yu Yuan
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, China
| | - Xiaodong Jia
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, China
| |
Collapse
|
17
|
Sk M, Haldar S, Bera S, Banerjee D. Recent advances in the selective semi-hydrogenation of alkyne to ( E)-olefins. Chem Commun (Camb) 2024; 60:1517-1533. [PMID: 38251772 DOI: 10.1039/d3cc05395d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Considering the potential importance and upsurge in demand, the selective semi-hydrogenation of alkynes to (E)-olefins has attracted significant interest. This article highlights the recent advances in newer technologies and important methodologies directed to (E)-olefins from alkynes developed from 2015 to 2023. Notable features summarised include the catalyst or ligand design and control of product selectivity based on precious and nonprecious metal catalysts for semi-hydrogenation to (E)-olefins. Mechanistic studies for various catalytic transformations, including synthetic application to bioactive compounds, are summarised.
Collapse
Affiliation(s)
- Motahar Sk
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| | - Shuvojit Haldar
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| | - Sourajit Bera
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| | - Debasis Banerjee
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| |
Collapse
|
18
|
Qian BC, Wang X, Wang Q, Zhu XQ, Shen GB. Thermodynamic evaluations of the acceptorless dehydrogenation and hydrogenation of pre-aromatic and aromatic N-heterocycles in acetonitrile. RSC Adv 2024; 14:222-232. [PMID: 38173608 PMCID: PMC10758765 DOI: 10.1039/d3ra08022f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
N-heterocycles are important chemical hydrogen-storage materials, and the acceptorless dehydrogenation and hydrogenation of N-heterocycles as organic hydrogen carriers have been widely studied, with the main focus on the catalyst synthesis and design, investigation of the redox mechanisms, and extension of substrate scope. In this work, the Gibbs free energies of the dehydrogenation of pre-aromatic N-heterocycles (YH2) and the hydrogenation of aromatic N-heterocycles (Y), i.e., ΔGH2R(YH2) and ΔGH2A(Y), were derived by constructing thermodynamic cycles using Hess' law. The thermodynamic abilities for the acceptorless dehydrogenation and hydrogenation of 78 pre-aromatic N-heterocycles (YH2) and related 78 aromatic N-heterocycles (Y) were well evaluated and discussed in acetonitrile. Moreover, the applications of the two thermodynamic parameters in identifying pre-aromatic N-heterocycles possessing reversible dehydrogenation and hydrogenation properties and the selection of the pre-aromatic N-heterocyclic hydrogen reductants in catalytic hydrogenation were considered and are discussed in detail. Undoubtedly, this work focuses on two new thermodynamic parameters of pre-aromatic and aromatic N-heterocycles, namely ΔGH2R(YH2) and ΔGH2A(Y), which are important supplements to our previous work to offer precise insights into the chemical hydrogen storage and hydrogenation reactions of pre-aromatic and aromatic N-heterocycles.
Collapse
Affiliation(s)
- Bao-Chen Qian
- College of Medical Engineering, Jining Medical University Jining Shandong 272000 P. R. China
| | - Xiao Wang
- College of Medical Engineering, Jining Medical University Jining Shandong 272000 P. R. China
| | - Qi Wang
- College of Medical Engineering, Jining Medical University Jining Shandong 272000 P. R. China
| | - Xiao-Qing Zhu
- The State Key Laboratory of Elemento-Organic Chemistry, Department of Chemistry, Nankai University Tianjin 300071 China
| | - Guang-Bin Shen
- College of Medical Engineering, Jining Medical University Jining Shandong 272000 P. R. China
| |
Collapse
|
19
|
Sun F, Chen X, Wang S, Sun F, Zhao SY, Liu W. Borrowing Hydrogen β-Phosphinomethylation of Alcohols Using Methanol as C1 Source by Pincer Manganese Complex. J Am Chem Soc 2023; 145:25545-25552. [PMID: 37962982 DOI: 10.1021/jacs.3c10484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Herein, we report a manganese-catalyzed three-component coupling of β-H containing alcohols, methanol, and phosphines for the synthesis of γ-hydroxy phosphines via a borrowing hydrogen strategy. In this development, methanol serves as a sustainable C1 source. A variety of aromatic and aliphatic substituted alcohols and phosphines could undergo the dehydrogenative cross-coupling process efficiently and deliver the corresponding β-phosphinomethylated alcohol products in moderate to good yields. Mechanistic studies suggest that this transformation proceeds in a sequential manner including catalytic dehydrogenation, aldol condensation, Michael addition, and catalytic hydrogenation.
Collapse
Affiliation(s)
- Feixiang Sun
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Xin Chen
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Siyi Wang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Fan Sun
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Sheng-Yin Zhao
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Weiping Liu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P. R. China
| |
Collapse
|
20
|
Guin AK, Pal S, Chakraborty S, Chakraborty S, Paul ND. Oxygen Dependent Switchable Selectivity during Ruthenium Catalyzed Selective Synthesis of C3-Alkylated Indoles and Bis(indolyl)methanes. J Org Chem 2023. [PMID: 38015094 DOI: 10.1021/acs.joc.3c01191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Herein, we report a ligand-centered redox-controlled oxygen-dependent switchable selectivity during ruthenium-catalyzed selective synthesis of C3-alkylated indoles and bis(indolyl)methanes (BIMs). A wide variety of C3-alkylated indoles and BIMs were prepared selectively in moderate to good isolated yields by coupling a wide variety of indoles and alcohols, catalyzed by a well-defined, air-stable, and easy-to-prepare Ru(II)-catalyst (1a) bearing a redox-active tridentate pincer (L1a). Catalyst 1a efficiently catalyzed the C3-alkylation of indoles under an argon atmosphere while, under an oxygen environment, exclusively producing the BIMs. A few drug molecules containing BIMs were also synthesized efficiently. 1a exhibited excellent chemoselectivity with alcohols containing internal carbon-carbon double bonds. Mechanistic investigation revealed that the coordinated azo-aromatic ligand actively participates during the catalysis. During the dehydrogenation of alcohols, the azo-moiety of the ligand stores the hydrogen removed from the alcohols and subsequently transfers the hydrogen to the alkylideneindolenine intermediate, forming the C3-alkylated indoles. While under an oxygen environment, the transfer of hydrogen from the ligand scaffold to the molecular oxygen generates H2O2, leaving no scope for hydrogenation of the alkylideneindolenine intermediate, rather than it undergoing 1,4-Michael-type addition forming the BIMs.
Collapse
Affiliation(s)
- Amit Kumar Guin
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Subhasree Pal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Subhajit Chakraborty
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Santana Chakraborty
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Nanda D Paul
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| |
Collapse
|
21
|
Zhang W, Liu T, Ang HT, Luo P, Lei Z, Luo X, Koh MJ, Wu J. Modular and Practical 1,2-Aryl(Alkenyl) Heteroatom Functionalization of Alkenes through Iron/Photoredox Dual Catalysis. Angew Chem Int Ed Engl 2023; 62:e202310978. [PMID: 37699857 DOI: 10.1002/anie.202310978] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/09/2023] [Accepted: 09/11/2023] [Indexed: 09/14/2023]
Abstract
Efficient methods for synthesizing 1,2-aryl(alkenyl) heteroatomic cores, encompassing heteroatoms such as nitrogen, oxygen, sulfur, and halogens, are of significant importance in medicinal chemistry and pharmaceutical research. In this study, we present a mild, versatile and practical photoredox/iron dual catalytic system that enables access to highly privileged 1,2-aryl(alkenyl) heteroatomic pharmacophores with exceptional efficiency and site selectivity. Our approach exhibits an extensive scope, allowing for the direct utilization of a wide range of commodity or commercially available (hetero)arenes as well as activated and unactivated alkenes with diverse functional groups, drug scaffolds, and natural product motifs as substrates. By merging iron catalysis with the photoredox cycle, a vast array of alkene 1,2-aryl(alkenyl) functionalization products that incorporate a neighboring azido, amino, halo, thiocyano and nitrooxy group were secured. The scalability and ability to rapid synthesize numerous bioactive small molecules from readily available starting materials highlight the utility of this protocol.
Collapse
Affiliation(s)
- Weigang Zhang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Tao Liu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Hwee Ting Ang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Penghao Luo
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Zhexuan Lei
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Xiaohua Luo
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Ming Joo Koh
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Jie Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| |
Collapse
|
22
|
Fessler J, Junge K, Beller M. Applying green chemistry principles to iron catalysis: mild and selective domino synthesis of pyrroles from nitroarenes. Chem Sci 2023; 14:11374-11380. [PMID: 37886090 PMCID: PMC10599485 DOI: 10.1039/d3sc02879h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/02/2023] [Indexed: 10/28/2023] Open
Abstract
An efficient and general cascade synthesis of pyrroles from nitroarenes using an acid-tolerant homogeneous iron catalyst is presented. Initial (transfer) hydrogenation using the commercially available iron-Tetraphos catalyst is followed by acid catalysed Paal-Knorr condensation. Both formic acid and molecular hydrogen can be used as green reductants in this process. Particularly, under transfer hydrogenation conditions, the homogeneous catalyst shows remarkable reactivity at low temperatures, high functional group tolerance and excellent chemoselectivity transforming a wide variety of substrates. Compared to classical heterogeneous catalysts, this system presents complementing reactivity, showing none of the typical side reactions such as dehalogenation, debenzylation, arene or olefin hydrogenation. It thereby enhances the chemical toolbox in terms of orthogonal reactivity. The methodology was successfully applied to the late-stage modification of multi-functional drug(-like) molecules as well as to the one-pot synthesis of the bioactive agent BM-635.
Collapse
Affiliation(s)
- Johannes Fessler
- Leibniz-Institut für Katalyse e.V. (LIKAT) Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Kathrin Junge
- Leibniz-Institut für Katalyse e.V. (LIKAT) Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse e.V. (LIKAT) Albert-Einstein-Straße 29a 18059 Rostock Germany
| |
Collapse
|
23
|
Ishii R, Nakagawa M, Wada Y, Sunada Y. Four- and three-coordinate planar iron(II) complexes supported by bulky organosilyl ligands. Dalton Trans 2023; 52:15124-15130. [PMID: 37814966 DOI: 10.1039/d3dt02219f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
The ligand exchange reaction of (THF)2Fe[Si(SiMe3)3]2 with 2 equivalents of an N-heterocyclic carbene (NHC) led to the formation of a square-planar iron(II) complex with trans-oriented -Si(SiMe3)3 ligands. Conversely, the introduction of a cis-coordinate bidentate organosilyl ligand instead of -Si(SiMe3)3 resulted in the formation of a square planar iron(II) complex supported by a cis-coordinate bidentate organosilyl ligand. A three-coordinate planar iron(II) bis(silyl) complex was also synthesized using a cis-coordinate bidentate organosilyl ligand and a cyclic (alkyl)(amino)carbene auxiliary ligand. Investigation of the catalytic performance of these complexes in the hydrosilylation of acetophenone revealed that the square-planar iron(II) complex with trans-oriented -Si(SiMe3)3 ligands exhibits superior reactivity relative to its tetrahedral precursor.
Collapse
Affiliation(s)
- Reon Ishii
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8505, Japan.
| | - Minesato Nakagawa
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8505, Japan.
| | - Yoshimasa Wada
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8505, Japan.
- Institute of Industrial Science, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Yusuke Sunada
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8505, Japan.
- Institute of Industrial Science, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8505, Japan
- JST PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| |
Collapse
|
24
|
Li QY, Cheng S, Ye Z, Huang T, Yang F, Lin YM, Gong L. Visible light-triggered selective C(sp 2)-H/C(sp 3)-H coupling of benzenes with aliphatic hydrocarbons. Nat Commun 2023; 14:6366. [PMID: 37821440 PMCID: PMC10567795 DOI: 10.1038/s41467-023-42191-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 10/02/2023] [Indexed: 10/13/2023] Open
Abstract
The direct and selective coupling of benzenes with aliphatic hydrocarbons is a promising strategy for C(sp2)-C(sp3) bond formation using readily available starting materials, yet it remains a significant challenge. In this study, we have developed a simplified photochemical system that incorporates catalytic amounts of iron(III) halides as multifunctional reagents and air as a green oxidant to address this synthetic problem. Under mild conditions, the reaction between a strong C(sp2)-H bond and a robust C(sp3)-H bond has been achieved, affording a broad range of cross-coupling products with high yields and commendable chemo-, site-selectivity. The iron halide acts as a multifunctional reagent that responds to visible light, initiates C-centered radicals, induces single-electron oxidation to carbocations, and participates in a subsequent Friedel-Crafts-type process. The gradual release of radical species and carbocation intermediates appears to be critical for achieving desirable reactivity and selectivity. This eco-friendly, cost-efficient approach offers access to various building blocks from abundant hydrocarbon feedstocks, and demonstrates the potential of iron halides in sustainable synthesis.
Collapse
Affiliation(s)
- Qian-Yu Li
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Shiyan Cheng
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Ziqi Ye
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Tao Huang
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Fuxing Yang
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yu-Mei Lin
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China.
| | - Lei Gong
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China.
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China.
| |
Collapse
|
25
|
Yang L, Tan X, Zhao M, Wen J, Zhang X. A Tetradentate Ligand Enables Iron-Catalyzed Asymmetric Hydrogenation of Ketones in a CO- or Isocyanide-Free Fashion. Chemistry 2023; 29:e202301609. [PMID: 37486704 DOI: 10.1002/chem.202301609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/25/2023]
Abstract
We herein reported the design and synthesis of a ferrocene-based tetradentate ligand that is featured with modular synthesis and rigid skeleton. Its iron(II) complex facilitates asymmetric direct hydrogenation of ketones without the participation of extra strong-field ligand such as CO and isocyanide. Hydride donor lithium aluminum hydride (LAH) converted non-reactive Fe(II) species to reactive Fe(II) hydride species. With this catalyst, various chiral alcohols including the intermediate for montelukast could be prepared with satisfactory yields and enantioinduction.
Collapse
Affiliation(s)
- Lei Yang
- Department of chemistry, the Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen, 518055, China
| | - Xuefeng Tan
- Department of Chemistry, City University of Hong Kong Kowloon Tong, Hong Kong SAR, China
| | - Menglong Zhao
- Department of chemistry, the Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen, 518055, China
| | - Jialin Wen
- Department of chemistry, the Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen, 518055, China
- Current address: Jiangsu Hengrui Pharmaceuticals Co., Ltd. 7 Kunlunshan Road, Lianyungang, 222000, China
| | - Xumu Zhang
- Department of chemistry, the Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen, 518055, China
| |
Collapse
|
26
|
Tsuda T, Sheng M, Ishikawa H, Yamazoe S, Yamasaki J, Hirayama M, Yamaguchi S, Mizugaki T, Mitsudome T. Iron phosphide nanocrystals as an air-stable heterogeneous catalyst for liquid-phase nitrile hydrogenation. Nat Commun 2023; 14:5959. [PMID: 37770434 PMCID: PMC10539298 DOI: 10.1038/s41467-023-41627-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/12/2023] [Indexed: 09/30/2023] Open
Abstract
Iron-based heterogeneous catalysts are ideal metal catalysts owing to their abundance and low-toxicity. However, conventional iron nanoparticle catalysts exhibit extremely low activity in liquid-phase reactions and lack air stability. Previous attempts to encapsulate iron nanoparticles in shell materials toward air stability improvement were offset by the low activity of the iron nanoparticles. To overcome the trade-off between activity and stability in conventional iron nanoparticle catalysts, we developed air-stable iron phosphide nanocrystal catalysts. The iron phosphide nanocrystal exhibits high activity for liquid-phase nitrile hydrogenation, whereas the conventional iron nanoparticles demonstrate no activity. Furthermore, the air stability of the iron phosphide nanocrystal allows facile immobilization on appropriate supports, wherein TiO2 enhances the activity. The resulting TiO2-supported iron phosphide nanocrystal successfully converts various nitriles to primary amines and demonstrates high reusability. The development of air-stable and active iron phosphide nanocrystal catalysts significantly expands the application scope of iron catalysts.
Collapse
Affiliation(s)
- Tomohiro Tsuda
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Min Sheng
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Hiroya Ishikawa
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Seiji Yamazoe
- Department of Chemistry, Tokyo Metropolitan University, 1-1 Minami Osawa, Hachioji, Tokyo, 192-0397, Japan
| | - Jun Yamasaki
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, 7-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Motoaki Hirayama
- Department of Applied Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama, 333-0012, Japan
| | - Sho Yamaguchi
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Tomoo Mizugaki
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka, 565-0871, Japan
| | - Takato Mitsudome
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan.
- PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama, 333-0012, Japan.
| |
Collapse
|
27
|
Najera D, Fout AR. Iron-Catalyzed Parahydrogen Induced Polarization. J Am Chem Soc 2023; 145:21086-21095. [PMID: 37698953 PMCID: PMC10863066 DOI: 10.1021/jacs.3c07735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Indexed: 09/14/2023]
Abstract
Parahydrogen induced polarization (PHIP) can address the low sensitivity problem intrinsic to nuclear magnetic resonance spectroscopy. Using a catalyst capable of reacting with parahydrogen and substrate in either a hydrogenative or nonhydrogenative manner can result in signal enhancement of the substrate. This work describes the development of a rare example of an iron catalyst capable of reacting with parahydrogen to hyperpolarize olefins. Complexes of the form (MesCCC)Fe(H)(L)(N2) (L = Py (Py = pyridine), PMe3, PPh3) were synthesized from the reaction of the parent complexes (MesCCC)FeMes(L) (Mes = mesityl) with H2. The isolated low-spin iron(II) hydride compounds were characterized via multinuclear NMR spectroscopy, infrared spectroscopy, and single crystal X-ray diffraction. (MesCCC)Fe(H)(Py)(N2) is competent in the hydrogenation of olefins and demonstrated high activity toward the hydrogenation of monosubstituted terminal olefins. Reactions with p-H2 resulted in the first PHIP effect mediated by iron which requires diamagnetism throughout the reaction sequence. This work represents the development of a new PHIP catalyst featuring iron, unlocking potential to develop more PHIP catalysts based on first-row transition metals.
Collapse
Affiliation(s)
- Daniel
C. Najera
- School
of Chemical Sciences, University of Illinois
at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Alison R. Fout
- Department
of Chemistry, Texas A&M University, College Station, Texas 77840, United States
| |
Collapse
|
28
|
de Graaf R, De Decker Y, Sojo V, Hudson R. Quantifying Catalysis at the Origin of Life. Chemistry 2023; 29:e202301447. [PMID: 37578090 DOI: 10.1002/chem.202301447] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Indexed: 08/15/2023]
Abstract
The construction of hypothetical environments to produce organic molecules such as metabolic intermediates or amino acids is the subject of ongoing research into the emergence of life. Experiments specifically focused on an anabolic approach typically rely on a mineral catalyst to facilitate the supply of organics that may have produced prebiotic building blocks for life. Alternatively to a true catalytic system, a mineral could be sacrificially oxidized in the production of organics, necessitating the emergent 'life' to turn to virgin materials for each iteration of metabolic processes. The aim of this perspective is to view the current 'metabolism-first' literature through the lens of materials chemistry to evaluate the need for higher catalytic activity and materials analyses. While many elegant studies have detailed the production of chemical building blocks under geologically plausible and biologically relevant conditions, few appear to do so with sub-stoichiometric amounts of metals or minerals. Moving toward sub-stoichiometric metals with rigorous materials analyses is necessary to demonstrate the viability of an elusive cornerstone of the 'metabolism-first' hypotheses: catalysis. We emphasize that future work should aim to demonstrate decreased catalyst loading, increased productivity, and/or rigorous materials analyses for evidence of true catalysis.
Collapse
Affiliation(s)
- Ruvan de Graaf
- Department of Chemistry, College of the Atlantic, 105 Eden Street, Bar Harbor, Maine, 04609, USA
| | - Yannick De Decker
- Center for Nonlinear Phenomena and Complex Systems, Université libre de Bruxelles, CP 231, 1050, Ixelles, Belgium
| | - Victor Sojo
- Institute for Comparative Genomics & Richard Gilder Graduate School, Université libre de Bruxelles, American Museum of Natural History, 79th Street at Central Park West. New York, NY, 10024-5192, USA
| | - Reuben Hudson
- Department of Chemistry, College of the Atlantic, 105 Eden Street, Bar Harbor, Maine, 04609, USA
- Department of Chemistry, Colby College, 4000 Mayflower Hill Drive, Waterville, Maine, 04901, USA
| |
Collapse
|
29
|
Zhang LY, Wang NX, Lucan D, Cheung W, Xing Y. Recent Advances in Aerobic Oxidative of C-H Bond by Molecular Oxygen Focus on Heterocycles. Chemistry 2023; 29:e202301700. [PMID: 37390122 DOI: 10.1002/chem.202301700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/23/2023] [Accepted: 06/29/2023] [Indexed: 07/02/2023]
Abstract
Aerobic oxidative cross-coupling represents one of the most straightforward and atom-economic methods for construction of C-C and C-X (X=N, O, S, or P) bonds using air as a sustainable external oxidant. The oxidative coupling of C-H bonds in heterocyclic compounds can effectively increase their molecular complexity by introducing new functional groups through C-H bond activation, or by formation of new heterocyclic structures through cascade construction of two or more sequential chemical bonds. This is very useful as it can increase the potential applications of these structures in natural products, pharmaceuticals, agricultural chemicals, and functional materials. This is a representative overview of recent progress since 2010 on green oxidative coupling reactions of C-H bond using O2 or air as internal oxidant focus on Heterocycles. It aims to provide a platform for expanding the scope and utility of air as green oxidant, together with a brief discussion on research into the mechanisms behind it.
Collapse
Affiliation(s)
- Lei-Yang Zhang
- Technical Institute of Physics and Chemistry &, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Nai-Xing Wang
- Technical Institute of Physics and Chemistry &, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Dumitra Lucan
- Technical Sciences Academy of Romania ASTR, Dacia Avenue no.26, Bucharest, Romania
| | - William Cheung
- Department of Chemistry, Hofstra University, Hempstead, NY 11549, United States
| | - Yalan Xing
- Department of Chemistry, Hofstra University, Hempstead, NY 11549, United States
| |
Collapse
|
30
|
Yuan Y, Huang Q, Darcel C. Blue-Light Driven Iron-Catalyzed Oxy-phosphinylation of Activated Alkenes for β-Ketophosphine Oxide Synthesis. Chemistry 2023:e202302358. [PMID: 37681747 DOI: 10.1002/chem.202302358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/09/2023]
Abstract
We have developed an original blue-light mediated iron-catalyzed oxy-phosphinylation of activated alkenes by secondary phosphine oxides under air at room temperature. Various β-ketophosphine oxides were then obtained in 43-97 % isolated yields. Control experiments revealed that radical process is involved in the mechanism.
Collapse
Affiliation(s)
- Yumeng Yuan
- CNRS, ISCR UMR 6226, Univ. Rennes, F 35000, Rennes, France
- College of Chemistry & Materials Science, Fujian Normal University, 350007, Fuzhou, P. R. China
| | - Qiufeng Huang
- College of Chemistry & Materials Science, Fujian Normal University, 350007, Fuzhou, P. R. China
| | | |
Collapse
|
31
|
Yu H, Xu F. Non-noble metal-catalyzed cross-dehydrogenation coupling (CDC) involving ether α-C(sp 3)-H to construct C-C bonds. Beilstein J Org Chem 2023; 19:1259-1288. [PMID: 37701303 PMCID: PMC10494247 DOI: 10.3762/bjoc.19.94] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/23/2023] [Indexed: 09/14/2023] Open
Abstract
Ether derivatives are widespread as essential building blocks in various drugs, natural products, agrochemicals, and materials. Modern economy requires developing green strategies with improved efficiency and reduction of waste. Due to its atom and step-economy, the cross-dehydrogenative coupling (CDC) reaction has become a major strategy for ether functionalization. This review covers C-H/C-H cross-coupling reactions of ether derivatives with various C-H bond substrates via non-noble metal catalysts (Fe, Cu, Co, Mn, Ni, Zn, Y, Sc, In, Ag). We discuss advances achieved in these CDC reactions and hope to attract interest in developing novel methodologies in this field of organic chemistry.
Collapse
Affiliation(s)
- Hui Yu
- Department of Pharmacy, Shi zhen College of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550200, P. R. China
| | - Feng Xu
- School of Mathematics and Information Science, Guiyang University, Guiyang, Guizhou 550005, P. R. China
| |
Collapse
|
32
|
Stefanowska K, Nagórny J, Szyling J, Franczyk A. Functionalization of octaspherosilicate (HSiMe 2O) 8Si 8O 12 with buta-1,3-diynes by hydrosilylation. Sci Rep 2023; 13:14314. [PMID: 37653063 PMCID: PMC10471723 DOI: 10.1038/s41598-023-41461-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/27/2023] [Indexed: 09/02/2023] Open
Abstract
Hydrosilylation with octaspherosilicate (HSiMe2O)8Si8O12 (1) has provided hundreds of molecular and macromolecular systems so far, making this method the most popular in the synthesis of siloxane-based, nanometric, cubic, and reactive building blocks. However, there are no reports on its selective reaction with 1,3-diynes, which allows for the formation of new products with unique properties. Therefore, herein we present an efficient protocol for monohydrosilylation of symmetrically and non-symmetrically 1,4-disubstituted buta-1,3-diynes with 1. The compounds obtained bear double and triple bonds and other functionalities (e.g., Br, F, OH, SiR3), making them highly desirable, giant building blocks in organic synthesis and material chemistry. These compounds were fully characterized by 1H, 13C, 29Si, 1D NOE, 1H-13C HSQC NMR, FT-IR, and MALDI TOF MS, EA, UV-Vis, and TGA analysis. The TGA proved their high thermal stability up to 427 ℃ (Td10%) for compound 3j.
Collapse
Affiliation(s)
- Kinga Stefanowska
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614, Poznan, Poland
| | - Jakub Nagórny
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614, Poznan, Poland
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614, Poznan, Poland
| | - Jakub Szyling
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614, Poznan, Poland
| | - Adrian Franczyk
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614, Poznan, Poland.
| |
Collapse
|
33
|
Tannoux T, Mazaud L, Cheisson T, Casaretto N, Auffrant A. Fe II complexes supported by an iminophosphorane ligand: synthesis and reactivity. Dalton Trans 2023; 52:12010-12019. [PMID: 37581245 DOI: 10.1039/d3dt00950e] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
The synthesis of iron complexes supported by a mixed phosphine-lutidine-iminophosphorane (PPyNP) ligand was carried out. While bidentate κ2-N,N coordination was observed for FeCl2, pincer coordination modes were adopted at cationic iron centers, either through dechlorination of [LFe(PPyNP)Cl2] (1) or direct coordination of PPyNP to Fe(OTf)2. Reaction with tert-butylisocyanide gave access to the diamagnetic octahedral complex [Fe(PPyNP)(CNtBu)3]X2 (X = OTf (4), Cl (4')). Both 1 and 4 were shown to undergo deprotonation of the phosphinomethyl group, but the resulting complexes were not active for the dehydrogenative coupling of hexan-1-ol. The hydrosilylation of acetophenones was catalyzed at room temperature with 1 mol% of a catalyst generated in situ from cationic PPyNP-supported iron triflate complexes and KHBEt3.
Collapse
Affiliation(s)
- Thibault Tannoux
- Laboratoire de Chimie Moléculaire (LCM) CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay, F-91120 Palaiseau Cedex, France.
| | - Louis Mazaud
- Laboratoire de Chimie Moléculaire (LCM) CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay, F-91120 Palaiseau Cedex, France.
| | - Thibault Cheisson
- Laboratoire de Chimie Moléculaire (LCM) CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay, F-91120 Palaiseau Cedex, France.
| | - Nicolas Casaretto
- Laboratoire de Chimie Moléculaire (LCM) CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay, F-91120 Palaiseau Cedex, France.
| | - Audrey Auffrant
- Laboratoire de Chimie Moléculaire (LCM) CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay, F-91120 Palaiseau Cedex, France.
| |
Collapse
|
34
|
Saptal VB, Ruta V, Bajada MA, Vilé G. Single-Atom Catalysis in Organic Synthesis. Angew Chem Int Ed Engl 2023; 62:e202219306. [PMID: 36918356 DOI: 10.1002/anie.202219306] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/16/2023]
Abstract
Single-atom catalysts hold the potential to significantly impact the chemical sector, pushing the boundaries of catalysis in new, uncharted directions. These materials, featuring isolated metal species ligated on solid supports, can exist in many coordination environments, all of which have shown important functions in specific transformations. Their emergence has also provided exciting opportunities for mimicking metalloenzymes and bridging the gap between homogeneous and heterogeneous catalysis. This Review outlines the impressive progress made in recent years regarding the use of single-atom catalysts in organic synthesis. We also illustrate potential knowledge gaps in the search for more sustainable, earth-abundant single-atom catalysts for synthetic applications.
Collapse
Affiliation(s)
- Vitthal B Saptal
- Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Vincenzo Ruta
- Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Mark A Bajada
- Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Gianvito Vilé
- Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| |
Collapse
|
35
|
Wang Z, Ma N, Lu X, Liu M, Liu T, Liu Q, Solan GA, Sun WH. Robust and efficient transfer hydrogenation of carbonyl compounds catalyzed by NN-Mn(I) complexes. Dalton Trans 2023; 52:10574-10583. [PMID: 37458677 DOI: 10.1039/d3dt02022c] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
A series of manganese(I) carbonyl complexes bearing structurally related NN- and NNN-chelating ligands have been synthesized and assessed as catalysts for transfer hydrogenation (TH). Notably, the NN-systems based on N-R functionalized 5,6,7,8-tetrahydroquinoline-8-amines, proved the most effective in the manganese-promoted conversion of acetophenone to 1-phenylethanol. In particular, the N-isopropyl derivative, Mn1, when conducted in combination with t-BuONa, was the standout performer mediating not only the reduction of acetophenone but also a range of carbonyl substrates including (hetero)aromatic-, aliphatic- and cycloalkyl-containing ketones and aldehydes with especially high values of TON (up to 17 200; TOF of 3550 h-1). These findings, obtained through a systematic variation of the N-R group of the NN ligand, are consistent with an outer-sphere mechanism for the hydrogen transfer. As a more general point, this Mn-based catalytic TH protocol offers an attractive and sustainable alternative for producing alcoholic products from carbonyl substrates.
Collapse
Affiliation(s)
- Zheng Wang
- College of Science, Hebei Agricultural University, Baoding 071001, China
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, China.
| | - Ning Ma
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Xiaochi Lu
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Ming Liu
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Tian Liu
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Qingbin Liu
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, China.
| | - Gregory A Solan
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- Department of Chemistry, University of Leicester, University Road, Leicester LE1 7RH, UK.
| | - Wen-Hua Sun
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
36
|
Suga Y, Sunada Y. Iron(II) Complex with a Silacycle-Bridged Biaryl-Based Ligand. ACS OMEGA 2023; 8:24078-24082. [PMID: 37426232 PMCID: PMC10324383 DOI: 10.1021/acsomega.3c03161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/09/2023] [Indexed: 07/11/2023]
Abstract
Treatment of 2,6-dimethyl-1,1'-biphenyl-substituted chlorosilane with potassium followed by FeBr2/TMEDA led to the formation of an iron(II) monobromide complex supported by a TMEDA ligand and a carbanion-based ligand containing a six-membered silacycle-bridged biphenyl skeleton. The obtained complex crystallized as a racemic mixture of (Sa, S) and (Ra, R) forms, in which the dihedral angle of the two phenyl rings of the biphenyl moiety was ∼43°.
Collapse
|
37
|
Behera RR, Saha R, Kumar AA, Sethi S, Jana NC, Bagh B. Hydrosilylation of Terminal Alkynes Catalyzed by an Air-Stable Manganese-NHC Complex. J Org Chem 2023. [PMID: 37317486 DOI: 10.1021/acs.joc.3c00127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In recent years, catalysis with base metal manganese has received a significant amount of interest. Catalysis with manganese complexes having N-heterocyclic carbenes (NHCs) is relatively underdeveloped in comparison to the extensively investigated manganese catalysts possessing pincer ligands (particularly phosphine-based ligands). Herein, we describe the synthesis of two imidazolium salts decorated with picolyl arms (L1 and L2) as NHC precursors. Facile coordination of L1 and L2 with MnBr(CO)5 in the presence of a base resulted in the formation manganese(I)-NHC complexes (1 and 2) as an air-stable solid in good isolated yield. Single-crystal X-ray analysis revealed the structure of the cationic complexes [Mn(CO)3(NHC)][PF6] with tridentate N,C,N binding of the NHC ligand in a facile fashion. Along with a few known manganese(I) complexes, these Mn(I)-NHC complexes 1 and 2 were tested for the hydrosilylation of terminal alkynes. Complex 1 was proved to be an effective catalyst for the hydrosilylation of terminal alkynes with good selectivity toward the less thermodynamically stable β-(Z)-vinylsilanes. This method provided good regioselectivity (anti-Markovnikov addition) and stereoselectivity (β-(Z)-product). Experimental evidence suggested that the present hydrosilylation pathway involved an organometallic mechanism with manganese(I)-silyl species as a possible reactive intermediate.
Collapse
Affiliation(s)
- Rakesh R Behera
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| | - Ratnakar Saha
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| | - Alamsaty Ashis Kumar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| | - Subrat Sethi
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| | - Narayan Ch Jana
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| | - Bidraha Bagh
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| |
Collapse
|
38
|
Steinlandt PS, Hemming M, Xie X, Ivlev SI, Meggers E. Trading Symmetry for Stereoinduction in Tetradentate, non-C 2 -Symmetric Fe(II)-Complexes for Asymmetric Catalysis. Chemistry 2023:e202300267. [PMID: 37104865 DOI: 10.1002/chem.202300267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Indexed: 04/29/2023]
Abstract
A series of stereogenic-at-metal iron complexes comprising a non-C2 -symmetric chiral topology is introduced and applied to asymmetric 3d-transition metal catalysis. The chiral iron(II) complexes are built from chiral tetradentate N4-ligands containing a proline-derived amino pyrrolidinyl backbone which controls the relative (cis-α coordination) and absolute metal-centered configuration (Λ vs. Δ). Two chloride ligands complement the octahedral coordination sphere. The modular composition of the tetradentate ligands facilitates the straightforward incorporation of different terminal coordinating heteroaromatic groups into the scaffold. The influence of various combinations was evaluated in an asymmetric ring contraction of isoxazoles to 2H-azirines revealing that a decrease of symmetry is beneficial for the stereoinduction to obtain chiral products in up to 99 % yield and with up to 92 % ee. Conveniently, iron catalysis is feasible under open flask conditions with the bench-stable dichloro complexes exhibiting high robustness towards oxidative or hydrolytic decomposition. The versatility of non-racemic 2H-azirines was subsequently showcased with the conversion into a variety of quaternary α-amino acid derivatives.
Collapse
Affiliation(s)
- Philipp S Steinlandt
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043, Marburg, Germany
| | - Marcel Hemming
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043, Marburg, Germany
| | - Xiulian Xie
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043, Marburg, Germany
| | - Sergei I Ivlev
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043, Marburg, Germany
| | - Eric Meggers
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043, Marburg, Germany
| |
Collapse
|
39
|
Liang Y, Luo J, Diskin-Posner Y, Milstein D. Designing New Magnesium Pincer Complexes for Catalytic Hydrogenation of Imines and N-Heteroarenes: H 2 and N-H Activation by Metal-Ligand Cooperation as Key Steps. J Am Chem Soc 2023; 145:9164-9175. [PMID: 37068165 PMCID: PMC10141328 DOI: 10.1021/jacs.3c01091] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
Utilization of main-group metals as alternatives to transition metals in homogeneous catalysis has become a hot research area in recent years. However, their application in catalytic hydrogenation is less common due to the difficulty in heterolytic cleavage of the H-H bond. Employing aromatization/de-aromatization metal-ligand cooperation (MLC) highly enhances the H2 activation process, offering an efficient approach for the hydrogenation of unsaturated molecules catalyzed by main-group metals. Herein, we report a series of new magnesium pincer complexes prepared using PNNH-type pincer ligands. The complexes were characterized by NMR and X-ray single-crystal diffraction. Reversible activation of H2 and N-H bonds by MLC employing these pincer complexes was developed. Using the new magnesium complexes, homogeneously catalyzed hydrogenation of aldimines and ketimines was achieved, affording secondary amines in excellent yields. Control experiments and DFT studies reveal that a pathway involving MLC is favorable for the hydrogenation reactions. Moreover, the efficient catalysis was extended to the selective hydrogenation of quinolines and other N-heteroarenes, presenting the first example of hydrogenation of N-heteroarenes homogeneously catalyzed by early main-group metal complexes. This study provides a new strategy for hydrogenation of C═N bonds catalyzed by magnesium compounds and enriches the research of main-group metal catalysis.
Collapse
Affiliation(s)
- Yaoyu Liang
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Jie Luo
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yael Diskin-Posner
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - David Milstein
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
40
|
Tang H, Liu X, Li Y, Tian J, Hou C, Tian M, Zhu T. Investigation on low energy-consumed embedded selective catalytic reduction technology for pelletizing flue gas and the CO 2 emission reduction assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:53492-53504. [PMID: 36859640 DOI: 10.1007/s11356-023-26042-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Based on the unique technique property of grate-kiln pellet production process and its demand of ultra-low emission of NOx, a low energy-consumed embedded selective catalytic reduction (SCR) denitration technology was proposed. The temperature of the NOx-containing tributary flue gas was 350-500 °C, which basically accorded with the temperature range of SCR by V2O5-based catalyst. Considering the potential inhibition effect of high SO2 concentration (8000-10000 mg/m3) and metal-containing dust in the pelletizing flue gas, the catalyst compositions were optimized to V2O5 (0.5%) and WO3 (5%), giving NO conversion over 90% with low yield of N2O by-product. Compared with the low-medium temperature SCR technology, it was no longer necessary to reheat the flue gas, showing a remarkable CO2 emission reduction effect. The CO2 emission reduction ratios were 94% and 66% contributed by the decrease of fuel and electricity consumption for the embedded SCR technology, respectively. The operating cost was also greatly reduced from 11.4 CNY/t-pellet to 3.1 CNY/t-pellet (Chinese Yuan).
Collapse
Affiliation(s)
- Hao Tang
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, China
| | - Xiaolong Liu
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yiren Li
- HBIS Group Co., Ltd., Shijiazhuang, 050023, China
| | - Jinglei Tian
- HBIS Group Co., Ltd., Shijiazhuang, 050023, China
| | | | - Mengkui Tian
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, China.
| | - Tingyu Zhu
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, China
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| |
Collapse
|
41
|
Bezawada SA, Ušto N, Wilke C, Barnes-Flaspoler M, Jagan R, Bauer EB. Ferrocenophanium Stability and Catalysis. Molecules 2023; 28:molecules28062729. [PMID: 36985702 PMCID: PMC10058812 DOI: 10.3390/molecules28062729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/30/2023] Open
Abstract
Ferrocenium catalysis is a vibrant research area, and an increasing number of ferrocenium-catalyzed processes have been reported in the recent years. However, the ferrocenium cation is not very stable in solution, which may potentially hamper catalytic applications. In an effort to stabilize ferrocenium-type architectures by inserting a bridge between the cyclopentadienyl rings, we investigated two ferrocenophanium (or ansa-ferrocenium) cations with respect to their stability and catalytic activity in propargylic substitution reactions. One of the ferrocenophanium complexes was characterized by single crystal X-ray diffraction. Cyclic voltammetry experiments of the ferrocenophane parent compounds were performed in the absence and presence of alcohol nucleophiles, and the stability of the cations in solution was judged based on the reversibility of the electron transfer. The experiments revealed a moderate stabilizing effect of the bridge, albeit the effect is not very pronounced or straightforward. Catalytic propargylic substitution test reactions revealed decreased activity of the ferrocenophanium cations compared to the ferrocenium cation. It appears that the somewhat stabilized ferrocenophanium cations show decreased catalytic activity.
Collapse
Affiliation(s)
- Sai Anvesh Bezawada
- Department of Chemistry and Biochemistry, University of Missouri, One University Boulevard, St. Louis, MO 63121, USA
| | - Neira Ušto
- Department of Chemistry and Biochemistry, University of Missouri, One University Boulevard, St. Louis, MO 63121, USA
| | - Chloe Wilke
- Department of Chemistry and Biochemistry, University of Missouri, One University Boulevard, St. Louis, MO 63121, USA
| | - Michael Barnes-Flaspoler
- Department of Chemistry and Biochemistry, University of Missouri, One University Boulevard, St. Louis, MO 63121, USA
| | - Rajamoni Jagan
- Department of Chemistry and Biochemistry, University of Missouri, One University Boulevard, St. Louis, MO 63121, USA
| | - Eike B Bauer
- Department of Chemistry and Biochemistry, University of Missouri, One University Boulevard, St. Louis, MO 63121, USA
| |
Collapse
|
42
|
De S, Chowdhury C. Substrate-Controlled Product Divergence in Iron(III)-Catalyzed Reactions of Propargylic Alcohols: Easy Access to Spiro-indenyl 1,4-Benzoxazines and 2-(2,2-Diarylvinyl)quinoxalines. Chemistry 2023; 29:e202203993. [PMID: 36651187 DOI: 10.1002/chem.202203993] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 01/19/2023]
Abstract
We report herein unprecedented cascade reactions of O-propargyl-N-tosyl-amino phenols with 10 mol% FeCl3 in DCE at room temperature for 0.67-3 h to form spiro-indenyl 1,4-benzoxazines with 38-89 % yield. Replacing the substrates' oxygen atom by a N-tosylimine group followed by treatment with the same catalyst and solvent at 80 °C produced 2-(2,2-diarylvinyl)quinoxalines in 12-20 h with up to 62 % yield. Mechanistic understanding provided an insight into the transformations. The use of simple substrates and an environmentally benign low-cost catalyst, broad substrate scope and tolerance of diverse functional groups makes the methodology inherently attractive.
Collapse
Affiliation(s)
- Sukanya De
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Chinmay Chowdhury
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata, 700032, India
| |
Collapse
|
43
|
Tang J, He J, Zhao SY, Liu W. Manganese-Catalyzed Chemoselective Coupling of Secondary Alcohols, Primary Alcohols and Methanol. Angew Chem Int Ed Engl 2023; 62:e202215882. [PMID: 36847452 DOI: 10.1002/anie.202215882] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 03/01/2023]
Abstract
Herein, we report a manganese-catalyzed three-component coupling of secondary alcohols, primary alcohols and methanol for the synthesis of β,β-methylated/alkylated secondary alcohols. Using our method, a series of 1-arylethanol, benzyl alcohol derivatives, and methanol undergo sequential coupling efficiently to construct assembled alcohols with high chemoselectivity in moderate to good yields. Mechanistic studies suggest that the reaction proceeds via methylation of a benzylated secondary alcohol intermediate to generate the final product.
Collapse
Affiliation(s)
- Jun Tang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Jingxi He
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Sheng-Yin Zhao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Weiping Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
44
|
Cattani S, Secchi A, Ackermann L, Cera G. Triazole-enabled, iron-catalysed linear/branched selective C-H alkylations with alkenes. Org Biomol Chem 2023; 21:1264-1269. [PMID: 36636890 DOI: 10.1039/d2ob02206k] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Iron-catalysed C-H alkylations with alkenes were achieved on benzamides by N-triazole assistance. A notable switch of the regioselectivity from linear to branched was observed depending on the nature of the olefin employed. The approach allowed for the synthesis of a family of decorated benzamides with ample scope and high levels of chemo-, regio- and site-selectivity.
Collapse
Affiliation(s)
- Silvia Cattani
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy.
| | - Andrea Secchi
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy.
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität, Tammannstraße 2, 37077 Göttingen, Germany
| | - Gianpiero Cera
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy.
| |
Collapse
|
45
|
Tang L, Lv G, Cheng R, Yang F, Zhou Q. Three-Component Perfluoroalkylvinylation of Alkenes Enabled by Dual DBU/Fe Catalysis. Chemistry 2023; 29:e202203332. [PMID: 36351885 DOI: 10.1002/chem.202203332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 11/11/2022]
Abstract
Herein, a simple and efficient strategy that involves dual 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU)/iron-catalyzed alkene perfluoroalkylvinylation by using perfluoroalkyl iodides and 2-aminonaphthalene-1,4-diones as coupling partners is demonstrated. In terms of the developed catalytic system, various styrenes and aliphatic alkenes are well-tolerated, leading to the accurate preparation of perfluoroalkyl-containing 2-aminonaphthalene-1,4-diones in excellent regioselectivity. Moreover, the protocol can be readily applied in late-stage modifications of natural products and pharmaceuticals. The title reactions are featured by easily accessible and inexpensive catalysts and substrates, broad substrate applicability, and mild reaction conditions. Mechanistic investigations reveal a tandem C-I cleavable alkylation and C-C vinylation enabled by cooperative DBU/iron catalysis.
Collapse
Affiliation(s)
- Lin Tang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, 464000, P.R. China.,Key Laboratory of Utilization of Non-metallic Mineral in the South of Henan, Xinyang, 464000, P.R. China
| | - Ge Lv
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, 464000, P.R. China
| | - Ruimin Cheng
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, 464000, P.R. China
| | - Fang Yang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, 464000, P.R. China
| | - Qiuju Zhou
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, 464000, P.R. China
| |
Collapse
|
46
|
Fang F, Zhang J. Notable Catalytic Activity of Transition Metal Thiolate Complexes against Hydrosilylation and Hydroboration of Carbon-Heteroatom Bonds. Chem Asian J 2023; 18:e202201181. [PMID: 36545848 DOI: 10.1002/asia.202201181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
Chemists tend to use transition metal hydride complexes rather than thiolate complexes to catalyse chemical transformations because the hydride complexes possess diverse catalytic reactivity, although most of them are air/moisture-sensitive and difficult to prepare. By comparing the catalytic performances of pincer ligated group 10 metal thiolate and hydride complexes in catalysing the hydroboration and hydrosilylation of C=O and C=N bonds, we demonstrate in this review that transition metal thiolate complexes are much better catalysts than the corresponding hydride complexes in catalysing this type of reactions. Many hydroboration and hydrosilylation reactions catalysed by pincer ligated group 10 metal hydride complexes can also be catalysed by the corresponding thiolate complexes and the thiolate systems are far more active. Therefore, the applications of transition metal thiolate complexes in the catalytic hydroboration and hydrosilylation of unsaturated carbon-heteroatom bonds deserve special attention in future work.
Collapse
Affiliation(s)
- Fei Fang
- School of Chemistry and Materials Engineering, Xinxiang University Xinxiang, Henan, 453003, P. R. China
| | - Jie Zhang
- Henan Key Laboratory of Boron Chemistry and, Advanced Energy Materials, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang, Henan, 453007, P. R. China
| |
Collapse
|
47
|
Zhou Y, Ni J, Lyu Z, Li Y, Wang T, Cheng GJ. Mechanism and Reaction Channels of Iron-Catalyzed Primary Amination of Alkenes by Hydroxylamine Reagents. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Yu Zhou
- Warshel Institute for Computational Biology and School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
- School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Jie Ni
- Warshel Institute for Computational Biology and School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| | - Zhen Lyu
- Warshel Institute for Computational Biology and School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| | - Yang Li
- Warshel Institute for Computational Biology and School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| | - Ting Wang
- Warshel Institute for Computational Biology and School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| | - Gui-Juan Cheng
- Warshel Institute for Computational Biology and School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| |
Collapse
|
48
|
Liang Z, Wang K, Sun Q, Peng Y, Bao X. Iron-catalyzed dual decarboxylative coupling of α-amino acids and dioxazolones under visible-light to access amide derivatives. Chem Commun (Camb) 2023; 59:752-755. [PMID: 36541573 DOI: 10.1039/d2cc03318f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An iron-catalyzed decarboxylative C-N coupling of α-amino acids with dioxazolones is described herein to synthesize amide derivatives under visible-light. The desired products can be given in good to excellent yields under simple, mild, and oxidant-free conditions. This protocol provides a practical route for the transformation of α-amino acids to the corresponding amides. Computational studies were carried out to shed light on the mechanism of this reaction.
Collapse
Affiliation(s)
- Zhanqun Liang
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China.
| | - Kaifeng Wang
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China.
| | - Qing Sun
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China.
| | - Yuzhu Peng
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China.
| | - Xiaoguang Bao
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China. .,Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
49
|
Zhang G, Zheng S, Neary MC. An ionic Fe-based metal-organic-framework with 4'-pyridyl-2,2':6',2''-terpyridine for catalytic hydroboration of alkynes. RSC Adv 2023; 13:2225-2232. [PMID: 36741180 PMCID: PMC9834911 DOI: 10.1039/d2ra08040k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 01/05/2023] [Indexed: 01/15/2023] Open
Abstract
An ionic metal-organic-framework (MOF) containing nanoscale channels was readily assembled from ditopic 4'-pyridyl-2,2':6',2''-terpyridine (pytpy) and a simple iron(ii) salt. X-ray structural analysis revealed a two-dimensional grid-like framework assembled by classic octahedral (pytpy)2FeII cations as linkers (with pytpy as a new ditopic pyridyl ligand) and octa-coordinate FeCl2 centers as nodes. The layer-by-layer assembly of the 2-D framework resulted in the formation of 3-D porous materials consisting of nano-scale channels. The charges of the cationic framework were balanced with anionic Cl3FeOFeCl3 in its void channels. The new Fe-based MOF material was employed as a precatalyst for syn-selective hydroboration of alkynes under mild, solvent-free conditions in the presence of an activator, leading to the synthesis of a range of trans-alkenylboronates in good yields. The larger scale applicability and recyclability of the new MOF catalyst was further explored. This represents a rare example of an ionic MOF material that can be utilized in hydroboration catalysis.
Collapse
Affiliation(s)
- Guoqi Zhang
- Department of Sciences, John Jay College, PhD Program in Chemistry, The Graduate Center, The City University of New York New York NY 10019 USA
| | - Shengping Zheng
- Department of Chemistry, Hunter College, The City University of New York New York 10065 NY USA
| | - Michelle C Neary
- Department of Chemistry, Hunter College, The City University of New York New York 10065 NY USA
| |
Collapse
|
50
|
Manganese(I)-Catalyzed Asymmetric (Transfer) Hydrogenation of Ketones: An Insight into the Effect of Chiral PNN and NN ligands. J Catal 2023. [DOI: 10.1016/j.jcat.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|