1
|
Reidell A, Pazder KE, LeBarron CT, Stewart SA, Hosseini S. Modified Working Electrodes for Organic Electrosynthesis. ACS ORGANIC & INORGANIC AU 2024; 4:579-603. [PMID: 39649987 PMCID: PMC11621959 DOI: 10.1021/acsorginorgau.4c00050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 12/11/2024]
Abstract
Organic electrosynthesis has gained much attention over the last few decades as a promising alternative to traditional synthesis methods. Electrochemical approaches offer numerous advantages over traditional organic synthesis procedures. One of the most interesting aspects of electroorganic synthesis is the ability to tune many parameters to affect the outcome of the reaction of interest. One such parameter is the composition of the working electrode. By changing the electrode material, one can influence the selectivity, product distribution, and rate of organic reactions. In this Review, we describe several electrode materials and modifications with applications in organic electrosynthetic transformations. Included in this discussion are modifications of electrodes with nanoparticles, composite materials, polymers, organic frameworks, and surface-bound mediators. We first discuss the important physicochemical and electrochemical properties of each material. Then, we briefly summarize several relevant examples of each class of electrodes, with the goal of providing readers with a catalog of electrode materials for a wide variety of organic syntheses.
Collapse
Affiliation(s)
- Alexander
C. Reidell
- Department
of Chemistry and Biochemistry, University
of South Carolina, Columbia, South Carolina 29208, United States
| | - Kristen E. Pazder
- Department
of Chemistry and Biochemistry, University
of South Carolina, Columbia, South Carolina 29208, United States
| | - Christopher T. LeBarron
- Department
of Chemistry and Biochemistry, University
of South Carolina, Columbia, South Carolina 29208, United States
| | - Skylar A. Stewart
- Department
of Chemistry and Biochemistry, University
of South Carolina, Columbia, South Carolina 29208, United States
| | - Seyyedamirhossein Hosseini
- Department
of Chemistry and Biochemistry, University
of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
2
|
Qin Z, Li J, Wu Q, Sathishkumar N, Liu X, Lai J, Mao J, Xie L, Li S, Lu G, Cao R, Yan P, Huang Y, Li Q. Topologically Close-Packed Frank-Kasper C15 Phase Intermetallic Ir Alloy Electrocatalysts Enables High-Performance Proton Exchange Membrane Water Electrolyzer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2412541. [PMID: 39350447 DOI: 10.1002/adma.202412541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/16/2024] [Indexed: 11/26/2024]
Abstract
Chemical synthesis of unconventional topologically close-packed intermetallic nanocrystals (NCs) remains a considerable challenge due to the limitation of large volume asymmetry between the components. Here, a series of unconventional intermetallic Frank-Kasper C15 phase Ir2M (M = rare earth metals La, Ce, Gd, Tb, Tm) NCs is successfully prepared via a molten-salt assisted reduction method as efficient electrocatalysts for hydrogen evolution reaction (HER). Compared to the disordered counterpart (A1-Ir2Ce), C15-Ir2Ce features higher Ir-Ce coordination number that leads to an electron-rich environment for Ir sites. The C15-Ir2Ce catalyst exhibits excellent and pH-universal HER activity and requires only 9, 16, and 27 mV overpotentials to attain 10 mA cm-2 in acidic, alkaline, and neutral electrolytes, respectively, representing one of the best HER electrocatalysts ever reported. In a proton exchange membrane water electrolyzer, the C15-Ir2Ce cathode achieves an industrial-scale current density of 1 A cm-2 with a remarkably low cell voltage of 1.7 V at 80 °C and can operate stably for 1000 h with a sluggish voltage decay rate of 50 µV h-1. Theoretical investigations reveal that the electron-rich Ir sites intensify the polarization of *H2O intermediate on C15-Ir2Ce, thus lowering the energy barrier of the water dissociation and facilitating the HER kinetics.
Collapse
Affiliation(s)
- Zhuhuang Qin
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jinhui Li
- Beijing Key Laboratory of Microstructure and Property of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
| | - Qiyan Wu
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Nadaraj Sathishkumar
- Department of Physics and Astronomy, California State University Northridge, Northridge, CA, 91330, USA
| | - Xuan Liu
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jiaoyang Lai
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jialun Mao
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Linfeng Xie
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shenzhou Li
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Gang Lu
- Department of Physics and Astronomy, California State University Northridge, Northridge, CA, 91330, USA
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Pengfei Yan
- Beijing Key Laboratory of Microstructure and Property of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
| | - Yunhui Huang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Qing Li
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
3
|
Perez AR, Amjad R, Guzman MC, Constanza C, Juarez Y, Miller G, Cooper C, Arnet NA. Electrochemical Screening and DFT Analysis of Acetylacetonate Metal Complexes in Organic Solvents. JOURNAL OF THE ELECTROCHEMICAL SOCIETY 2024; 171:106502. [PMID: 39494379 PMCID: PMC11526764 DOI: 10.1149/1945-7111/ad83f9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Seven acetylacetonate (acac) metal complexes ranging from early transition metals to post-transition metals were examined by cyclic voltammetry in acetonitrile (MeCN), dichloromethane (DCM), tetrahydrofuran (THF), dimethyl sulfoxide (DMSO), and dimethylformamide (DMF). The electronic potential of any observed redox events is reported along with an analysis of the reversibility of those events across a range of scan rates. Group 8 compounds Fe(acac)3 Ru(acac)3 showed at least quasi-reversible reductions across all solvents while Ru(acac)3 also featured a reversible oxidation. The early and post-transition compounds VO(acac)2, Ga(acac)3 and In(acac)3 exhibited irreversible reductions, while TiO(acac)2 showed no redox activity within the examined potential ranges. Mn(acac)3 featured an oxidation that showed solvent-dependent reversibility, and a reduction that was irreversible in all examined solvents. DFT calculations indicated minimal solvent effects on the HOMO-LUMO gap for the majority of compounds, but a significant effect was observed for Ru(acac)3. This study serves as a valuable initial step for further examination of acetylacetonate metal complexes for applications as electrochemical internal standards, nanoparticle precursors, and electrocatalysts.
Collapse
Affiliation(s)
- Alexia Rivera Perez
- Department of Physical and Life Sciences, Nevada State University, Henderson, Nevada 89002-9455, United States
| | - Romina Amjad
- Department of Physical and Life Sciences, Nevada State University, Henderson, Nevada 89002-9455, United States
| | - Maria Cedeno Guzman
- Department of Physical and Life Sciences, Nevada State University, Henderson, Nevada 89002-9455, United States
| | - Cassandra Constanza
- Department of Physical and Life Sciences, Nevada State University, Henderson, Nevada 89002-9455, United States
| | - Yaisa Juarez
- Department of Physical and Life Sciences, Nevada State University, Henderson, Nevada 89002-9455, United States
| | - Gwynneth Miller
- Department of Physical and Life Sciences, Nevada State University, Henderson, Nevada 89002-9455, United States
| | - Courtney Cooper
- Department of Physical and Life Sciences, Nevada State University, Henderson, Nevada 89002-9455, United States
| | - Nicholas A. Arnet
- Department of Physical and Life Sciences, Nevada State University, Henderson, Nevada 89002-9455, United States
| |
Collapse
|
4
|
Wei J, Rodríguez-Kessler PL, Saillard JY, Muñoz-Castro A. Cuboctahedral Pd 13 as a spherical aromatic noble metal core: insights from a ligand-protected [Pd 13(Tr) 6] 2+ cluster. Dalton Trans 2024; 53:16740-16746. [PMID: 39347686 DOI: 10.1039/d4dt01633e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Low-valent palladium nanoparticles are efficient species promoting catalytic activity and selectivity in a number of chemical reactions. Recently, an atom-centered cuboctahedral Pd13 motif has been characterized as a ligand-protected [Pd13(Tr)6]2+ cluster featuring a 1s2 superatomic shell structure. In this report, we describe the ligand-cluster of and endohedral-cage interaction in [Pd13(Tr)6]2+, which accounts for a favorable situation in the overall cluster. In addition, the spherical aromatic properties of the cluster were evaluated to understand the behavior of the ligand-protected Pd13 cluster core. Our results indicate a sizable interaction towards carbon-based ligands in an overall spherical aromatic cluster featuring a long-range shielding cone. Thus, [Pd13(Tr)6]2+ is rationalized as the first ligand-protected palladium cluster to date exhibiting spherical aromatic properties, serving as a stable building block for molecule-based materials or as a dopant in porous carbon materials.
Collapse
Affiliation(s)
- Jianyu Wei
- School of Materials and New Energy, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Peter L Rodríguez-Kessler
- Centro de Investigaciones en Óptica A.C., Loma del Bosque 115, Col. Lomas del Campestre, León, Guanajuato, 37150, Mexico
| | - Jean-Yves Saillard
- Institut des Sciences Chimiques de Rennes, Univ Rennes, CNRS, UMR 6226, Rennes F-35000, France.
| | - Alvaro Muñoz-Castro
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Bellavista 7, Santiago, 8420524, Chile.
| |
Collapse
|
5
|
Shin Y, Park S, Jang H, Shin G, Shin D, Park S. Atomically dispersed Co-based species containing electron withdrawing groups for electrocatalytic oxygen reduction reactions. NANOSCALE 2024; 16:17419-17425. [PMID: 39234746 DOI: 10.1039/d4nr01635a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Single-atom-based catalysts are a promising catalytic system with advantages of molecular catalysts and conductive supports. In this work, a new hybrid material (CoF/NG) is produced using a low-temperature reaction between an organometallic complex (Co(C5HF6O2)2) (CoF) and N-doped reduced graphene oxide (NG). CoF contains electron-withdrawing CF3 groups in the ligand around a Co atom. Microscopic and chemical characterization studies reveal that Co-based species are coordinated to N sites of NG and molecularly dispersed on the surface of NG. The CoF/NG hybrid shows improved electrocatalytic properties, such as onset (0.91 V) and half-wave (0.80 V) potentials, for the electrochemical oxygen reduction reaction (ORR) relative to the NG material. Control experiments reveal that Co-(N)graphene acts as a major active species for ORR. CoF/NG shows moderate cycling durability and microscopy measurements of CoF/NG-after-cycle indicate the formation of nanoparticles after electrocatalytic measurements. All experimental data support that the incorporation of Co-based organometallic species containing electron-withdrawing groups around the metal center onto the graphene-based networks improves the electrocatalytic ORR performance but diminishes the electrocatalytic stability of the active species.
Collapse
Affiliation(s)
- Yunseok Shin
- Department of Chemistry and Chemical Engineering, Inha University, 100 Inha-ro, Michuholgu, Incheon 22212, Republic of Korea.
| | - Sunggu Park
- Department of Chemistry and Chemical Engineering, Inha University, 100 Inha-ro, Michuholgu, Incheon 22212, Republic of Korea.
| | - Hanbi Jang
- Department of Chemistry and Chemical Engineering, Inha University, 100 Inha-ro, Michuholgu, Incheon 22212, Republic of Korea.
| | - Gogyun Shin
- Department of Chemistry and Chemical Engineering, Inha University, 100 Inha-ro, Michuholgu, Incheon 22212, Republic of Korea.
| | - Dongha Shin
- Department of Chemistry and Chemical Engineering, Inha University, 100 Inha-ro, Michuholgu, Incheon 22212, Republic of Korea.
| | - Sungjin Park
- Department of Chemistry and Chemical Engineering, Inha University, 100 Inha-ro, Michuholgu, Incheon 22212, Republic of Korea.
| |
Collapse
|
6
|
Naguib GH, Abd El-Aziz GS, Mira A, Kayal RA, Al-Turki L, Mously H, Alnowaiser A, Mazhar J, Hamed MT. Enhanced Antimicrobial Properties of Polymeric Denture Materials Modified with Zein-Coated Inorganic Nanoparticles. Int J Nanomedicine 2024; 19:9255-9271. [PMID: 39282577 PMCID: PMC11397330 DOI: 10.2147/ijn.s476261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/31/2024] [Indexed: 09/19/2024] Open
Abstract
Background Polymeric denture materials can be susceptible to colonization by oral microorganisms. Zein-coated magnesium oxide nanoparticles (zMgO NPs) demonstrate antimicrobial activity. The aim of this study was to investigate the antimicrobial effect and adherence of different oral microorganisms on hybrid polymeric denture materials incorporated with zMgO NPs. Methods Five types of polymeric denture materials were used. A total of 480 disc-shaped specimens were divided by material type (n=96/grp), then subdivided by zMgO NPs concentration: control with no nanoparticles and other groups with zMgO NPs concentrations of 0.3%, 0.5% and 1% by weight. Characterization of the polymeric denture materials incorporating zMgO NPs was done, and the antimicrobial activity of all groups was tested against four types of microorganisms: 1) Streptococcus mutans, 2) Staphylococcus aureus, 3) Enterococcus faecalis and 4) Candida albicans. The samples underwent an adherence test and an agar diffusion test. Experiments were done in triplicates. Results The characterization of the hybrid samples revealed variation in the molecular composition, as well as a uniform distribution of the zMgO NPs in the polymeric denture materials. All hybrid polymeric denture materials groups induced a statistically significant antimicrobial activity, while the control groups showed the least antimicrobial activity. The agar diffusion test revealed no release of the zMgO NPs from the hybrid samples, indicating the NPs did not seep out of the matrix. Conclusion The zMgO NPs were effective in reducing the adherence of the tested microorganisms and enhancing the antimicrobial activity of the polymeric denture materials. This antimicrobial effect with the polymeric dentures could aid in resisting microbial issues such as denture stomatitis.
Collapse
Affiliation(s)
- Ghada H Naguib
- Department of Restorative Dentistry, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Oral Biology, Cairo University School of Dentistry, Cairo, Egypt
| | - Gamal S Abd El-Aziz
- Department of Clinical Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulghani Mira
- Department of Restorative Dentistry, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rayyan A Kayal
- Department of Periodontology, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Lulwa Al-Turki
- Department of Oral and Maxillofacial Prosthodontics, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hisham Mously
- Department of Oral and Maxillofacial Prosthodontics, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abeer Alnowaiser
- Department of Pediatric Dentistry, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Mohamed T Hamed
- Department of Oral and Maxillofacial Prosthodontics, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Fixed Prosthodontics, Cairo University School of Dentistry, Cairo, Egypt
| |
Collapse
|
7
|
Clarke TB, Krushinski LE, Vannoy KJ, Colón-Quintana G, Roy K, Rana A, Renault C, Hill ML, Dick JE. Single Entity Electrocatalysis. Chem Rev 2024; 124:9015-9080. [PMID: 39018111 DOI: 10.1021/acs.chemrev.3c00723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Making a measurement over millions of nanoparticles or exposed crystal facets seldom reports on reactivity of a single nanoparticle or facet, which may depart drastically from ensemble measurements. Within the past 30 years, science has moved toward studying the reactivity of single atoms, molecules, and nanoparticles, one at a time. This shift has been fueled by the realization that everything changes at the nanoscale, especially important industrially relevant properties like those important to electrocatalysis. Studying single nanoscale entities, however, is not trivial and has required the development of new measurement tools. This review explores a tale of the clever use of old and new measurement tools to study electrocatalysis at the single entity level. We explore in detail the complex interrelationship between measurement method, electrocatalytic material, and reaction of interest (e.g., carbon dioxide reduction, oxygen reduction, hydrazine oxidation, etc.). We end with our perspective on the future of single entity electrocatalysis with a key focus on what types of measurements present the greatest opportunity for fundamental discovery.
Collapse
Affiliation(s)
- Thomas B Clarke
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Lynn E Krushinski
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Kathryn J Vannoy
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | | | - Kingshuk Roy
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ashutosh Rana
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Christophe Renault
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660, United States
| | - Megan L Hill
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jeffrey E Dick
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
8
|
Liu Q, Tan X, Liao X, Lv J, Li X, Chen Z, Yang Y, Wu A, Zhao Y, Wu HB. Self-Limited Formation of Cobalt Nanoparticles for Spontaneous Hydrogen Production through Hydrazine Electrooxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311741. [PMID: 38470196 DOI: 10.1002/smll.202311741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/09/2024] [Indexed: 03/13/2024]
Abstract
Hydrogen (H2) has emerged as a highly promising energy carrier owing to its remarkable energy density and carbon emission-free properties. However, the widespread application of H2 fuel has been limited by the difficulty of storage. In this work, spontaneous electrochemical hydrogen production is demonstrated using hydrazine (N2H4) as a liquid hydrogen storage medium and enabled by a highly active Co catalyst for hydrazine electrooxidation reaction (HzOR). The HzOR electrocatalyst is developed by a self-limited growth of Co nanoparticles from a Co-based zeolitic imidazolate framework (ZIF), exhibiting abundant defective surface atoms as active sites for HzOR. Notably, these self-limited Co nanoparticles exhibit remarkable HzOR activity with a negative working potential of -0.1 V (at 10 mA cm-2) in 0.1 m N2H4/1 m KOH electrolyte. Density functional theory (DFT) calculations are employed to validate the superior performance of low-coordinated Co active sites in facilitating HzOR. By taking advantage of the potential difference between HzOR and the hydrogen evolution reaction (HER), a novel HzOR||HER electrochemical system is developed to spontaneously produce H2 without external energy input. Overall, the work offers valuable guidance for developing active HzOR catalyst. The novel HzOR||HER electrochemical system represents a promising and innovative solution for energy-efficient hydrogen production.
Collapse
Affiliation(s)
- Qian Liu
- Institute for Composites Science Innovation (InCSI), State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Xin Tan
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Xiaobin Liao
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Jiabao Lv
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Xiaotong Li
- Institute for Composites Science Innovation (InCSI), State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Zerui Chen
- Institute for Composites Science Innovation (InCSI), State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yue Yang
- Institute for Composites Science Innovation (InCSI), State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Angjian Wu
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, P. R. China
- Laboratory of Clean Energy and Carbon Neutrality of Zhejiang Province, Jiaxing Research Institute, Zhejiang University, Jiaxing, 314031, P. R. China
- Baima Lake Laboratory, Hangzhou, 310053, P. R. China
| | - Yan Zhao
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
- The Institute of Technological Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Hao Bin Wu
- Institute for Composites Science Innovation (InCSI), State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
9
|
Levell Z, Le J, Yu S, Wang R, Ethirajan S, Rana R, Kulkarni A, Resasco J, Lu D, Cheng J, Liu Y. Emerging Atomistic Modeling Methods for Heterogeneous Electrocatalysis. Chem Rev 2024; 124:8620-8656. [PMID: 38990563 DOI: 10.1021/acs.chemrev.3c00735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Heterogeneous electrocatalysis lies at the center of various technologies that could help enable a sustainable future. However, its complexity makes it challenging to accurately and efficiently model at an atomic level. Here, we review emerging atomistic methods to simulate the electrocatalytic interface with special attention devoted to the components/effects that have been challenging to model, such as solvation, electrolyte ions, electrode potential, reaction kinetics, and pH. Additionally, we review relevant computational spectroscopy methods. Then, we showcase several examples of applying these methods to understand and design catalysts relevant to green hydrogen. We also offer experimental views on how to bridge the gap between theory and experiments. Finally, we provide some perspectives on opportunities to advance the field.
Collapse
Affiliation(s)
- Zachary Levell
- Texas Materials Institute and Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jiabo Le
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo 315201, China
| | - Saerom Yu
- Texas Materials Institute and Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Ruoyu Wang
- Texas Materials Institute and Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Sudheesh Ethirajan
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Rachita Rana
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Ambarish Kulkarni
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Joaquin Resasco
- Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Deyu Lu
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Jun Cheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Laboratory of AI for Electrochemistry (AI4EC), Tan Kah Kee Innovation Laboratory, Xiamen 361005, China
| | - Yuanyue Liu
- Texas Materials Institute and Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
10
|
Yang S, Meng F, Li X, Fu Y, Xu Q, Zhang F. Tuning the Pyridine Units in Vinylene-Linked Covalent Organic Frameworks Boosting 2e - Oxygen Reduction Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308801. [PMID: 38295007 DOI: 10.1002/smll.202308801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/10/2024] [Indexed: 02/02/2024]
Abstract
The N-doped carbon materials are supposed to be the efficient oxygen reduction reaction (ORR) catalysts with the undefined N-doped carbon ring groups. It is essential to well define the role of the nitrogen atoms of these carbon structures in active behavior. Even though, the covalent organic frameworks (COFs) with precise structures are well developed, but unable to exclude the polar linkages influence. This study presents a series of pyridine-containing COFs linked via nonpolar carbon-carbon double bonds (C = C). Their catalytic activity and selectivity for 2e- ORR are successfully modulated by locating the embedded pyridine nitrogen in the backbones through the linking modes of pyridine moieties within the frameworks. Such phenomena can be attributed to their different binding abilities toward O2, leading to the different binding strength of the intermediate OH* to the catalytic sites, also verified by the theoretical calculation. This work provides us a new insight to design high-efficiency ORR catalysts through the exact location of pyridine nitrogen.
Collapse
Affiliation(s)
- Shuai Yang
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, 201210, P. R. China
| | - Fancheng Meng
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Xiaomeng Li
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Yubin Fu
- Center for Advancing Electronics Dresden (cfaed), Faculty of Chemistry, Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Qing Xu
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, 201210, P. R. China
| | - Fan Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, P. R. China
| |
Collapse
|
11
|
Xu M, Jeon Y, Naden A, Kim H, Kerherve G, Payne DJ, Shul YG, Irvine JTS. Synergistic growth of nickel and platinum nanoparticles via exsolution and surface reaction. Nat Commun 2024; 15:4007. [PMID: 38740805 DOI: 10.1038/s41467-024-48455-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 05/01/2024] [Indexed: 05/16/2024] Open
Abstract
Bimetallic catalysts combining precious and earth-abundant metals in well designed nanoparticle architectures can enable cost efficient and stable heterogeneous catalysis. Here, we present an interaction-driven in-situ approach to engineer finely dispersed Ni decorated Pt nanoparticles (1-6 nm) on perovskite nanofibres via reduction at high temperatures (600-800 oC). Deposition of Pt (0.5 wt%) enhances the reducibility of the perovskite support and promotes the nucleation of Ni cations via metal-support interaction, thereafter the Ni species react with Pt forming alloy nanoparticles, with the combined processes yielding smaller nanoparticles that either of the contributing processes. Tuneable uniform Pt-Ni nanoparticles are produced on the perovskite surface, yielding reactivity and stability surpassing 1 wt.% Pt/γ-Al2O3 catalysts for CO oxidation. This approach heralds the possibility of in-situ fabrication of supported bimetallic nanoparticles with engineered compositional distributions and performance.
Collapse
Affiliation(s)
- Min Xu
- School of Chemistry, University of St Andrews, St Andrews, UK
| | - Yukwon Jeon
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, Republic of Korea
| | - Aaron Naden
- School of Chemistry, University of St Andrews, St Andrews, UK
| | - Heesu Kim
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, Republic of Korea
| | | | - David J Payne
- Department of Materials, Imperial College London, London, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, Oxfordshire, UK
| | - Yong-Gun Shul
- Department of Chemical and Biomolecular Engineering, Yonsei University, Wonju, Republic of Korea
| | - John T S Irvine
- School of Chemistry, University of St Andrews, St Andrews, UK.
| |
Collapse
|
12
|
Sun M, Li Y, Wang S, Wang Z, Li Z, Zhang T. Non-precious metal-based heterostructure catalysts for hydrogen evolution reaction: mechanisms, design principles, and future prospects. NANOSCALE 2023; 15:13515-13531. [PMID: 37580995 DOI: 10.1039/d3nr01836a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
As a highly promising clean energy source to replace fossil fuels in the 21st century, hydrogen energy has garnered considerable attention, with water electrolysis emerging as a key hydrogen production technology. The development of highly active and stable non-precious metal-based catalysts for the hydrogen evolution reaction (HER) is crucial for achieving efficient and low-cost hydrogen production through electrolysis. Recently, heterostructure composite catalysts comprising two or more non-precious metals have demonstrated outstanding catalytic performance. First, we introduced the basic mechanism of the HER and, based on the reported HER theory, discussed the essence of constructing heterostructures to improve the catalytic activity of non-noble metal-based catalysts, that is, the coupling effect between components effectively regulates the electronic structure and the position of d-band centers. Then three catalytic effects of non-precious metal-based heterogeneous catalysts are described: synergistic effect, electron transfer effect and support effect. Lastly, we emphasized the potential of non-precious metal-based heterogeneous catalysts to replace precious metal-based catalysts, and summarized the future prospects and challenges.
Collapse
Affiliation(s)
- Mojie Sun
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China.
| | - Yalin Li
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China.
| | - Shijie Wang
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China.
| | - Ziquan Wang
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China.
| | - Zhi Li
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China.
| | - Ting Zhang
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China.
| |
Collapse
|
13
|
Gong W, Mao X, Zhang J, Lin Y, Zhang H, Du A, Xiong Y, Zhao H. Ni-Co Alloy Nanoparticles Catalyze Selective Electrochemical Coupling of Nitroarenes into Azoxybenzene Compounds in Aqueous Electrolyte. ACS NANO 2023; 17:3984-3995. [PMID: 36786231 DOI: 10.1021/acsnano.2c12839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In theory, electrocatalysts in their metallic forms should be the most stable chemical state under cathodic potentials. It is known that the highly dispersed nanoparticle (NP) types of electrocatalysts often possess higher activity than their bulk counterparts. However, facilely and controllably fabricating well-dispersed nonprecious metal NPs with superior electrocatalytic activity, selectivity, and durability is highly challenging. Here, we report a facile reductive pyrolysis approach to controllably synthesize NiCo alloy NPs confined on the tip of N-doped carbon nanotubes (N-CNTs) from a bimetal-MOF precursor. The electrocatalytic performance of the resultant NiCo@N-CNTs are evaluated by a wide spectrum of nitroarene reductive coupling reactions to produce azoxy-benzenes, a class of precious chemicals for textile, food, cosmetic, and pharmaceutical industries. The superior electrocatalytic stability, full conversion of nitroarenes, >99% selectivities, and >97% faradic efficiencies toward the targeted azoxy-benzene products are readily attainable by NiCo@N-CNTs, attributable to the alloying-induced synergetic effect. The presence of a CNT confinement effect in NiCo@N-CNTs induces high stability. This added to the metallic states of NiCo empowers NiCo@N-CNTs with excellent electrochemical stability under reductive reaction conditions. In an effort to enhance the energy utilization efficiency, we construct a NiCo@N-CNTs||Ni(OH)2/NF two-electrode electrolyzer to simultaneously reduce nitrobenzene at the cathode and 5-hydroxymethylfurfural with >99% yields for both azoxy-benzene and 2,5-furandicarboxylic acid.
Collapse
Affiliation(s)
- Wanbing Gong
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P.R. China
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - Xin Mao
- School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, Gardens Point Campus, Brisbane, Queensland 4001, Australia
| | - Jifang Zhang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P.R. China
| | - Yue Lin
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - Haimin Zhang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P.R. China
| | - Aijun Du
- School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, Gardens Point Campus, Brisbane, Queensland 4001, Australia
| | - Yujie Xiong
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - Huijun Zhao
- Centre for Catalysis and Clean Energy, Gold Coast Campus, Griffith University, Gold Coast, Queensland 4222, Australia
| |
Collapse
|
14
|
Zhang YP, Su ZX, Wei HH, Wang ZQ, Gong XQ. Strategies to Improve the Oxygen Reduction Reaction Activity on Pt-Bi Bimetallic Catalysts: A Density Functional Theory Study. J Phys Chem Lett 2023; 14:1990-1998. [PMID: 36815311 DOI: 10.1021/acs.jpclett.2c03465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Decreasing the level of use of Pt in proton exchange membrane fuel cells is of great research interest both academically and industrially. In this work, we systematically studied the oxygen reduction reaction (ORR) following the four-electron association mechanism at various Pt-Bi surfaces with density functional theory calculations. The results showed that the introduction of Bi changes the potential-determining step of ORR. Moreover, the hydroxy adsorption free energy (GOH*) can be used as a descriptor of ORR activity, and 0.74 eV is the ideal GOH* for it to reach its maximum. Notably, we also found that the tensile strain introduced by Bi and electron transfer between Pt and Bi synergize to modulate the d-band of Pt to contract, shift downward, and break the 5d96s1 valence electron configuration of Pt, and accordingly, PtBi(100), with the lowest d-band center, gives the best ORR activity, which is even slightly higher than that of Pt(111).
Collapse
Affiliation(s)
- Yan-Ping Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai200237, China
| | - Zi-Xiang Su
- Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai200237, China
| | - He-He Wei
- Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai200237, China
| | - Zhi-Qiang Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai200237, China
| | - Xue-Qing Gong
- Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai200237, China
| |
Collapse
|
15
|
Density Functional Calculations of the Sequential Adsorption of Hydrogen on Single Atom and Small Clusters of Pd and Pt Supported on Au(111). Electrocatalysis (N Y) 2022. [DOI: 10.1007/s12678-022-00802-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Strasser JW, Crooks RM. Ethanol Electrooxidation at 1-2 nm AuPd Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4093. [PMID: 36432379 PMCID: PMC9692959 DOI: 10.3390/nano12224093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/13/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
We report a systematic study of the electrocatalytic properties and stability of a series of 1-2 nm Au, Pd, and AuPd alloy nanoparticles (NPs) for the ethanol oxidation reaction (EOR). Following EOR electrocatalysis, NP sizes and compositions were characterized using aberration-corrected scanning transmission electron microscopy (ac-STEM) and energy dispersive spectroscopy (EDS). Two main findings emerge from this study. First, alloyed AuPd NPs exhibit enhanced electrocatalytic EOR activity compared to either monometallic Au or Pd NPs. Specifically, NPs having a 3:1 ratio of Au:Pd exhibit an ~8-fold increase in peak current density compared to Pd NPs, with an onset potential shifted ~200 mV more to the negative compared to Au NPs. Second, the size and composition of AuPd alloy NPs do not (within experimental error) change following 1.0 or 2.0 h chronoamperometry experiments, while monometallic Au NPs increase in size from 2 to 5 nm under the same conditions. Notably, this report demonstrates the importance of post-catalytic ac-STEM/EDS characterization for fully evaluating NP activity and stability, especially for 1-2 nm NPs that may change in size or structure during electrocatalysis.
Collapse
|
17
|
Sun Q, Gieseking RLM. Parametrization of the PM7 Semiempirical Quantum Mechanical Method for Silver Nanoclusters. J Phys Chem A 2022; 126:6558-6569. [PMID: 36082665 DOI: 10.1021/acs.jpca.2c05782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Semiempirical quantum mechanical methods (SEQMs) are widely used in computational chemistry because of their low computational cost, but their accuracy depends on the quality of the parameters. The neglect of diatomic differential overlap method PM7 is among the few SEQMs that contain parameters for Ag, but the experimental reference data was insufficient to obtain reliable parameters in the original parametrization. In this work, we reparametrize the PM7 parameters for Ag to accurately reproduce the ground-state potential energy surfaces of Ag clusters. Since little experimental data is available, we use reference data obtained from the ab initio method CCSD(T). The resulting parameters significantly reduce the errors in binding energies, energies required to displace clusters along their normal modes, and relative energies of isomers compared to the default PM7 Ag parameters.
Collapse
Affiliation(s)
- Qiwei Sun
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| | - Rebecca L M Gieseking
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| |
Collapse
|
18
|
Godeffroy L, Lemineur JF, Shkirskiy V, Miranda Vieira M, Noël JM, Kanoufi F. Bridging the Gap between Single Nanoparticle Imaging and Global Electrochemical Response by Correlative Microscopy Assisted By Machine Vision. SMALL METHODS 2022; 6:e2200659. [PMID: 35789075 DOI: 10.1002/smtd.202200659] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/17/2022] [Indexed: 06/15/2023]
Abstract
The nanostructuration of an electrochemical interface dictates its micro- and macroscopic behavior. It is generally highly complex and often evolves under operating conditions. Electrochemistry at these nanostructurations can be imaged both operando and/or ex situ at the single nanoobject or nanoparticle (NP) level by diverse optical, electron, and local probe microscopy techniques. However, they only probe a tiny random fraction of interfaces that are by essence highly heterogeneous. Given the above background, correlative multimicroscopy strategy coupled to electrochemistry in a droplet cell provides a unique solution to gain mechanistic insights in electrocatalysis. To do so, a general machine-vision methodology is depicted enabling the automated local identification of various physical and chemical descriptors of NPs (size, composition, activity) obtained from multiple complementary operando and ex situ microscopy imaging of the electrode. These multifarious microscopically probed descriptors for each and all individual NPs are used to reconstruct the global electrochemical response. Herein the methodology unveils the competing processes involved in the electrocatalysis of hydrogen evolution reaction at nickel based NPs, showing that Ni metal activity is comparable to that of platinum.
Collapse
Affiliation(s)
| | | | | | | | - Jean-Marc Noël
- Université Paris Cité, ITODYS, CNRS, 75013, Paris, France
| | | |
Collapse
|
19
|
Wang Y, Li M, Ren H. Voltammetric Mapping of Hydrogen Evolution Reaction on Pt Locally via Scanning Electrochemical Cell Microscopy. ACS MEASUREMENT SCIENCE AU 2022; 2:304-308. [PMID: 36785572 PMCID: PMC9836041 DOI: 10.1021/acsmeasuresciau.2c00012] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The advancement in nanoscale electrochemical tools has offered the opportunity to better understand heterogeneity at electrochemical interfaces. Scanning electrochemical cell microscopy (SECCM) has been increasingly used for revealing local kinetics and the distribution of active sites in electrocatalysis. Constant-contact scanning and hopping scanning are the two commonly used modes. The former is intrinsically faster, whereas the latter enables full voltammetry at individual locations. Herein, we revisit a less used mode that combines the advantages of hopping and constant-contact scan, resulting in a faster voltammetric mapping. In this mode, the nanodroplet cell in SECCM maintains contact with the surface during the scanning and makes intermittent pauses for local voltammetry. The elimination of frequent retraction and approach greatly increases the speed of mapping. In addition, iR correction can be readily applied to the voltammetry, resulting in more accurate measurements of the electrode kinetics. This scanning mode is demonstrated in the oxidation of a ferrocene derivative on HOPG and hydrogen evolution reaction (HER) on polycrystalline Pt, serving as model systems for outer-sphere and inner-sphere electron transfer reactions, respectively. While the kinetics of the inner-sphere reaction is consistent spatially, heterogeneity is observed for the kinetics of HER, which is correlated with the crystal orientation of Pt.
Collapse
|
20
|
Strasser JW, Crooks RM. Single atoms and small clusters of atoms may accompany Au and Pd dendrimer-encapsulated nanoparticles. SOFT MATTER 2022; 18:5067-5073. [PMID: 35758848 DOI: 10.1039/d2sm00518b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We report the presence of small clusters of atoms (<1 nm) (SCs) and single atoms (SAs) in solutions containing 1-2 nm dendrimer-encapsulated nanoparticles (DENs). Au and Pd DENs were imaged using aberration-corrected scanning transmission electron microscopy (ac-STEM), and energy dispersive spectroscopy (EDS) was used to identify and quantify the SAs/SCs. Two main findings have emerged from this work. First, the presence or absence of SAs/SCs depends on both the terminal functional group of the dendrimer (-NH2 or -OH) and the elemental composition of the DENs (Au or Pd). Second, dialysis can be used to remove the majority of SAs/SCs in cases where a high density of SAs/SCs are present. The foregoing conclusions provide insights into the mechanisms for Au and Pd DEN synthesis and stability. Ultimately, these results demonstrate the need for careful characterization of systems containing nanoparticles to ensure that SAs/SCs, which may be below the detection limit of most analytical methods, are taken into consideration (especially for catalysis experiments).
Collapse
Affiliation(s)
- Juliette W Strasser
- Department of Chemistry and Texas Materials Institute, The University of Texas at Austin, 2506 Speedway, Stop A5300, Austin, TX 78712-1224, USA.
| | - Richard M Crooks
- Department of Chemistry and Texas Materials Institute, The University of Texas at Austin, 2506 Speedway, Stop A5300, Austin, TX 78712-1224, USA.
| |
Collapse
|
21
|
Sun F, Tang Q, Jiang DE. Theoretical Advances in Understanding and Designing the Active Sites for Hydrogen Evolution Reaction. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02081] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Fang Sun
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| | - Qing Tang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| | - De-en Jiang
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
22
|
Hao J, Hou J, Wei H, Su Z, Li H, Zhang L, Gong X. An amorphous ultrathin iridium/carbon catalyst realizing efficient electrochemical hydrogen evolution. Chem Commun (Camb) 2022; 58:5606-5609. [PMID: 35437546 DOI: 10.1039/d1cc07049e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An amorphous 1.1 nm Ir/C catalyst exhibits ultralow overpotentials of 10 and 64 mV for the hydrogen evolution reaction at current densities of 10 and 100 mA cm-2, together with 117 A mg-1 mass activity and outstanding long-term durability, superior to those of the commercial Pt/C catalyst.
Collapse
Affiliation(s)
- Jing Hao
- Key Laboratory for Advanced Materials, Center for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Jie Hou
- Key Laboratory for Advanced Materials, Center for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Hehe Wei
- Key Laboratory for Advanced Materials, Center for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Zixiang Su
- Key Laboratory for Advanced Materials, Center for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Hui Li
- Key Laboratory for Advanced Materials, Center for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Longtao Zhang
- Key Laboratory for Advanced Materials, Center for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Xueqing Gong
- Key Laboratory for Advanced Materials, Center for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
23
|
Kim H, Yoo TY, Bootharaju MS, Kim JH, Chung DY, Hyeon T. Noble Metal-Based Multimetallic Nanoparticles for Electrocatalytic Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104054. [PMID: 34791823 PMCID: PMC8728832 DOI: 10.1002/advs.202104054] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/13/2021] [Indexed: 05/08/2023]
Abstract
Noble metal-based multimetallic nanoparticles (NMMNs) have attracted great attention for their multifunctional and synergistic effects, which offer numerous catalytic applications. Combined experimental and theoretical studies have enabled formulation of various design principles for tuning the electrocatalytic performance through controlling size, composition, morphology, and crystal structure of the nanoparticles. Despite significant advancements in the field, the chemical synthesis of NMMNs with ideal characteristics for catalysis, including high activity, stability, product-selectivity, and scalability is still challenging. This review provides an overview on structure-based classification and the general synthesis of NMMN electrocatalysts. Furthermore, postsynthetic treatments, such as the removal of surfactants to optimize the activity, and utilization of NMMNs onto suitable support for practical electrocatalytic applications are highlighted. In the end, future direction and challenges associated with the electrocatalysis of NMMNs are covered.
Collapse
Affiliation(s)
- Hyunjoong Kim
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS)Seoul08826Republic of Korea
- School of Chemical and Biological Engineeringand Institute of Chemical ProcessesSeoul National UniversitySeoul08826Republic of Korea
| | - Tae Yong Yoo
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS)Seoul08826Republic of Korea
- School of Chemical and Biological Engineeringand Institute of Chemical ProcessesSeoul National UniversitySeoul08826Republic of Korea
| | - Megalamane S. Bootharaju
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS)Seoul08826Republic of Korea
- School of Chemical and Biological Engineeringand Institute of Chemical ProcessesSeoul National UniversitySeoul08826Republic of Korea
| | - Jeong Hyun Kim
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS)Seoul08826Republic of Korea
- School of Chemical and Biological Engineeringand Institute of Chemical ProcessesSeoul National UniversitySeoul08826Republic of Korea
| | - Dong Young Chung
- Department of ChemistryGwangju Institute of Science and Technology (GIST)Gwangju61005Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS)Seoul08826Republic of Korea
- School of Chemical and Biological Engineeringand Institute of Chemical ProcessesSeoul National UniversitySeoul08826Republic of Korea
| |
Collapse
|
24
|
Feng W, Feng Y, He Y, Chen J, Wang H, Luo T, Hu Y, Yuan C, Cao L, Feng L, Huang J. Tuning the electronic communication of the Ru–O bond in ultrafine Ru nanoparticles to boost the alkaline electrocatalytic hydrogen production activity at large current density. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00847e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ru nanoparticles coordinated with O supported on a carbon matrix were synthesized. The electron communication between Ru and O accelerated the charge transfer and thus improved the electrocatalytic hydrogen production activity.
Collapse
Affiliation(s)
- Weihang Feng
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China
| | - Yongqiang Feng
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China
| | - Yingrui He
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China
| | - Junsheng Chen
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China
| | - Hai Wang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China
| | - Tianmi Luo
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China
| | - Yuzhu Hu
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China
| | - Chengke Yuan
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China
| | - Liyun Cao
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China
| | - Liangliang Feng
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China
| | - Jianfeng Huang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China
| |
Collapse
|
25
|
Wahl CB, Aykol M, Swisher JH, Montoya JH, Suram SK, Mirkin CA. Machine learning-accelerated design and synthesis of polyelemental heterostructures. SCIENCE ADVANCES 2021; 7:eabj5505. [PMID: 34936439 PMCID: PMC8694626 DOI: 10.1126/sciadv.abj5505] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 11/10/2021] [Indexed: 05/23/2023]
Abstract
In materials discovery efforts, synthetic capabilities far outpace the ability to extract meaningful data from them. To bridge this gap, machine learning methods are necessary to reduce the search space for identifying desired materials. Here, we present a machine learning–driven, closed-loop experimental process to guide the synthesis of polyelemental nanomaterials with targeted structural properties. By leveraging data from an eight-dimensional chemical space (Au-Ag-Cu-Co-Ni-Pd-Sn-Pt) as inputs, a Bayesian optimization algorithm is used to suggest previously unidentified nanoparticle compositions that target specific interfacial motifs for synthesis, results of which are iteratively shared back with the algorithm. This feedback loop resulted in successful syntheses of 18 heterojunction nanomaterials that are too complex to discover by chemical intuition alone, including extremely chemically complex biphasic nanoparticles reported to date. Platforms like the one developed here are poised to transform materials discovery across a wide swath of applications and industries.
Collapse
Affiliation(s)
- Carolin B. Wahl
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208, USA
| | | | - Jordan H. Swisher
- International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208, USA
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | | | | | - Chad A. Mirkin
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208, USA
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
26
|
Ringe S, Hörmann NG, Oberhofer H, Reuter K. Implicit Solvation Methods for Catalysis at Electrified Interfaces. Chem Rev 2021; 122:10777-10820. [PMID: 34928131 PMCID: PMC9227731 DOI: 10.1021/acs.chemrev.1c00675] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
Implicit solvation
is an effective, highly coarse-grained approach
in atomic-scale simulations to account for a surrounding liquid electrolyte
on the level of a continuous polarizable medium. Originating in molecular
chemistry with finite solutes, implicit solvation techniques are now
increasingly used in the context of first-principles modeling of electrochemistry
and electrocatalysis at extended (often metallic) electrodes. The
prevalent ansatz to model the latter electrodes and the reactive surface
chemistry at them through slabs in periodic boundary condition supercells
brings its specific challenges. Foremost this concerns the difficulty
of describing the entire double layer forming at the electrified solid–liquid
interface (SLI) within supercell sizes tractable by commonly employed
density functional theory (DFT). We review liquid solvation methodology
from this specific application angle, highlighting in particular its
use in the widespread ab initio thermodynamics approach
to surface catalysis. Notably, implicit solvation can be employed
to mimic a polarization of the electrode’s electronic density
under the applied potential and the concomitant capacitive charging
of the entire double layer beyond the limitations of the employed
DFT supercell. Most critical for continuing advances of this effective
methodology for the SLI context is the lack of pertinent (experimental
or high-level theoretical) reference data needed for parametrization.
Collapse
Affiliation(s)
- Stefan Ringe
- Department of Energy Science and Engineering, Daegu Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea.,Energy Science & Engineering Research Center, Daegu Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Nicolas G Hörmann
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany.,Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, D-85747 Garching, Germany
| | - Harald Oberhofer
- Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, D-85747 Garching, Germany.,Chair for Theoretical Physics VII and Bavarian Center for Battery Technology (BayBatt), University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Karsten Reuter
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany
| |
Collapse
|
27
|
Li YW, Su SK, Yue CZ, Shu J, Zhang PF, Du FH, Wang SN, Ma HY, Yin J, Shao X. Hierarchical Fe-Mn binary metal oxide core-shell nano-polyhedron as a bifunctional electrocatalyst for efficient water splitting. Dalton Trans 2021; 50:17265-17274. [PMID: 34787163 DOI: 10.1039/d1dt03048e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electrochemical water splitting is convinced as one of the most promising solutions to combat the energy crisis. The exploitation of efficient hydrogen and oxygen evolution reaction (HER/OER) bifunctional electrocatalysts is undoubtedly a vital spark yet challenging for imperative green sustainable energy. Herein, through introducing a simple pH regulated redox reaction into a tractable hydrothermal procedure, a hierarchical Fe3O4@MnOx binary metal oxide core-shell nano-polyhedron was designed by evolving MnOx wrapped Fe3O4. The MnOx effectively prevents the agglomeration and surface oxidation of Fe3O4 nano-particles and increases the electrochemically active sites. Benefiting from the generous active sites and synergistic effects of Fe3O4 and MnOx, the Fe3O4@MnOx-NF nanocomposite implements efficient HER/OER bifunctional electrocatalytic performance and overall water splitting. As a result, hierarchical Fe3O4@MnOx only requires a low HER/OER overpotential of 242/188 mV to deliver 10 mA cm-2, a small Tafel slope of 116.4/77.6 mV dec-1, combining a long-term cyclability of 5 h. Impressively, by applying Fe3O4@MnOx as an independent cathode and anode, the overall water splitting cell supplies a competitive voltage of 1.64 V to achieve 10 mA cm-2 and super long cyclability of 80 h. These results reveal that this material is a promising candidate for practical water electrolysis application.
Collapse
Affiliation(s)
- Yun-Wu Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Materials Science and Engineering, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, P. R. China.
| | - Shi-Kun Su
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Materials Science and Engineering, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, P. R. China.
| | - Cai-Zhen Yue
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Materials Science and Engineering, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, P. R. China.
| | - Jun Shu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Materials Science and Engineering, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, P. R. China.
| | - Peng-Fang Zhang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Materials Science and Engineering, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, P. R. China.
| | - Fang-Hui Du
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Materials Science and Engineering, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, P. R. China.
| | - Su-Na Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Materials Science and Engineering, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, P. R. China.
| | - Hui-Yan Ma
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Materials Science and Engineering, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, P. R. China.
| | - Jie Yin
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Materials Science and Engineering, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, P. R. China.
| | - Xin Shao
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Materials Science and Engineering, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, P. R. China.
| |
Collapse
|
28
|
Unveiling the boosting of metal organic cage leaching substance on the electrocatalytic oxygen evolution reaction. J Colloid Interface Sci 2021; 610:1035-1042. [PMID: 34872723 DOI: 10.1016/j.jcis.2021.11.150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/03/2021] [Accepted: 11/24/2021] [Indexed: 12/23/2022]
Abstract
Catalysts often undergo changes during the process of catalytic reactions, which makes the whole catalytic reaction system complicated and brings about much difficulty for the exploration of catalytic mechanism. Herein, we report that an octahedral metal organic cage (MOC) with stress was directionally transformed into two-dimensional nanoarrays maintaining the structure of precursor and new soluble low-nuclear complexes during the electrocatalytic oxygen evolution reaction (OER). The in-situ generated miscible electrocatalyst exhibits an overpotential as low as 197 mV at 10 mA cm-2, with a high electrochemical stability up to 5 h. Notably, the miscible catalyst can be used as bifunctional electrocatalyst for OER and hydrogen evolution reaction (HER) and exhibits an ultra-low overpotential of 293 mV, even achieve overall water splitting under the voltage provided by a 1.5 V AA battery. As revealed by density functional theory simulations, the position of SO42- in MOC heterogeneous catalyst is regulated by the soluble low-nuclear complexes to reduce the activation energy of the reaction, leading to an optimization of the OER activity for the reaction system. This work provides a new strategy for the rational design of high-efficiency electrocatalytic system.
Collapse
|
29
|
Grosse P, Yoon A, Rettenmaier C, Herzog A, Chee SW, Roldan Cuenya B. Dynamic transformation of cubic copper catalysts during CO 2 electroreduction and its impact on catalytic selectivity. Nat Commun 2021; 12:6736. [PMID: 34795221 PMCID: PMC8602378 DOI: 10.1038/s41467-021-26743-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 10/21/2021] [Indexed: 11/09/2022] Open
Abstract
To rationally design effective and stable catalysts for energy conversion applications, we need to understand how they transform under reaction conditions and reveal their underlying structure-property relationships. This is especially important for catalysts used in the electroreduction of carbon dioxide where product selectivity is sensitive to catalyst structure. Here, we present real-time electrochemical liquid cell transmission electron microscopy studies showing the restructuring of copper(I) oxide cubes during reaction. Fragmentation of the solid cubes, re-deposition of new nanoparticles, catalyst detachment and catalyst aggregation are observed as a function of the applied potential and time. Using cubes with different initial sizes and loading, we further correlate this dynamic morphology with the catalytic selectivity through time-resolved scanning electron microscopy measurements and product analysis. These comparative studies reveal the impact of nanoparticle re-deposition and detachment on the catalyst reactivity, and how the increased surface metal loading created by re-deposited nanoparticles can lead to enhanced C2+ selectivity and stability.
Collapse
Affiliation(s)
- Philipp Grosse
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, 14195, Berlin, Germany
| | - Aram Yoon
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, 14195, Berlin, Germany
| | - Clara Rettenmaier
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, 14195, Berlin, Germany
| | - Antonia Herzog
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, 14195, Berlin, Germany
| | - See Wee Chee
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, 14195, Berlin, Germany.
| | - Beatriz Roldan Cuenya
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, 14195, Berlin, Germany.
| |
Collapse
|
30
|
Ahn CY, Park JE, Kim S, Kim OH, Hwang W, Her M, Kang SY, Park S, Kwon OJ, Park HS, Cho YH, Sung YE. Differences in the Electrochemical Performance of Pt-Based Catalysts Used for Polymer Electrolyte Membrane Fuel Cells in Liquid Half- and Full-Cells. Chem Rev 2021; 121:15075-15140. [PMID: 34677946 DOI: 10.1021/acs.chemrev.0c01337] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A substantial amount of research effort has been directed toward the development of Pt-based catalysts with higher performance and durability than conventional polycrystalline Pt nanoparticles to achieve high-power and innovative energy conversion systems. Currently, attention has been paid toward expanding the electrochemically active surface area (ECSA) of catalysts and increase their intrinsic activity in the oxygen reduction reaction (ORR). However, despite innumerable efforts having been carried out to explore this possibility, most of these achievements have focused on the rotating disk electrode (RDE) in half-cells, and relatively few results have been adaptable to membrane electrode assemblies (MEAs) in full-cells, which is the actual operating condition of fuel cells. Thus, it is uncertain whether these advanced catalysts can be used as a substitute in practical fuel cell applications, and an improvement in the catalytic performance in real-life fuel cells is still necessary. Therefore, from a more practical and industrial point of view, the goal of this review is to compare the ORR catalyst performance and durability in half- and full-cells, providing a differentiated approach to the durability concerns in half- and full-cells, and share new perspectives for strategic designs used to induce additional performance in full-cell devices.
Collapse
Affiliation(s)
- Chi-Yeong Ahn
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, South Korea.,School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, South Korea
| | - Ji Eun Park
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, South Korea.,School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, South Korea
| | - Sungjun Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, South Korea.,School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, South Korea
| | - Ok-Hee Kim
- Department of Science, Republic of Korea Naval Academy, Jinhae-gu, Changwon 51704, South Korea
| | - Wonchan Hwang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, South Korea.,School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, South Korea
| | - Min Her
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, South Korea.,School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, South Korea
| | - Sun Young Kang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, South Korea.,School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, South Korea
| | - SungBin Park
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, South Korea.,School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, South Korea
| | - Oh Joong Kwon
- Department of Energy and Chemical Engineering, Incheon National University, Incheon 22012, South Korea
| | - Hyun S Park
- Center for Hydrogen-Fuel Cell Research, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Yong-Hun Cho
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, South Korea.,Department of Chemical Engineering, Kangwon National University, Samcheok 25913, South Korea
| | - Yung-Eun Sung
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, South Korea.,School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
31
|
Garcia A, Wang K, Bedier F, Benavides M, Wan Z, Wang S, Wang Y. Plasmonic Imaging of Electrochemical Reactions at Individual Prussian Blue Nanoparticles. Front Chem 2021; 9:718666. [PMID: 34552911 PMCID: PMC8450507 DOI: 10.3389/fchem.2021.718666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/23/2021] [Indexed: 11/25/2022] Open
Abstract
Prussian blue is an iron-cyanide-based pigment steadily becoming a widely used electrochemical sensor in detecting hydrogen peroxide at low concentration levels. Prussian blue nanoparticles (PBNPs) have been extensively studied using traditional ensemble methods, which only provide averaged information. Investigating PBNPs at a single entity level is paramount for correlating the electrochemical activities to particle structures and will shed light on the major factors governing the catalyst activity of these nanoparticles. Here we report on using plasmonic electrochemical microscopy (PEM) to study the electrochemistry of PBNPs at the individual nanoparticle level. First, two types of PBNPs were synthesized; type I synthesized with double precursors method and type II synthesized with polyvinylpyrrolidone (PVP) assisted single precursor method. Second, both PBNPs types were compared on their electrochemical reduction to form Prussian white, and the effect from the different particle structures was investigated. Type I PBNPs provided better PEM sensitivity and were used to study the catalytic reduction of hydrogen peroxide. Progressively decreasing plasmonic signals with respect to increasing hydrogen peroxide concentration were observed, demonstrating the capability of sensing hydrogen peroxide at a single nanoparticle level utilizing this optical imaging technique.
Collapse
Affiliation(s)
- Adaly Garcia
- Department of Chemistry and Biochemistry, California State University, Los Angeles, Los Angeles, CA, United States
| | - Kinsley Wang
- Department of Chemistry and Biochemistry, California State University, Los Angeles, Los Angeles, CA, United States
| | - Fatima Bedier
- Department of Chemistry and Biochemistry, California State University, Los Angeles, Los Angeles, CA, United States
| | - Miriam Benavides
- Department of Chemistry and Biochemistry, California State University, Los Angeles, Los Angeles, CA, United States
| | - Zijian Wan
- Biodesign Center for Biosensors and Bioelectronics, Arizona State University, Tempe, AZ, United States.,School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, United States
| | - Shaopeng Wang
- Biodesign Center for Biosensors and Bioelectronics, Arizona State University, Tempe, AZ, United States.,School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, United States
| | - Yixian Wang
- Department of Chemistry and Biochemistry, California State University, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
32
|
Nair AS, Anoop A, Ahuja R, Pathak B. Role of atomicity in the oxygen reduction reaction activity of platinum sub nanometer clusters: A global optimization study. J Comput Chem 2021; 42:1944-1958. [PMID: 34309891 DOI: 10.1002/jcc.26725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/22/2021] [Accepted: 07/15/2021] [Indexed: 12/25/2022]
Abstract
Metal nanoclusters are an important class of materials for catalytic applications. Sub nanometer clusters are relatively less explored for their catalytic activity on account of undercoordinated surface structure. Taking this into account, we studied platinum-based sub nanometer clusters for their catalytic activity for oxygen reduction reaction (ORR). A comprehensive analysis with global optimization is carried out for structural prediction of the platinum clusters. The energetic and electronic properties of interactions of clusters with reaction intermediates are investigated. The role of structural sensitivity in the dynamics of clusters is unraveled, and unique intermediate specific interactions are identified. ORR energetics is examined, and exceptional activity for sub nanometer clusters are observed. An inverse size versus activity relationship is identified, challenging the conventional trends followed by larger nanoclusters. The principal role of atomicity in governing the catalytic activity of nanoclusters is illustrated. The structural norms governing the sub nanometer cluster activity are shown to be markedly different from larger nanoclusters.
Collapse
Affiliation(s)
- Akhil S Nair
- Department of Chemistry, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| | - Anakuthil Anoop
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Rajeev Ahuja
- Condensed Matter Theory Group, Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden.,Department of Physics, Indian Institute of Technology Ropar, Ropar, Punjab, India
| | - Biswarup Pathak
- Department of Chemistry, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| |
Collapse
|
33
|
Strasser JW, Hersbach TJP, Liu J, Lapp AS, Frenkel AI, Crooks RM. Electrochemical Cleaning Stability and Oxygen Reduction Reaction Activity of 1‐2 nm Dendrimer‐Encapsulated Au Nanoparticles. ChemElectroChem 2021. [DOI: 10.1002/celc.202100549] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Juliette W. Strasser
- Department of Chemistry and Texas Materials Institute The University of Texas at Austin 2506 Speedway, Stop A5300 Austin TX 78712-1224, U.S.A
| | - Thomas J. P. Hersbach
- Department of Chemistry and Texas Materials Institute The University of Texas at Austin 2506 Speedway, Stop A5300 Austin TX 78712-1224, U.S.A
| | - Jing Liu
- Department of Physics Manhattan College Riverdale NY 10471 USA
| | - Aliya S. Lapp
- Department of Chemistry and Texas Materials Institute The University of Texas at Austin 2506 Speedway, Stop A5300 Austin TX 78712-1224, U.S.A
| | - Anatoly I. Frenkel
- Department of Materials Science and Chemical Engineering Stony Brook University Stony Brook NY 11794 USA
- Division of Chemistry Brookhaven National Laboratory Upton NY 11973 USA
| | - Richard M. Crooks
- Department of Chemistry and Texas Materials Institute The University of Texas at Austin 2506 Speedway, Stop A5300 Austin TX 78712-1224, U.S.A
| |
Collapse
|
34
|
Interplay of electrochemical and electrical effects induces structural transformations in electrocatalysts. Nat Catal 2021. [DOI: 10.1038/s41929-021-00624-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
35
|
Yao X, Chen ZW, Liu GJ, Lang XY, Zhu YF, Gao W, Jiang Q. Steric Hindrance- and Work Function-Promoted High Performance for Electrochemical CO Methanation on Antisite Defects of MoS 2 and WS 2. CHEMSUSCHEM 2021; 14:2255-2261. [PMID: 33851508 DOI: 10.1002/cssc.202100457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/06/2021] [Indexed: 06/12/2023]
Abstract
CO methanation from electrochemical CO reduction reaction (CORR) is significant for sustainable environment and energy, but electrocatalysts with excellent selectivity and activity are still lacking. Selectivity is sensitive to the structure of active sites, and activity can be tailored by work function. Moreover, intrinsic active sites usually possess relatively high concentration compared to artificial ones. Here, antisite defects MoS2 and WS2 , intrinsic atomic defects of MoS2 and WS2 with a transition metal atom substituting a S2 column, were investigated for CORR by density functional theory calculations. The steric hindrance from the special bowl structure of MoS2 and WS2 ensured good selectivity towards CO methanation. Coordination environment variation of the active sites, the under-coordinated Mo or W atoms, effectively lowered the work function, making MoS2 and WS2 highly active for CO methanation with the required potential of -0.47 and -0.49 V vs. reversible hydrogen electrode, respectively. Moreover, high concentration of active sites and minimal structural deformation during the catalytic process of MoS2 and WS2 enhanced their attraction for future commercial application.
Collapse
Affiliation(s)
- Xue Yao
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, P. R. China
- School of Materials Science and Engineering, Jilin University, Changchun, 130022, P. R. China
| | - Zhi-Wen Chen
- Department of Materials Science and Engineering, University of Toronto, Toronto, ON M5S 3E4, Canada
| | - Guo-Jun Liu
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, P. R. China
- School of Materials Science and Engineering, Jilin University, Changchun, 130022, P. R. China
| | - Xing-You Lang
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, P. R. China
- School of Materials Science and Engineering, Jilin University, Changchun, 130022, P. R. China
| | - Yong-Fu Zhu
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, P. R. China
- School of Materials Science and Engineering, Jilin University, Changchun, 130022, P. R. China
| | - Wang Gao
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, P. R. China
- School of Materials Science and Engineering, Jilin University, Changchun, 130022, P. R. China
| | - Qing Jiang
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, P. R. China
- School of Materials Science and Engineering, Jilin University, Changchun, 130022, P. R. China
| |
Collapse
|
36
|
Affiliation(s)
- Linfang Lu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Shihui Zou
- Key Lab of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Baizeng Fang
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
37
|
Luo J, Yu D, Hristovski KD, Fu K, Shen Y, Westerhoff P, Crittenden JC. Critical Review of Advances in Engineering Nanomaterial Adsorbents for Metal Removal and Recovery from Water: Mechanism Identification and Engineering Design. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:4287-4304. [PMID: 33709709 DOI: 10.1021/acs.est.0c07936] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nanomaterial adsorbents (NAs) have shown promise to efficiently remove toxic metals from water, yet their practical use remains challenging. Limited understanding of adsorption mechanisms and scaling up evaluation are the two main obstacles. To fully realize the practical use of NAs for metal removal, we review the advanced tools and chemical principles to identify mechanisms, highlight the importance of adsorption capacity and kinetics on engineering design, and propose a systematic engineering scenario for full-scale NA implementation. Specifically, we provide in-depth insight for using density functional theory (DFT) and/or X-ray absorption fine structure (XAFS) to elucidate adsorption mechanisms in terms of active site verification and molecular interaction configuration. Furthermore, we discuss engineering issues for designing, scaling, and operating NA systems, including adsorption modeling, reactor selection, and NA regeneration, recovery, and disposal. This review also prioritizes research needs for (i) determining NA microstructure properties using DFT, XAFS, and machine learning and (ii) recovering NAs from treated water. Our critical review is expected to guide and advance the development of highly efficient NAs for engineering applications.
Collapse
Affiliation(s)
- Jinming Luo
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Brook Byers Institute for Sustainable Systems, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Deyou Yu
- Brook Byers Institute for Sustainable Systems, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, School of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Kiril D Hristovski
- The Polytechnic School, Ira A. Fulton Schools of Engineering, Arizona State University, Mesa, Arizona 85212, United States
| | - Kaixing Fu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, PR China
| | - Yanwen Shen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Paul Westerhoff
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287-3005, United States
| | - John C Crittenden
- Brook Byers Institute for Sustainable Systems, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
38
|
Wen BY, Chen QQ, Radjenovic PM, Dong JC, Tian ZQ, Li JF. In Situ Surface-Enhanced Raman Spectroscopy Characterization of Electrocatalysis with Different Nanostructures. Annu Rev Phys Chem 2021; 72:331-351. [PMID: 33472380 DOI: 10.1146/annurev-physchem-090519-034645] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
As energy demands increase, electrocatalysis serves as a vital tool in energy conversion. Elucidating electrocatalytic mechanisms using in situ spectroscopic characterization techniques can provide experimental guidance for preparing high-efficiency electrocatalysts. Surface-enhanced Raman spectroscopy (SERS) can provide rich spectral information for ultratrace surface species and is extremely well suited to studying their activity. To improve the material and morphological universalities, researchers have employed different kinds of nanostructures that have played important roles in the development of SERS technologies. Different strategies, such as so-called borrowing enhancement from shell-isolated modes and shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS)-satellite structures, have been proposed to obtain highly effective Raman enhancement, and these methods make it possible to apply SERS to various electrocatalytic systems. Here, we discuss the development of SERS technology, focusing on its applications in different electrocatalytic reactions (such as oxygen reduction reactions) and at different nanostructure surfaces, and give a brief outlook on its development.
Collapse
Affiliation(s)
- Bao-Ying Wen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, iChEM, College of Energy, Xiamen University, Xiamen 361005, China; ,
| | - Qing-Qi Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, iChEM, College of Energy, Xiamen University, Xiamen 361005, China; ,
| | - Petar M Radjenovic
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, iChEM, College of Energy, Xiamen University, Xiamen 361005, China; ,
| | - Jin-Chao Dong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, iChEM, College of Energy, Xiamen University, Xiamen 361005, China; ,
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, iChEM, College of Energy, Xiamen University, Xiamen 361005, China; ,
| | - Jian-Feng Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, iChEM, College of Energy, Xiamen University, Xiamen 361005, China; ,
| |
Collapse
|
39
|
Santana JA, Meléndez-Rivera J. Hydrogen Adsorption on Au-Supported Pt and Pd Nanoislands: A Computational Study of Hydrogen Coverage Effects. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2021; 125:5110-5115. [PMID: 34178204 PMCID: PMC8225257 DOI: 10.1021/acs.jpcc.0c11566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We have studied the dissociative adsorption of hydrogen under high coverage conditions of adsorbed hydrogen on Pd and Pt nanoislands supported on Au(111) using Density Functional Theory calculations. The results reveal that for Pd/Au(111), the free energy of hydrogen adsorption ΔG is close to 0 kJ/mol when the coverage of adsorbed hydrogen is near 1 ML, where the available catalytic sites are located at the edges of the Pd nanoislands. In the case of Pt/Au(111), ΔG ≈ 0 kJ/mol under a broad range of hydrogen coverage conditions, from 1 ML to 3 ML, depending on the size of the Pt nanoislands. This is the case because the available catalytic sites are located at both the steps and terraces of Pt nanoislands. These findings indicate that Au surfaces with Pd or Pt nanoislands offer catalytic sites with ΔG ≈ 0 for hydrogen reactions, one key factor for an ideal electrocatalyst for hydrogen reactions.
Collapse
|
40
|
Li YW, Wu Q, Ma RC, Sun XQ, Li DD, Du HM, Ma HY, Li DC, Wang SN, Dou JM. A Co-MOF-derived Co 9S 8@NS-C electrocatalyst for efficient hydrogen evolution reaction. RSC Adv 2021; 11:5947-5957. [PMID: 35423155 PMCID: PMC8694845 DOI: 10.1039/d0ra10864b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 01/15/2021] [Indexed: 12/12/2022] Open
Abstract
The exploitation of efficient hydrogen evolution reaction (HER) electrocatalysts has become increasingly urgent and imperative; however, it is also challenging for high-performance sustainable clean energy applications. Herein, novel Co9S8 nanoparticles embedded in a porous N,S-dual doped carbon composite (abbr. Co9S8@NS-C-900) were fabricated by the pyrolysis of a single crystal Co-MOF assisted with thiourea. Due to the synergistic benefit of combining Co9S8 nanoparticles with N,S-dual doped carbon, the composite showed efficient HER electrocatalytic activities and long-term durability in an alkaline solution. It shows a small overpotential of -86.4 mV at a current density of 10.0 mA cm-2, a small Tafel slope of 81.1 mV dec-1, and a large exchange current density (J 0) of 0.40 mA cm-2, which are comparable to those of Pt/C. More importantly, due to the protection of Co9S8 nanoparticles by the N,S-dual doped carbon shell, the Co9S8@NS-C-900 catalyst displays excellent long-term durability. There is almost no decay in HER activities after 1000 potential cycles or it retains 99.5% of the initial current after 48 h.
Collapse
Affiliation(s)
- Yun-Wu Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University Liaocheng 252000 P. R. China
| | - Qian Wu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University Liaocheng 252000 P. R. China
| | - Rui-Cong Ma
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University Liaocheng 252000 P. R. China
| | - Xiao-Qi Sun
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University Liaocheng 252000 P. R. China
| | - Dan-Dan Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University Liaocheng 252000 P. R. China
| | - Hong-Mei Du
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University Liaocheng 252000 P. R. China
| | - Hui-Yan Ma
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University Liaocheng 252000 P. R. China
| | - Da-Cheng Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University Liaocheng 252000 P. R. China
| | - Su-Na Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University Liaocheng 252000 P. R. China
| | - Jian-Min Dou
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University Liaocheng 252000 P. R. China
| |
Collapse
|
41
|
Timoshenko J, Roldan Cuenya B. In Situ/ Operando Electrocatalyst Characterization by X-ray Absorption Spectroscopy. Chem Rev 2021; 121:882-961. [PMID: 32986414 PMCID: PMC7844833 DOI: 10.1021/acs.chemrev.0c00396] [Citation(s) in RCA: 223] [Impact Index Per Article: 74.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Indexed: 12/18/2022]
Abstract
During the last decades, X-ray absorption spectroscopy (XAS) has become an indispensable method for probing the structure and composition of heterogeneous catalysts, revealing the nature of the active sites and establishing links between structural motifs in a catalyst, local electronic structure, and catalytic properties. Here we discuss the fundamental principles of the XAS method and describe the progress in the instrumentation and data analysis approaches undertaken for deciphering X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) spectra. Recent usages of XAS in the field of heterogeneous catalysis, with emphasis on examples concerning electrocatalysis, will be presented. The latter is a rapidly developing field with immense industrial applications but also unique challenges in terms of the experimental characterization restrictions and advanced modeling approaches required. This review will highlight the new insight that can be gained with XAS on complex real-world electrocatalysts including their working mechanisms and the dynamic processes taking place in the course of a chemical reaction. More specifically, we will discuss applications of in situ and operando XAS to probe the catalyst's interactions with the environment (support, electrolyte, ligands, adsorbates, reaction products, and intermediates) and its structural, chemical, and electronic transformations as it adapts to the reaction conditions.
Collapse
Affiliation(s)
- Janis Timoshenko
- Department of Interface Science, Fritz-Haber Institute of the Max-Planck Society, 14195 Berlin, Germany
| | - Beatriz Roldan Cuenya
- Department of Interface Science, Fritz-Haber Institute of the Max-Planck Society, 14195 Berlin, Germany
| |
Collapse
|
42
|
Li Y, Tsang SCE. Unusual Catalytic Properties of High-Energetic-Facet Polar Metal Oxides. Acc Chem Res 2021; 54:366-378. [PMID: 33382242 DOI: 10.1021/acs.accounts.0c00641] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
ConspectusHeterogeneous catalysis is an area of great importance not only in chemical industries but also in energy conversion and environmental technologies. It is well-established that the specific surface morphology and structure of solid catalysts exert remarkable effects on catalytic performances, since most physical and chemical processes take place on the surface during catalytic reactions. Different from the widely studied faceted metallic nanoparticles, metal oxides give more complicated structures and surface features. Great progress has been achieved in controlling the shape and exposed facets of transition metal oxides during nanocrystal growth, usually by using surface-directing agents (SDAs). However, the effects of exposed facets remain controversial among researchers. It should be noted that high-energetic facets, especially polar facets, tend to lower their surface energy via different relaxation processes, such as surface reconstruction, redox change, adsorption of countercharged species, etc. These processes can subsequently lead to surface defect formation and break the surface stoichiometry, and the resulting changes in electronic configurations and charge migration properties all play important roles in heterogeneous catalysis. Because different materials prefer different relaxation methods, various surface features are created, and different techniques are required to investigate the different features from facet to facet. Conventional characterization techniques such as X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, etc. appear to be insufficient to elucidate the underlying principles of the facet effects. Consequently, an increasing number of novel techniques have been developed to differentiate the surface features, enabling greater understanding of the effects of facets on heterogeneous catalysis.In this Account, on the basis of previous studies by our own group, we will focus on the effects of tailored facets on heterogeneous catalysis introduced by engineered simple binary metal oxide nanomaterials primarily with exposed polar facets, in combination with detailed surface studies using a range of new characterization techniques. As a result, fundamental principles of the effects of facets are elucidated, and the structure-activity correlations are demonstrated. The surface features introduced by different relaxation processes are also investigated using a range of characterization techniques. For example, electron paramagnetic resonance spectroscopy is used to detect the oxygen vacancies, while probe-assisted solid-state NMR spectroscopy is shown to be facet-sensitive and able to evaluate the surface acidity. It is also shown that such different features influence the heterogeneous catalytic performances in different ways. With the help of first-principles density functional theory calculations, unique properties of the faceted metal oxides are discussed and unraveled. Besides, other materials such as transition metal chalcogenides and layered double hydroxides are also briefly discussed with regard to their application in facet-dependent catalysis studies.
Collapse
Affiliation(s)
- Yiyang Li
- Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, Oxford OX1 3QR, U.K
| | - Shik Chi Edman Tsang
- Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, Oxford OX1 3QR, U.K
| |
Collapse
|
43
|
Zou X, He S, Kang X, Chen S, Yu H, Jin S, Astruc D, Zhu M. New atomically precise M1Ag21 (M = Au/Ag) nanoclusters as excellent oxygen reduction reaction catalysts. Chem Sci 2021; 12:3660-3667. [PMID: 34163640 PMCID: PMC8179487 DOI: 10.1039/d0sc05923d] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/05/2021] [Indexed: 12/26/2022] Open
Abstract
By introducing 1,1'-bis-(diphenylphosphino)ferrocene (dppf) as an activating ligand, two novel nanoclusters, M1Ag21 (M = Au/Ag), have been controllably synthesized and structurally characterized. The atomically precise structures of the M1Ag21 nanoclusters were determined by SCXC and further confirmed by ESI-TOF-MS, TGA, XPS, DPV, and FT-IR measurements. The M1Ag21 nanoclusters supported on activated carbon (C) are exploited as efficient oxygen reduction reaction (ORR) catalysts in alkaline solutions. Density functional theory (DFT) calculations verify that the catalytic activities of the two cluster-based systems originate from the significant ensemble synergy effect between the M13 kernel and dppf ligand in M1Ag21. This work sheds lights on the preparation of cluster-based electrocatalysts and other catalysts that are activated and modified by peripheral ligands.
Collapse
Affiliation(s)
- Xuejuan Zou
- Department of Chemistry, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University Hefei Anhui 230601 P. R. China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education Hefei 230601 P. R. China
| | - Shuping He
- Department of Chemistry, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University Hefei Anhui 230601 P. R. China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education Hefei 230601 P. R. China
| | - Xi Kang
- Department of Chemistry, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University Hefei Anhui 230601 P. R. China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education Hefei 230601 P. R. China
| | - Shuang Chen
- Institutes of Physical Science and Information Technology, Anhui University Hefei Anhui 230601 P. R. China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education Hefei 230601 P. R. China
| | - Haizhu Yu
- Department of Chemistry, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University Hefei Anhui 230601 P. R. China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education Hefei 230601 P. R. China
| | - Shan Jin
- Institutes of Physical Science and Information Technology, Anhui University Hefei Anhui 230601 P. R. China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education Hefei 230601 P. R. China
| | | | - Manzhou Zhu
- Department of Chemistry, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University Hefei Anhui 230601 P. R. China
- Institutes of Physical Science and Information Technology, Anhui University Hefei Anhui 230601 P. R. China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education Hefei 230601 P. R. China
| |
Collapse
|
44
|
Nair AS, Pathak B. Computational strategies to address the catalytic activity of nanoclusters. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2020. [DOI: 10.1002/wcms.1508] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Akhil S. Nair
- Discipline of Chemistry Indian Institute of Technology Indore Indore Madhya Pradesh India
| | - Biswarup Pathak
- Discipline of Chemistry Indian Institute of Technology Indore Indore Madhya Pradesh India
| |
Collapse
|
45
|
Wang C, Wang Q, Fu F, Astruc D. Hydrogen Generation upon Nanocatalyzed Hydrolysis of Hydrogen-Rich Boron Derivatives: Recent Developments. Acc Chem Res 2020; 53:2483-2493. [PMID: 33034454 DOI: 10.1021/acs.accounts.0c00525] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
ConspectusProduction of hydrogen from nonfossil sources is essential toward the generation of sustainable energy. Hydrogen generation upon hydrolysis of stable hydrogen-rich materials has long been proposed as a possibility of hydrogen disposal on site, because transport of explosive hydrogen gas is dangerous. Hydrolysis of some boron derivatives could rapidly produce large amounts of hydrogen, but this requires the presence of very active catalysts. Indeed, late transition-metal nanocatalysts have recently been developed for the hydrolysis of a few hydrogen-rich precursors.Our research group has focused on the improvement and optimization of highly performing Earth-abundant transition-metal-based nanocatalysts, optimization of remarkable synergies between different metals in nanoalloys, supports including positive synergy with nanoparticles (NPs) for rapid hydrogen generation, comparison between various endo- or exoreceptors working as homogeneous and heterogeneous supports, mechanistic research, and comparison of the nanocatalyzed hydrolysis of several boron hydrides.First, hydrogen production upon hydrolysis of ammonia borane, AB (3 mol H2 per mol AB) was examined with heterogeneous endoreceptors. Thus, a highly performing Ni@ZIF-8 nanocatalyst was found to be superior over other Earth-abundant nanocatalysts and supports. With 85.7 molH2·molcat-1·min-1 at 25 °C, this Ni nanocatalyst surpassed the results of previous Earth-abundant nanocatalysts. The presence of NaOH accelerated the reaction, and a remarkable pH-dependent "on-off" control of the H2 production was established. Bimetallic nanoalloys Ni-Pt@ZIF-8 showed a dramatic volcano effect optimized with a nanoalloy containing 2/3 Ni and 1/3 Pt. The rate reached 600 molH2·molcat-1·min-1 and 2222 molH2·molPt-1·min-1 at 20 °C, which much overtook the performances of both related nanocatalysts Ni@ZIF-8 and Pt@ZIF-8. Next, hydrogen production was also researched via hydrolysis of sodium borohydride (4 mol H2 per mol NaBH4) using nanocatalysts in ZIF-8, and, among Earth-abundant nanocatalysts, Co@ZIF-8 showed the best performance, outperforming previous Co nanocatalysts. For exoreceptors, "click" dendrimers containing triazole ligands on their tripodal tethers were used as supports for homogeneous (semiheterogeneous) catalysis of both AB and NaBH4 hydrolysis. For both reactions, Co was found to be the best Earth-abundant metal, Pt the best noble metal, and Co1Pt1 the best nanoalloy, with synergistic effects. Based on kinetic measurements and kinetic isotope effects for all of these reactions, mechanisms are proposed and the hydrogen produced was further used in tandem reactions. Overall, dramatic triple synergies between these nanocatalyst components have allowed hydrogen release within a few seconds under ambient conditions. These nanocatalyst improvements and mechanistic findings should also inspire further nanocatalyst design in various areas of hydrogen production.
Collapse
Affiliation(s)
- Changlong Wang
- ISM UMR CNRS 5255, Univ. Bordeaux, 351 Cours de la Libération, 33405 Cedex Talence, France
| | - Qi Wang
- ISM UMR CNRS 5255, Univ. Bordeaux, 351 Cours de la Libération, 33405 Cedex Talence, France
| | - Fangyu Fu
- ISM UMR CNRS 5255, Univ. Bordeaux, 351 Cours de la Libération, 33405 Cedex Talence, France
| | - Didier Astruc
- ISM UMR CNRS 5255, Univ. Bordeaux, 351 Cours de la Libération, 33405 Cedex Talence, France
| |
Collapse
|
46
|
Boroujeni KP, Shahrokh M, Kiani K, Farokhnia A, Kazemi R, Kheiri F. Synthesis and Catalytic Application of Bimetallic and
Trimetallic Magnetic Nanoalloys for the Preparation of
Bis(indolyl)methanes. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1070428020100255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Lu J, Zhu B, Sakaki S. O 2 activation by core-shell Ru 13@Pt 42 particles in comparison with Pt 55 particles: a DFT study. RSC Adv 2020; 10:36090-36100. [PMID: 35517069 PMCID: PMC9057003 DOI: 10.1039/d0ra05738j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/03/2020] [Indexed: 11/21/2022] Open
Abstract
The reaction of O2 with a Ru13@Pt42 core-shell particle consisting of a Ru13 core and a Pt42 shell was theoretically investigated in comparison with Pt55. The O2 binding energy with Pt55 is larger than that with Ru13@Pt42, and O-O bond cleavage occurs more easily with a smaller activation barrier (E a) on Pt55 than on Ru13@Pt42. Protonation to the Pt42 surface followed by one-electron reduction leads to the formation of an H atom on the surface with considerable exothermicity. The H atom reacts with the adsorbed O2 molecule to afford an OOH species with a larger E a value on Pt55 than on Ru13@Pt42. An OOH species is also formed by protonation of the adsorbed O2 molecule, followed by one-electron reduction, with a large exothermicity in both Pt55 and Ru13@Pt42. O-OH bond cleavage occurs with a smaller E a on Pt55 than on Ru13@Pt42. The lower reactivity of Ru13@Pt42 than that of Pt55 on the O-O and O-OH bond cleavages arises from the presence of lower energy in the d-valence band-top and d-band center in Ru13@Pt42 than in Pt55. The smaller E a for OOH formation on Ru13@Pt42 than on Pt55 arises from weaker Ru13@Pt42-O2 and Ru13@Pt42-H bonds than the Pt55-O2 and Pt55-H bonds, respectively. The low-energy d-valence band-top is responsible for the weak Ru13@Pt42-O and Ru13@Pt42-OH bonds. Thus, the low-energy d-valence band-top and d-band center are important properties of the Ru13@Pt42 particle.
Collapse
Affiliation(s)
- Jing Lu
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University Wuhan 430200 China
| | - Bo Zhu
- Element Strategy Initiative for Catalysts and Batteries, Kyoto University Goryo-Ohara 1-30, Nishikyo-ku Kyoto 615-8245 Japan +81-75-383-3047 +81-75-383-3036
| | - Shigeyoshi Sakaki
- Element Strategy Initiative for Catalysts and Batteries, Kyoto University Goryo-Ohara 1-30, Nishikyo-ku Kyoto 615-8245 Japan +81-75-383-3047 +81-75-383-3036.,Fukui Institute for Fundamental Chemistry (FIFC), Kyoto University Takano-Nishihiraki-cho 34-4, Sakyou-ku Kyoto 606-8103 Japan
| |
Collapse
|
48
|
Effective Platinum-Copper Catalysts for Methanol Oxidation and Oxygen Reduction in Proton-Exchange Membrane Fuel Cell. NANOMATERIALS 2020; 10:nano10040742. [PMID: 32295039 PMCID: PMC7221522 DOI: 10.3390/nano10040742] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/31/2020] [Accepted: 04/09/2020] [Indexed: 11/17/2022]
Abstract
The behavior of supported alloyed and de-alloyed platinum-copper catalysts, which contained 14–27% wt. of Pt, was studied in the reactions of methanol electrooxidation (MOR) and oxygen electroreduction (ORR) in 0.1 M HClO4 solutions. Alloyed PtCux/C catalysts were prepared by a multistage sequential deposition of copper and platinum onto a Vulcan XC72 dispersed carbon support. De-alloyed PtCux−y/C catalysts were prepared by PtCux/C materials pretreatment in acid solutions. The effects of the catalysts initial composition and the acid treatment condition on their composition, structure, and catalytic activity in MOR and ORR were studied. Functional characteristics of platinum-copper catalysts were compared with those of commercial Pt/C catalysts when tested, both in an electrochemical cell and in H2/Air membrane-electrode assembly (MEA). It was shown that the acid pretreatment of platinum-copper catalysts practically does not have negative effect on their catalytic activity, but it reduces the amount of copper passing into the solution during the subsequent electrochemical study. The activity of platinum-copper catalysts in the MOR and the current-voltage characteristics of the H2/Air proton-exchange membrane fuel cell MEAs measured in the process of their life tests were much higher than those of the Pt/C catalysts.
Collapse
|
49
|
Franco F, Rettenmaier C, Jeon HS, Roldan Cuenya B. Transition metal-based catalysts for the electrochemical CO2 reduction: from atoms and molecules to nanostructured materials. Chem Soc Rev 2020; 49:6884-6946. [DOI: 10.1039/d0cs00835d] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
An overview of the main strategies for the rational design of transition metal-based catalysts for the electrochemical conversion of CO2, ranging from molecular systems to single-atom and nanostructured catalysts.
Collapse
Affiliation(s)
- Federico Franco
- Department of Interface Science
- Fritz-Haber Institute of the Max Planck Society
- 14195 Berlin
- Germany
| | - Clara Rettenmaier
- Department of Interface Science
- Fritz-Haber Institute of the Max Planck Society
- 14195 Berlin
- Germany
| | - Hyo Sang Jeon
- Department of Interface Science
- Fritz-Haber Institute of the Max Planck Society
- 14195 Berlin
- Germany
| | - Beatriz Roldan Cuenya
- Department of Interface Science
- Fritz-Haber Institute of the Max Planck Society
- 14195 Berlin
- Germany
| |
Collapse
|