1
|
Yoshimura A, Zhdankin VV. Recent Progress in Synthetic Applications of Hypervalent Iodine(III) Reagents. Chem Rev 2024; 124:11108-11186. [PMID: 39269928 PMCID: PMC11468727 DOI: 10.1021/acs.chemrev.4c00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/18/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
Hypervalent iodine(III) compounds have found wide application in modern organic chemistry as environmentally friendly reagents and catalysts. Hypervalent iodine reagents are commonly used in synthetically important halogenations, oxidations, aminations, heterocyclizations, and various oxidative functionalizations of organic substrates. Iodonium salts are important arylating reagents, while iodonium ylides and imides are excellent carbene and nitrene precursors. Various derivatives of benziodoxoles, such as azidobenziodoxoles, trifluoromethylbenziodoxoles, alkynylbenziodoxoles, and alkenylbenziodoxoles have found wide application as group transfer reagents in the presence of transition metal catalysts, under metal-free conditions, or using photocatalysts under photoirradiation conditions. Development of hypervalent iodine catalytic systems and discovery of highly enantioselective reactions using chiral hypervalent iodine compounds represent a particularly important recent achievement in the field of hypervalent iodine chemistry. Chemical transformations promoted by hypervalent iodine in many cases are unique and cannot be performed by using any other common, non-iodine-based reagent. This review covers literature published mainly in the last 7-8 years, between 2016 and 2024.
Collapse
Affiliation(s)
- Akira Yoshimura
- Faculty
of Pharmaceutical Sciences, Aomori University, 2-3-1 Kobata, Aomori 030-0943, Japan
| | - Viktor V. Zhdankin
- Department
of Chemistry and Biochemistry, University
of Minnesota Duluth, Duluth, Minnesota 55812, United States
| |
Collapse
|
2
|
Wang Y, Yu JN, Wang Y, Shi F. Intermolecular α-Functionalization of Benzylamides with N-Nucleophiles via Oxidative Umpolung: Synthesis of Tetrasubstituted 3,3'-Oxindoles. Org Lett 2024; 26:6041-6046. [PMID: 38973673 DOI: 10.1021/acs.orglett.4c02167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
A hypervalent iodine-mediated intermolecular α-umpolung reaction between α-aryl- or alkyl-substituted amides and benzotriazoles or purine derivatives as N-centered nucleophiles has been established. The reaction involves sequential intra/intermolecular oxidative C-N couplings in a controlled manner, affording tetrasubstituted 3,3'-oxindoles in moderate to good yields. This approach efficiently addresses the challenges in constructing tetrasubstituted carbon centers via α-umpolung functionalizations of carbonyl compounds and serves as a new strategy for synthesizing biologically important 3,3'-disubstituted oxindoles.
Collapse
Affiliation(s)
- Yue Wang
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Jiang-Ning Yu
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Yang Wang
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Feng Shi
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
3
|
Subramaniam SV, Singh B, Pradeep N, Peruncheralathan S. PIFA-mediated intramolecular N-arylation of 2-aminoquinoxalines to afford indolo[2,3- b]quinoxaline derivatives. Org Biomol Chem 2024; 22:5803-5808. [PMID: 38946202 DOI: 10.1039/d4ob00812j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
We present the PIFA-mediated intramolecular N-arylation of 2-aminoquinoxalines at room temperature for the first time. This method provides a wide range of indolo[2,3-b]quinoxalines in good to excellent yields within a short time. The C-H bond functionalization occurs without the need for an inert atmosphere or additives. Additionally, a double C-H bond functionalization was observed, where the first reaction forms a C-N bond (N-arylation) and the second forms a C-O bond, yielding an acetal-functionalized product. Mechanistic investigations suggest that the C-H bond functionalization proceeds through an ionic mechanism, whereas acetal functionalization follows a radical pathway. This method extends to the derivation of indoloquinoxalines, including the target compound BIQMCz.
Collapse
Affiliation(s)
- Subhashini V Subramaniam
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, an OCC of Homi Bhabha National Institute, Khurda - 752050, India.
| | - Badal Singh
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, an OCC of Homi Bhabha National Institute, Khurda - 752050, India.
| | - Natarajan Pradeep
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, an OCC of Homi Bhabha National Institute, Khurda - 752050, India.
| | - Saravanan Peruncheralathan
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, an OCC of Homi Bhabha National Institute, Khurda - 752050, India.
| |
Collapse
|
4
|
Shao Y, Ren Z, Han Z, Chen L, Li Y, Xue XS. Predicting bond dissociation energies of cyclic hypervalent halogen reagents using DFT calculations and graph attention network model. Beilstein J Org Chem 2024; 20:1444-1452. [PMID: 38952960 PMCID: PMC11216094 DOI: 10.3762/bjoc.20.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/17/2024] [Indexed: 07/03/2024] Open
Abstract
Although hypervalent iodine(III) reagents have become staples in organic chemistry, the exploration of their isoelectronic counterparts, namely hypervalent bromine(III) and chlorine(III) reagents, has been relatively limited, partly due to challenges in synthesizing and stabilizing these compounds. In this study, we conduct a thorough examination of both homolytic and heterolytic bond dissociation energies (BDEs) critical for assessing the chemical stability and functional group transfer capability of cyclic hypervalent halogen compounds using density functional theory (DFT) analysis. A moderate linear correlation was observed between the homolytic BDEs across different halogen centers, while a strong linear correlation was noted among the heterolytic BDEs across these centers. Furthermore, we developed a predictive model for both homolytic and heterolytic BDEs of cyclic hypervalent halogen compounds using machine learning algorithms. The results of this study could aid in estimating the chemical stability and functional group transfer capabilities of hypervalent bromine(III) and chlorine(III) reagents, thereby facilitating their development.
Collapse
Affiliation(s)
- Yingbo Shao
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Zhiyuan Ren
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Zhihui Han
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Li Chen
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yao Li
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, P. R. China,
| | - Xiao-Song Xue
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, P. R. China,
- School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
| |
Collapse
|
5
|
Zheng DS, Zhao F, Gu Q, You SL. Rh(III)-catalyzed atroposelective C-H alkynylation of 1-aryl isoquinolines with hypervalent iodine-alkyne reagents. Chem Commun (Camb) 2024; 60:6753-6756. [PMID: 38863330 DOI: 10.1039/d4cc01785d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
An efficient Rh(III)-catalyzed enantioselective C-H alkynylation of isoquinolines is disclosed. The C-H alkynylation of 1-aryl isoquinolines with hypervalent iodine-alkyne reagents proceeded in DMA at room temperature in the presence of 2.5 mol% chiral SCpRh(III) complex along with 20 mol% AgSbF6, providing axially chiral alkynylated 1-aryl isoquinolines in excellent yields (up to 93%) and enantioselectivity (up to 95% ee). The diverse transformations of the product further enhance the potential utility of this reaction.
Collapse
Affiliation(s)
- Dong-Song Zheng
- Chang-Kung Chuang Institute, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.
| | - Fangnuo Zhao
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.
| | - Qing Gu
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.
| | - Shu-Li You
- Chang-Kung Chuang Institute, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.
| |
Collapse
|
6
|
Tang L, Shen C, Hao S, Dong K. A Type of Chiral C 2-Symmetric Arylthiol Catalyst for Highly Enantioselective Anti-Markovnikov Hydroamination. J Am Chem Soc 2024; 146:16248-16256. [PMID: 38808533 DOI: 10.1021/jacs.4c04596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
The development of chiral hydrogen donor catalysts is fundamental in the expansion and innovation of asymmetric organocatalyzed reactions via an enantioselective hydrogen atom transfer (HAT) process. Herein, an unprecedented type of chiral C2-symmetric arylthiol catalysts derived from readily available enantiomeric lactate ester was developed. With these catalysts, an asymmetric anti-Markovnikov alkene hydroamination-cyclization reaction was established, affording a variety of pharmaceutically interesting 3-substituted piperidines with moderate to high enantioselectivity. Results of the designed control experiments and theoretical computation rationalized the origin of stereocontrol and disclosed the spatial effect of the moiety of chiral thiols on the enantioselectivity. We believed the facile synthesis, flexible tunability, and effective enantioselectivity-controlling capability of these catalysts would shed light on the development of versatile chiral HAT catalysts and related asymmetric reactions.
Collapse
Affiliation(s)
- Lin Tang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Chaoren Shen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Shaoyu Hao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Kaiwu Dong
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
7
|
Kumar R, Dohi T, Zhdankin VV. Organohypervalent heterocycles. Chem Soc Rev 2024; 53:4786-4827. [PMID: 38545658 DOI: 10.1039/d2cs01055k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
This review summarizes the structural and synthetic aspects of heterocyclic molecules incorporating an atom of a hypervalent main-group element. The term "hypervalent" has been suggested for derivatives of main-group elements with more than eight valence electrons, and the concept of hypervalency is commonly used despite some criticism from theoretical chemists. The significantly higher thermal stability of hypervalent heterocycles compared to their acyclic analogs adds special features to their chemistry, particularly for bromine and iodine. Heterocyclic compounds of elements with double bonds are not categorized as hypervalent molecules owing to the zwitterionic nature of these bonds, resulting in the conventional 8-electron species. This review is focused on hypervalent heterocyclic derivatives of nonmetal main-group elements, such as boron, silicon, nitrogen, carbon, phosphorus, sulfur, selenium, bromine, chlorine, iodine(III) and iodine(V).
Collapse
Affiliation(s)
- Ravi Kumar
- Department of Chemistry, J C Bose University of Science and Technology, YMCA, NH-2, Sector-6, Mathura Road, Faridabad, 121006, Haryana, India.
| | - Toshifumi Dohi
- Graduate School of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan.
| | - Viktor V Zhdankin
- Department of Chemistry and Biochemistry, 1038 University Drive, 126 HCAMS University of Minnesota Duluth, Duluth, Minnesota 55812, USA.
| |
Collapse
|
8
|
Huang N, Luo J, Liao L, Zhao X. Catalytic Enantioselective Aminative Difunctionalization of Alkenes. J Am Chem Soc 2024; 146:7029-7038. [PMID: 38425285 DOI: 10.1021/jacs.4c00307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Enantioselective difunctionalization of alkenes offers a straightforward means for the rapid construction of enantioenriched complex molecules. Despite the tremendous efforts devoted to this field, enantioselective aminative difunctionalization remains a challenge, particularly through an electrophilic addition fashion. Herein, we report an unprecedented approach for the enantioselective aminative difunctionalization of alkenes via copper-catalyzed electrophilic addition with external azo compounds as nitrogen sources. A series of valuable cyclic hydrazine derivatives via either [3 + 2] cycloaddition or intramolecular cyclization have been achieved in high chemo-, regio-, enantio-, and diastereoselectivities. In this transformation, a wide range of functional groups, such as carboxylic acid, hydroxy, amide, sulfonamide, and aryl groups, could serve as nucleophiles. Importantly, a new cyano oxazoline chiral ligand was found to play a crucial role in the control of enantioselectivity.
Collapse
Affiliation(s)
- Nan Huang
- Institute of Organic Chemistry and MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510006, China
| | - Jie Luo
- Institute of Organic Chemistry and MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510006, China
| | - Lihao Liao
- Institute of Organic Chemistry and MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xiaodan Zhao
- Institute of Organic Chemistry and MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
9
|
Stünkel T, Siebold K, Okumatsu D, Murata K, Ruyet L, Daniliuc CG, Gilmour R. para-Selective dearomatization of phenols by I(i)/I(iii) catalysis-based fluorination. Chem Sci 2023; 14:13574-13580. [PMID: 38033893 PMCID: PMC10685341 DOI: 10.1039/d3sc05952a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 12/02/2023] Open
Abstract
The regio- and enantio-selective dearomatization of phenols has been achieved by I(i)/I(iii) catalysis enabled fluorination. The process is highly para-selective, guiding the fluoride nucleophile to the distal C4 position of the substrate to generate fluorinated cyclohexadienones in an operationally simple manner. Extensive optimization has revealed key parameters that orchestrate enantioselectivity in this historically challenging transformation. A range of diversely substituted substrates are disclosed (20 examples, up to 92 : 8 e.r.) and the reaction displays efficiency that is competitive with the current state of the art in hydroxylation chemistry: this provides a preparative platform to enable OH to F bioisosterism to be explored. Finally, the utility of the products in accessing densely functionalized cyclic scaffolds with five contiguous stereocenters is disclosed together with crystallographic analyses to unveil fluorine-carbonyl non-covalent interactions.
Collapse
Affiliation(s)
- Timo Stünkel
- Organisch-Chemisches Institut, Universität Münster Corrensstraße 36 48149 Münster Germany
| | - Kathrin Siebold
- Organisch-Chemisches Institut, Universität Münster Corrensstraße 36 48149 Münster Germany
| | - Daichi Okumatsu
- Organisch-Chemisches Institut, Universität Münster Corrensstraße 36 48149 Münster Germany
| | - Kazuki Murata
- Organisch-Chemisches Institut, Universität Münster Corrensstraße 36 48149 Münster Germany
| | - Louise Ruyet
- Organisch-Chemisches Institut, Universität Münster Corrensstraße 36 48149 Münster Germany
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Universität Münster Corrensstraße 36 48149 Münster Germany
| | - Ryan Gilmour
- Organisch-Chemisches Institut, Universität Münster Corrensstraße 36 48149 Münster Germany
| |
Collapse
|
10
|
Wang ZX, Livingstone K, Hümpel C, Daniliuc CG, Mück-Lichtenfeld C, Gilmour R. Regioselective, catalytic 1,1-difluorination of enynes. Nat Chem 2023; 15:1515-1522. [PMID: 37845310 PMCID: PMC10624631 DOI: 10.1038/s41557-023-01344-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 09/12/2023] [Indexed: 10/18/2023]
Abstract
Fluorinated small molecules are prevalent across the functional small-molecule spectrum, but the scarcity of naturally occurring sources creates an opportunity for creative endeavour in developing routes to access these important materials. Iodine(I)/iodine(III) catalysis has proven to be particularly well-suited to this task, enabling abundant alkene substrates to be readily intercepted by in situ-generated λ3-iodanes and processed to high-value (di)fluorinated products. These organocatalysis paradigms often emulate metal-based processes by engaging the π bond and, in the case of styrenes, facilitating fluorinative phenonium-ion rearrangements to generate difluoromethylene units. Here we demonstrate that enynes are competent proxies for styrenes, thereby mitigating the recurrent need for aryl substituents, and enabling highly versatile homopropargylic difluorides to be generated in an operationally simple manner. The scope of the method is disclosed, together with application in target synthesis (>30 examples, up to >90% yield).
Collapse
Affiliation(s)
- Zi-Xuan Wang
- Institute for Organic Chemistry, Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany
| | - Keith Livingstone
- Institute for Organic Chemistry, Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany
| | - Carla Hümpel
- Institute for Organic Chemistry, Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany
| | - Constantin G Daniliuc
- Institute for Organic Chemistry, Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany
| | | | - Ryan Gilmour
- Institute for Organic Chemistry, Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany.
- Cells in Motion (CiM) Interfaculty Center, Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany.
| |
Collapse
|
11
|
Shirakawa S. Bifunctional Onium and Potassium Iodides as Nucleophilic Catalysts for the Solvent-Free Syntheses of Carbonates, Thiocarbonates, and Oxazolidinones from Epoxides. CHEM REC 2023; 23:e202300144. [PMID: 37236152 DOI: 10.1002/tcr.202300144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/16/2023] [Indexed: 05/28/2023]
Abstract
The catalytic potential of organo-onium iodides as nucleophilic catalysts is aptly demonstrated in the synthesis of cyclic carbonates from epoxides and carbon dioxide (CO2 ), as a representative CO2 utilization reaction. Although organo-onium iodide nucleophilic catalysts are metal-free environmentally benign catalysts, harsh reaction conditions are generally required to efficiently promote the coupling reactions of epoxides and CO2 . To solve this problem and accomplish efficient CO2 utilization reactions under mild conditions, bifunctional onium iodide nucleophilic catalysts bearing a hydrogen bond donor moiety were developed by our research group. Based on the successful bifunctional design of the onium iodide catalysts, nucleophilic catalysis using a potassium iodide (KI)-tetraethylene glycol complex was also investigated in coupling reactions of epoxides and CO2 under mild reaction conditions. These effective bifunctional onium and potassium iodide nucleophilic catalysts were applied to the solvent-free syntheses of 2-oxazolidinones and cyclic thiocarbonates from epoxides.
Collapse
Affiliation(s)
- Seiji Shirakawa
- Department of Environmental Science, Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| |
Collapse
|
12
|
Kim B, Puthukanoori RK, Martha B, Reddy Muthyala N, Thota S, Thummala V, Rao Paraselli B, Chen DYK. Stereo-Controlled Synthesis of Vicinal Tertiary Carbinols: Application in the Synthesis of a Diol Substructure of Zaragozic Acid, Pactamycin and Ryanodol. Chemistry 2023; 29:e202301938. [PMID: 37395682 DOI: 10.1002/chem.202301938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/04/2023]
Abstract
A novel and flexible approach for the stereo-controlled synthesis of vicinal tertiary carbinols is reported. The developed strategy featured a highly diastereoselective singlet-oxygen (O2 1 ) [4+2] cycloaddition of rationally designed cyclohexadienones (derived from oxidative dearomatization of the corresponding carboxylic-acid appended phenol precursors), followed by programmed "O-O" and "C-C" bond cleavage. In doing so, a highly functionalized and versatile intermediate was identified and prepared in synthetically useful quantity as a plausible precursor to access a variety of designed and naturally occurring vicinal tertiary carbinol containing compounds. Most notably, the developed strategy was successfully applied in the stereo-controlled synthesis of advanced core structures of zaragozic acid, pactamycin and ryanodol.
Collapse
Affiliation(s)
- Byungjoo Kim
- Department of Chemistry, Seoul National University, Gwanak-1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | | | | | | | - Srinivas Thota
- Chemveda Life Sciences, Pvt. Ltd., Hyderabad, Telangana, 500039, India
| | | | | | - David Y-K Chen
- Department of Chemistry, Seoul National University, Gwanak-1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| |
Collapse
|
13
|
Yu YJ, Häfliger J, Wang ZX, Daniliuc CG, Gilmour R. Forging Medium Rings via I(I)/I(III)-Catalyzed Diene Carbofunctionalization. Angew Chem Int Ed Engl 2023; 62:e202309789. [PMID: 37531257 DOI: 10.1002/anie.202309789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/04/2023]
Abstract
A main-group catalysis-based strategy to access 8-membered carbocycles via the direct carbofunctionalization of 2-phenethyl-substituted 1,3-dienes is disclosed. Through the intervention of an I(I)/I(III) catalysis cycle, the synthesis of densely functionalized, fluorinated benzocyclooctenes can be achieved in an operationally simple manner. Modulating the oxidation/activation regime, and the external nucleophile, the process has been extended to unify the challenging cyclization with formation of allylic C-O, C-N, and C-C bonds (>30 examples). Derivatization of the product benzocyclooctenes is demonstrated together with X-ray conformational analysis, preliminary validation of enantioselective catalysis and a scalable resolution protocol.
Collapse
Affiliation(s)
- You-Jie Yu
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149, Münster, Germany
| | - Joel Häfliger
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149, Münster, Germany
| | - Zi-Xuan Wang
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149, Münster, Germany
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149, Münster, Germany
| | - Ryan Gilmour
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149, Münster, Germany
| |
Collapse
|
14
|
Li Q, Liu XB, Wang H. Iodine(III)-Mediated Migratory gem-Difluorinations: Synthesis of β Transformable Functionality Substituted gem-Difluoroalkanes. CHEM REC 2023:e202300231. [PMID: 37665225 DOI: 10.1002/tcr.202300231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/22/2023] [Indexed: 09/05/2023]
Abstract
Geminal-difluoroalkanes featuring intriguing steric and electronic properties are of great significance in medicinal chemistry, and great progresses have been achieved for their synthesis. In recent years, iodine(III) reagent-mediated migratory gem-difluorination of alkenes has proved to be an efficient and powerful strategy to access to diverse gem-difluoroalkanes, especially those bearing a readily transformable functionality (TF), which are important for rapid assembly of complex gem-difluorinated molecules in a modular and diverse manner. In this review, we systematically summarize the recent development of iodine(III)-mediated migratory gem-difluorination reactions for the synthesis of gem-difluoroalkanes bearing a synthetically versatile TF at the β position. The reaction mechanism and the utilities of the products are also discussed. This review is presented and grouped basically according to the types of transformable functionalities within the products.
Collapse
Affiliation(s)
- Qingjiang Li
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Xiao-Bin Liu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Honggen Wang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| |
Collapse
|
15
|
Alkahtani R, Wirth T. Synthesis of Chiral Iodoaniline-Lactate Based Catalysts for the α-Functionalization of Ketones. ACS ORGANIC & INORGANIC AU 2023; 3:209-216. [PMID: 37545658 PMCID: PMC10401694 DOI: 10.1021/acsorginorgau.3c00012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 08/08/2023]
Abstract
A family of chiral iodoaniline-lactate based catalysts with C1 and C2 symmetry were efficiently synthesized. Comparisons between the reactivity and selectivity between the new and previously reported catalysts are made. The new catalysts promoted the α-oxysulfonylation of ketones in shorter reaction times and with higher yields of up to 99%. A scope for the oxysulfonylation reaction is presented, forming a variety of reported and novel products with enantioselectivities of up to 83%.
Collapse
Affiliation(s)
- Rawiyah Alkahtani
- School
of Chemistry, Cardiff University, Main Building, Park Place, CF10 3AT, Cardiff, United Kingdom
- Chemistry
Department, College of Science, Princess
Nourah bint Abdulrahman University, 11671, Riyadh, Saudi
Arabia
| | - Thomas Wirth
- School
of Chemistry, Cardiff University, Main Building, Park Place, CF10 3AT, Cardiff, United Kingdom
| |
Collapse
|
16
|
Shetgaonkar SE, Jothish S, Dohi T, Singh FV. Iodine(V)-Based Oxidants in Oxidation Reactions. Molecules 2023; 28:5250. [PMID: 37446912 DOI: 10.3390/molecules28135250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/04/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
The chemistry of hypervalent iodine reagents has now become quite valuable due to the reactivity of these compounds under mild reaction conditions and their resemblance in chemical properties to transition metals. The environmentally friendly nature of these reagents makes them suitable for Green Chemistry. Reagents with a dual nature, such as iodine(III) reagents, are capable electrophiles, while iodine(V) reagents are known for their strong oxidant behavior. Various iodine(V) reagents including IBX and DMP have been used as oxidants in organic synthesis either in stoichiometric or in catalytic amounts. In this review article, we describe various oxidation reactions induced by iodine(V) reagents reported in the past decade.
Collapse
Affiliation(s)
- Samata E Shetgaonkar
- School of Chemical Sciences, Goa University, Taleigao Plateau 403206, Goa, India
| | - Subhiksha Jothish
- Chemistry Division, School of Advanced Sciences (SAS), Vellore Institute of Technology, Chennai 600127, Tamil Nadu, India
| | - Toshifumi Dohi
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu 525-0058, Shiga, Japan
| | - Fateh V Singh
- Chemistry Division, School of Advanced Sciences (SAS), Vellore Institute of Technology, Chennai 600127, Tamil Nadu, India
| |
Collapse
|
17
|
Häfliger J, Ruyet L, Stübke N, Daniliuc CG, Gilmour R. Integrating I(I)/I(III) catalysis in reaction cascade design enables the synthesis of gem-difluorinated tetralins from cyclobutanols. Nat Commun 2023; 14:3207. [PMID: 37268631 DOI: 10.1038/s41467-023-38957-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/16/2023] [Indexed: 06/04/2023] Open
Abstract
Partially saturated, fluorine-containing rings are ubiquitous across the drug discovery spectrum. This capitalises upon the biological significance of the native structure and the physicochemical advantages conferred by fluorination. Motivated by the significance of aryl tetralins in bioactive small molecules, a reaction cascade has been validated to generate novel gem-difluorinated isosteres from 1,3-diaryl cyclobutanols in a single operation. Under the Brønsted acidity of the catalysis conditions, an acid-catalysed unmasking/fluorination sequence generates a homoallylic fluoride in situ. This species serves as the substrate for an I(I)/I(III) cycle and is processed, via a phenonium ion rearrangement, to an (isolable) 1,3,3-trifluoride. A final C(sp3)-F bond activation event, enabled by HFIP, forges the difluorinated tetralin scaffold. The cascade is highly modular, enabling the intermediates to be intercepted: this provides an expansive platform for the generation of structural diversity.
Collapse
Affiliation(s)
- Joel Häfliger
- Institute for Organic Chemistry, Westfälische Wilhelms-Universität (WWU) Münster, Corrensstraße 36, 48149, Münster, Germany
| | - Louise Ruyet
- Institute for Organic Chemistry, Westfälische Wilhelms-Universität (WWU) Münster, Corrensstraße 36, 48149, Münster, Germany
| | - Nico Stübke
- Institute for Organic Chemistry, Westfälische Wilhelms-Universität (WWU) Münster, Corrensstraße 36, 48149, Münster, Germany
| | - Constantin G Daniliuc
- Institute for Organic Chemistry, Westfälische Wilhelms-Universität (WWU) Münster, Corrensstraße 36, 48149, Münster, Germany
| | - Ryan Gilmour
- Institute for Organic Chemistry, Westfälische Wilhelms-Universität (WWU) Münster, Corrensstraße 36, 48149, Münster, Germany.
| |
Collapse
|
18
|
Singhal R, Choudhary SP, Malik B, Pilania M. Cyclic diaryliodonium salts: applications and overview. Org Biomol Chem 2023; 21:4358-4378. [PMID: 37161758 DOI: 10.1039/d3ob00134b] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Owing to the recent renewed interest and groundbreaking advances in hypervalent chemistry, cyclic diaryliodonium salts have had a myriad of unique applications in the past decade. Their numerous properties, such as an efficient dual arylation mechanism, straightforward one-pot synthesis compatibility, wide substrate scope, and functionalization tolerance, have made them appropriate starting materials for many bioactive compounds. Fluorenes, thiophenes, carbazoles, phenanthrenes, and many other useful cyclic bioactive molecules that are essential for pharmaceutical synthesis can be readily accessed from cyclic diaryliodonium salts. Particular focus has been given to the high optical activity and good enantiomeric excess of the products that facilitate the easy formation of many difficult-to-obtain optical isomers, such as atropisomers. This review aims to compile and summarize all the recent advances in synthesizing methodologies to prepare the important compounds where cyclic diaryliodonium salt is an integral part of the methodologies and would hopefully provide a good foundation for further research on this topic.
Collapse
Affiliation(s)
- Rakshanda Singhal
- Department of Chemistry, Manipal University Jaipur, Jaipur, VPO-Dehmi-Kalan, Off Jaipur-Ajmer Express Way, Jaipur, Rajasthan, 303007, India.
| | - Satya Prakash Choudhary
- Department of Chemistry, Manipal University Jaipur, Jaipur, VPO-Dehmi-Kalan, Off Jaipur-Ajmer Express Way, Jaipur, Rajasthan, 303007, India.
| | - Babita Malik
- Department of Chemistry, Manipal University Jaipur, Jaipur, VPO-Dehmi-Kalan, Off Jaipur-Ajmer Express Way, Jaipur, Rajasthan, 303007, India.
| | - Meenakshi Pilania
- Department of Chemistry, Manipal University Jaipur, Jaipur, VPO-Dehmi-Kalan, Off Jaipur-Ajmer Express Way, Jaipur, Rajasthan, 303007, India.
| |
Collapse
|
19
|
Qin Y, Qi L, Zhen X, Wang X, Chai H, Ma X, Jiang X, Cai X, Zhu W. Different Performances of BF 3, BCl 3, and BBr 3 in Hypervalent Iodine-Catalyzed Halogenations. J Org Chem 2023; 88:4359-4371. [PMID: 36939669 DOI: 10.1021/acs.joc.2c02967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Herein, hypervalent iodine-catalyzed halogenation of aryl-activated alkenes using BX3 (X = Cl, Br) as the halogen source and activating reagents was reported. Various halogenated 1,3-oxazine/2-oxazoline derivatives were obtained in good-to-high yields. Using BF3 resulted in different substitute sites from BBr3 and BCl3 of the products, indicating different reactive intermediates and reaction pathways. The reaction underwent a "ligand coupling/oxidative addition/intermolecular nucleophilic attack/1,2-aryl migration/reductive elimination/intramolecular nucleophilic attack" cascade when BF3 was applied as the halogen source, while 1,2-aryl migration has "disappeared" when the halogen source was BBr3 or BCl3. Possible catalytic cycles were proposed, and DFT calculations were conducted to demonstrate the differences among BX3 (X = F, Cl, Br) in the hypervalent iodine-catalyzed halogenations.
Collapse
Affiliation(s)
- Yuji Qin
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Liang Qi
- Department of Pharmacy, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Xiang Zhen
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, Lanzhou 730000, China
| | - Xueqing Wang
- Department of Pharmacy, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Hongli Chai
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, Lanzhou 730000, China
| | - Xingyu Ma
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xianxing Jiang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xiaoqing Cai
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Weiwei Zhu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
20
|
Zheng H, Cai L, Pan M, Uyanik M, Ishihara K, Xue XS. Catalyst-Substrate Helical Character Matching Determines the Enantioselectivity in the Ishihara-Type Iodoarenes Catalyzed Asymmetric Kita-Dearomative Spirolactonization. J Am Chem Soc 2023; 145:7301-7312. [PMID: 36940192 DOI: 10.1021/jacs.2c13295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Catalyst design has traditionally focused on rigid structural elements to prevent conformational flexibility. Ishihara's elegant design of conformationally flexible C2-symmetric iodoarenes, a new class of privileged organocatalysts, for the catalytic asymmetric dearomatization (CADA) of naphthols is a notable exception. Despite the widespread use of the Ishihara catalysts for CADAs, the reaction mechanism remains the subject of debate, and the mode of asymmetric induction has not been well established. Here, we report an in-depth computational investigation of three possible mechanisms in the literature. Our results, however, reveal that this reaction is best rationalized by a fourth mechanism called "proton-transfer-coupled-dearomatization (PTCD)", which is predicted to be strongly favored over other competing pathways. The PTCD mechanism is consistent with a control experiment and further validated by applying it to rationalize the enantioselectivities. Oxidation of the flexible I(I) catalyst to catalytic active I(III) species induces a defined C2-symmetric helical chiral environment with a delicate balance between flexibility and rigidity. A match/mismatch effect between the active catalyst and the substrate's helical shape in the dearomatization transition states was observed. The helical shape match allows the active catalyst to adapt its conformation to maximize attractive noncovalent interactions, including I(III)···O halogen bond, N-H···O hydrogen bond, and π···π stacking, to stabilize the favored transition state. A stereochemical model capable of rationalizing the effect of catalyst structural variation on the enantioselectivities is developed. The present study enriches our understanding of how flexible catalysts achieve high stereoinduction and may serve as an inspiration for the future exploration of conformational flexibility for new catalyst designs.
Collapse
Affiliation(s)
- Hanliang Zheng
- Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Liu Cai
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Ming Pan
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Muhammet Uyanik
- Graduate School of Engineering, Nagoya University Furocho, Chikusaku, Nagoya 464-8603, Japan
| | - Kazuaki Ishihara
- Graduate School of Engineering, Nagoya University Furocho, Chikusaku, Nagoya 464-8603, Japan
| | - Xiao-Song Xue
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, P. R. China
| |
Collapse
|
21
|
Xu YY, Gao ZH, Li CB, Ye S. Enantioselective N-Heterocyclic Carbene Catalyzed α-Oxidative Coupling of Enals with Carboxylic Acids Using an Iodine(III) Reagent. Angew Chem Int Ed Engl 2023; 62:e202218362. [PMID: 36651829 DOI: 10.1002/anie.202218362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 01/19/2023]
Abstract
The enantioselective α-oxidative coupling of enals with carboxylic acids was developed via the umpolung of an NHC-bound enolate with an iodine(III) reagent. The corresponding α-acyloxyl-β,γ-unsaturated esters were afforded in good yields, with high regio- and enantioselectivities. The key step of the reaction involves the formation of enol iodine(III) intermediate from the enolate with iodosobenzene, which changes the polarity of α-carbon of the enal from nucleophilic to electrophilic, and thus facilitates the subsequent addition of carboxylate.
Collapse
Affiliation(s)
- Yuan-Yuan Xu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhong-Hua Gao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Cao-Bo Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Song Ye
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
22
|
Fujie M, Mizufune K, Nishimoto Y, Yasuda M. 1-Fluoro-1-sulfonyloxylation of Alkenes by Sterically and Electronically Tuned Hypervalent Iodine: Regression Analysis toward 1,1-Heterodifunctionalization. Org Lett 2023; 25:766-770. [PMID: 36710445 DOI: 10.1021/acs.orglett.2c04235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In the heterodifunctionalization of alkenes, 1,1-regioselectivity remains elusive in sharp contrast to 1,2-regioselectivity. Herein, the 1-fluoro-1-sulfonyloxylation of styrenes with Bu4NBF4 and sulfonic acids using a hypervalent iodine ArI(OAc)2 is reported. Regression analysis of substituents on ArI(OAc)2 suggested that their electron-withdrawing ability and steric factor influence the 1,1-heterodifunctionalization. We designed o-{2,4-(CF3)2C6H3}- and p-NO2-substituted ArI(OAc)2 by the regression analysis to achieve high selectivity.
Collapse
Affiliation(s)
- Masaki Fujie
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kyohei Mizufune
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoshihiro Nishimoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Makoto Yasuda
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
23
|
Zheng M, Huang C, Yan JZ, Xie SL, Ke SJ, Xia HD, Duan YN. In Situ Hypoiodite-Catalyzed Oxidative Rearrangement of Chalcones: Scope and Mechanistic Investigation. J Org Chem 2023; 88:1504-1514. [PMID: 36660775 DOI: 10.1021/acs.joc.2c02291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
It is highly desirable to avoid using rare or toxic metals for oxidative reactions in the synthesis of pharmaceuticals and fine chemicals. Hypervalent iodine compounds are environmentally benign alternatives, but their catalytic use has been quite limited. Herein, the protocol for in situ hypoiodite-catalyzed oxidative rearrangement of chalcones is first realized under mild and metal-free conditions, which provided a nontoxic, environmental-benign, and catalytic alternative to the thallium-based protocol. Also, the applicability and effectiveness of this catalytic protocol got well demonstrated via gram-scale synthesis and product derivatization. What is more, control and NMR tracking experiments were performed to figure out the possible catalytic species and intermediates.
Collapse
Affiliation(s)
- Meiqiong Zheng
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, P. R. China.,Shantou University, Shantou 515031, P. R. China
| | - Chao Huang
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, P. R. China
| | - Jian-Zhong Yan
- Industry & Technology Service Center, Shantou Hi-tech Industrial Development Zone, Shantou 515031, P. R. China
| | - Shu-Li Xie
- Shantou University, Shantou 515031, P. R. China
| | - Shao-Jia Ke
- Shantou Food Inspection and Testing Center, Shantou 515031, P. R. China
| | - Hai-Dong Xia
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, P. R. China
| | - Ya-Nan Duan
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, P. R. China
| |
Collapse
|
24
|
Nangunuri BG, Shirke RP, Kim MH. Metal-free synthesis of dihydrofuran derivatives as anti-vicinal amino alcohol isosteres. Org Biomol Chem 2023; 21:960-965. [PMID: 36625241 DOI: 10.1039/d2ob02077g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Dihydrofuran cores are commonly incorporated into synthetically and pharmacologically significant scaffolds in natural product and drug discovery chemistry. Herein, we report a concise and practical strategy to construct spiro-dihydrofuran and amino dihydrofuran scaffolds as anti-vicinal amino alcohol isosteres. Hypervalent iodine (PhI(OAc)(NTs2))-mediated C-H activation of alkynes resulted in two-bond formations with one pi bond cleavage: (i) C(sp2)-N(sp3) and O(sp3)-C(sp2); (ii) C(sp2)-N(sp3) and C(sp3)-C(sp2). The metal-free 5-endo-dig oxidative cyclization provided versatile amino 2,3- and 2,5-dihydrofurans bearing the C5 quaternary carbon. The non-toxicity of all synthesised dihydrofurans was verified via in vitro cell viability assay.
Collapse
Affiliation(s)
- Bhargav Gupta Nangunuri
- Gachon Institute of Pharmaceutical Science & Department of Pharmacy, College of Pharmacy, Gachon University, 191 Hambakmoeiro, Yeonsu-gu, Incheon, Republic of Korea.
| | - Rajendra P Shirke
- Gachon Institute of Pharmaceutical Science & Department of Pharmacy, College of Pharmacy, Gachon University, 191 Hambakmoeiro, Yeonsu-gu, Incheon, Republic of Korea.
| | - Mi-Hyun Kim
- Gachon Institute of Pharmaceutical Science & Department of Pharmacy, College of Pharmacy, Gachon University, 191 Hambakmoeiro, Yeonsu-gu, Incheon, Republic of Korea.
| |
Collapse
|
25
|
Elsherbini M, Moran WJ. Toward a General Protocol for Catalytic Oxidative Transformations Using Electrochemically Generated Hypervalent Iodine Species. J Org Chem 2023; 88:1424-1433. [PMID: 36689352 PMCID: PMC9903329 DOI: 10.1021/acs.joc.2c02309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A simple catalytic electrosynthetic protocol for oxidative transformations mediated by hypervalent iodine reagents has been developed. In this protocol, electricity drives the iodine(I)/iodine(III) catalytic cycle enabling catalysis with in situ generated hypervalent iodine species, thereby eliminating chemical oxidants and the inevitable chemical waste associated with their mode of action. In addition, no added electrolytic salts are needed in this process. The developed method has been validated using two different hypervalent iodine-mediated transformations: (i) the oxidative cyclization of N-allylic and N-homoallylic amides to the corresponding dihydrooxazole and dihydro-1,3-oxazine derivatives, respectively, and (ii) the α-tosyloxylation of ketones. Both reactions proceeded smoothly under the developed catalytic electrosynthetic conditions without reoptimization, featuring a wide substrate scope and excellent functional group tolerance. In addition, scale-up to gram-scale and catalyst recovery were easily achieved maintaining the high efficiency of the process.
Collapse
|
26
|
Cao J, Ma Y, Hu L, Xia W, Zhang X, Xiong Y. Polyhalogenation-Facilitated Spirolactonization at the meta-Position of Phenols. J Org Chem 2023; 88:1075-1084. [PMID: 36598128 DOI: 10.1021/acs.joc.2c02527] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A novel dearomative spirolactonization/polyhalogenation of phenols that employs hypervalent iodine PhICl2 (iodobenzene dichloride) as both an oxidant and chlorine source with an indispensable base, or only using NBS (N-bromosuccinimide) without any additives, is presented. Halide participations are a vital factor in the cascade reaction of 3'-hydroxy-[1,1'-biphenyl]-2-carboxylic acids with good selectivities and reactivities and induced the rapid constructions of multiple C-halogen bonds and directional C═O bonds in a one-step operation under mild conditions. In gaining a good understanding of the mechanism, the increase in number of bromine atoms was inferred rationally from the spirolactonization process, assisted by DFT calculations and high-resolution mass spectrometry. Mechanistic experiments suggest that the formation of a stable carbocation intermediate plays a great role in the migration of oxygen to spirolactonization.
Collapse
Affiliation(s)
- Jiaqi Cao
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| | - Youcai Ma
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| | - Liangzhen Hu
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| | - Wen Xia
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| | - Xiaohui Zhang
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| | - Yan Xiong
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China.,School of Chemical and Environmental Engineering, and Collaborative Innovation Center for High Value Transformation of Coal Chemical Process By-products, Xinjiang Institute of Engineering, Xinjiang 830091, China
| |
Collapse
|
27
|
Peng X, Rahim A, Peng W, Jiang F, Gu Z, Wen S. Recent Progress in Cyclic Aryliodonium Chemistry: Syntheses and Applications. Chem Rev 2023; 123:1364-1416. [PMID: 36649301 PMCID: PMC9951228 DOI: 10.1021/acs.chemrev.2c00591] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Indexed: 01/18/2023]
Abstract
Hypervalent aryliodoumiums are intensively investigated as arylating agents. They are excellent surrogates to aryl halides, and moreover they exhibit better reactivity, which allows the corresponding arylation reactions to be performed under mild conditions. In the past decades, acyclic aryliodoniums are widely explored as arylation agents. However, the unmet need for acyclic aryliodoniums is the improvement of their notoriously low reaction economy because the coproduced aryl iodides during the arylation are often wasted. Cyclic aryliodoniums have their intrinsic advantage in terms of reaction economy, and they have started to receive considerable attention due to their valuable synthetic applications to initiate cascade reactions, which can enable the construction of complex structures, including polycycles with potential pharmaceutical and functional properties. Here, we are summarizing the recent advances made in the research field of cyclic aryliodoniums, including the nascent design of aryliodonium species and their synthetic applications. First, the general preparation of typical diphenyl iodoniums is described, followed by the construction of heterocyclic iodoniums and monoaryl iodoniums. Then, the initiated arylations coupled with subsequent domino reactions are summarized to construct polycycles. Meanwhile, the advances in cyclic aryliodoniums for building biaryls including axial atropisomers are discussed in a systematic manner. Finally, a very recent advance of cyclic aryliodoniums employed as halogen-bonding organocatalysts is described.
Collapse
Affiliation(s)
- Xiaopeng Peng
- College
of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular
and Cerebrovascular Diseases, Ministry of Education, Jiangxi Province
Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou341000, P.R. China
- State
Key Laboratory of Oncology in South China, Collaborative Innovation
Center for Cancer Medicine, Sun Yat-sen
University Cancer Center, 651 Dongfeng East Road, Guangzhou510060, P. R. China
| | - Abdur Rahim
- Department
of Chemistry, University of Science and
Technology of China, 96 Jinzhai Road, Hefei230026, P. R. China
| | - Weijie Peng
- College
of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular
and Cerebrovascular Diseases, Ministry of Education, Jiangxi Province
Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou341000, P.R. China
| | - Feng Jiang
- College
of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular
and Cerebrovascular Diseases, Ministry of Education, Jiangxi Province
Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou341000, P.R. China
| | - Zhenhua Gu
- Department
of Chemistry, University of Science and
Technology of China, 96 Jinzhai Road, Hefei230026, P. R. China
| | - Shijun Wen
- State
Key Laboratory of Oncology in South China, Collaborative Innovation
Center for Cancer Medicine, Sun Yat-sen
University Cancer Center, 651 Dongfeng East Road, Guangzhou510060, P. R. China
| |
Collapse
|
28
|
Yoshida Y, Ao T, Mino T, Sakamoto M. Chiral Bromonium Salt (Hypervalent Bromine(III)) with N-Nitrosamine as a Halogen-Bonding Bifunctional Catalyst. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010384. [PMID: 36615579 PMCID: PMC9822295 DOI: 10.3390/molecules28010384] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023]
Abstract
There has been a great focus on halogen-bonding as a unique interaction between electron-deficient halogen atoms with Lewis basic moieties. Although the application of halogen-bonded atoms in organic chemistry has been eagerly researched in these decades, the development of chiral molecules with halogen-bonding functionalities and their utilization in asymmetric catalysis are still in the\ir infancy. We have previously developed chiral halonium salts with amide functionalities, which behaved as excellent catalysts albeit in only two reactions due to the lack of substrate activation abilities. In this manuscript, we have developed chiral halonium salts with an N-nitrosamine moiety and applied them to the Mannich reaction of isatin-derived ketimines with malonic esters. The study focused on our novel bromonium salt catalyst which provided the corresponding products in high yields with up to 80% ee. DFT calculations of the chiral catalyst structure suggested that the high asymmetric induction abilities of this catalyst are due to the Lewis basic role of the N-nitrosamine part. To the best of our knowledge, this is the first catalytic application of N-nitrosamines.
Collapse
|
29
|
Matsumoto T, Okazaki S, Aoki S, Niki A, Iwasaki H, Ozeki M, Yamashita M, Kojima N, Kawasaki I. Facile Synthesis of 5-Alkoxy-4-Aryltetrahydrofuran-2-one Using Hypervalent Iodine Reagents. Tetrahedron Lett 2023. [DOI: 10.1016/j.tetlet.2023.154382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
30
|
Reyes E, Prieto L, Milelli A. Asymmetric Organocatalysis: A Survival Guide to Medicinal Chemists. Molecules 2022; 28:271. [PMID: 36615465 PMCID: PMC9822454 DOI: 10.3390/molecules28010271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 12/30/2022] Open
Abstract
Majority of drugs act by interacting with chiral counterparts, e.g., proteins, and we are, unfortunately, well-aware of how chirality can negatively impact the outcome of a therapeutic regime. The number of chiral, non-racemic drugs on the market is increasing, and it is becoming ever more important to prepare these compounds in a safe, economic, and environmentally sustainable fashion. Asymmetric organocatalysis has a long history, but it began its renaissance era only during the first years of the millennium. Since then, this field has reached an extraordinary level, as confirmed by the awarding of the 2021 Chemistry Nobel Prize. In the present review, we wish to highlight the application of organocatalysis in the synthesis of enantio-enriched molecules that may be of interest to the pharmaceutical industry and the medicinal chemistry community. We aim to discuss the different activation modes observed for organocatalysts, examining, for each of them, the generally accepted mechanisms and the most important and developed reactions, that may be useful to medicinal chemists. For each of these types of organocatalytic activations, select examples from academic and industrial applications will be disclosed during the synthesis of drugs and natural products.
Collapse
Affiliation(s)
- Efraim Reyes
- Department of Organic and Inorganic Chemistry, University of the Basque Country (UPV/EHU), 48080 Bilbao, Spain
| | - Liher Prieto
- Department of Organic and Inorganic Chemistry, University of the Basque Country (UPV/EHU), 48080 Bilbao, Spain
| | - Andrea Milelli
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy
| |
Collapse
|
31
|
Lopat’eva ER, Krylov IB, Lapshin DA, Terent’ev AO. Redox-active molecules as organocatalysts for selective oxidative transformations - an unperceived organocatalysis field. Beilstein J Org Chem 2022; 18:1672-1695. [PMID: 36570566 PMCID: PMC9749543 DOI: 10.3762/bjoc.18.179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
Organocatalysis is widely recognized as a key synthetic methodology in organic chemistry. It allows chemists to avoid the use of precious and (or) toxic metals by taking advantage of the catalytic activity of small and synthetically available molecules. Today, the term organocatalysis is mainly associated with redox-neutral asymmetric catalysis of C-C bond-forming processes, such as aldol reactions, Michael reactions, cycloaddition reactions, etc. Organophotoredox catalysis has emerged recently as another important catalysis type which has gained much attention and has been quite well-reviewed. At the same time, there are a significant number of other processes, especially oxidative, catalyzed by redox-active organic molecules in the ground state (without light excitation). Unfortunately, many of such processes are not associated in the literature with the organocatalysis field and thus many achievements are not fully consolidated and systematized. The present article is aimed at overviewing the current state-of-art and perspectives of oxidative organocatalysis by redox-active molecules with the emphasis on challenging chemo-, regio- and stereoselective CH-functionalization processes. The catalytic systems based on N-oxyl radicals, amines, thiols, oxaziridines, ketone/peroxide, quinones, and iodine(I/III) compounds are the most developed catalyst types which are covered here.
Collapse
Affiliation(s)
- Elena R Lopat’eva
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| | - Igor B Krylov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| | - Dmitry A Lapshin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| | - Alexander O Terent’ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| |
Collapse
|
32
|
Electro-redox strategy for synthesis of dehydroaltenusin analogs through alkoxy-oxylactonizative phenol dearomatization. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
33
|
Singh FV, Shetgaonkar SE, Krishnan M, Wirth T. Progress in organocatalysis with hypervalent iodine catalysts. Chem Soc Rev 2022; 51:8102-8139. [PMID: 36063409 DOI: 10.1039/d2cs00206j] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hypervalent iodine compounds as environmentally friendly and relatively inexpensive reagents have properties similar to transition metals. They are employed as alternatives to transition metal catalysts in organic synthesis as mild, nontoxic, selective and recyclable catalytic reagents. Formation of C-N, C-O, C-S, C-F and C-C bonds can be seamlessly accomplished by hypervalent iodine catalysed oxidative functionalisations. The aim of this review is to highlight recent developments in the utilisation of iodine(III) and iodine(V) catalysts in the synthesis of a wide range of organic compounds including chiral catalysts for stereoselective synthesis. Polymer-, magnetic nanoparticle- and metal organic framework-supported hypervalent iodine catalysts are also described.
Collapse
Affiliation(s)
- Fateh V Singh
- Chemistry Department, SAS, Vellore Institute of Technology - Chennai, Vandalur-Kelambakkam Road, Chennai-600127, Tamil Nadu, India.
| | - Samata E Shetgaonkar
- Chemistry Department, SAS, Vellore Institute of Technology - Chennai, Vandalur-Kelambakkam Road, Chennai-600127, Tamil Nadu, India.
| | - Manjula Krishnan
- Chemistry Department, SAS, Vellore Institute of Technology - Chennai, Vandalur-Kelambakkam Road, Chennai-600127, Tamil Nadu, India.
| | - Thomas Wirth
- School of Chemistry, Cardiff University, Cardiff, UK.
| |
Collapse
|
34
|
Liao L, Zhao X. Indane-Based Chiral Aryl Chalcogenide Catalysts: Development and Applications in Asymmetric Electrophilic Reactions. Acc Chem Res 2022; 55:2439-2453. [PMID: 36007167 DOI: 10.1021/acs.accounts.2c00201] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Asymmetric electrophilic reactions provide an ideal method for the construction of chiral molecules by incorporating one or more functional groups into the parent substrates under mild conditions. However, due to the issues of the reactivities of electrophilic species and the possible racemization of chiral intermediates as well as the restriction of the chiral scaffolds of chiral catalysts, many limitations remain in this field, such as the narrow scopes of substrates and electrophiles as well as the limited types of nucleophiles and reactions. To overcome the limitations in the synthesis of diversified chiral molecules, we developed a series of indane-based chiral amino aryl chalcogenide catalysts. These catalysts are easily prepared based on the privileged chiral indane scaffold. They can provide an appropriate H-bonding effect by varying the amino protecting groups as well as offer a proper Lewis basicity and steric hindrance by adjusting different substituents on the aryl chalcogenide motifs. These features allow for them to meet the requirements of reactivity and the chiral environment of the reactions. Notably, they have been successfully applied to various asymmetric electrophilic reactions of alkenes, alkynes, and arenes, expanding the field of electrophilic reactions.Using these catalysts, we realized the enantioselective CF3S-lactonization of olefinic carboxylic acids, enantioselective CF3S-aminocyclization of olefinic sulfonamides, desymmetrizing enantioselective CF3S-carbocyclization of gem-diaryl-tethered alkenes, enantioselective CF3S-oxycyclization of N-allylamides, enantioselective intermolecular trifluoromethylthiolating difunctionalization and allylic C-H trifluoromethylthiolation of trisubstituted alkenes, formally the intermolecular CF3S-oxyfunctionalization of aliphatic internal alkenes, intermolecular azidothiolation, oxythiolation, thioarylation of N-allyl sulfonamides, desymmetrizing enantioselective chlorocarbocyclization of aryl-tethered diolefins, enantioselective Friedel-Crafts-type electrophilic chlorination of N-allyl anilides, and enantioselective chlorocarbocyclization and dearomatization of N-allyl 1-naphthanilides. Additionally, the enantioselective electrophilic carbothiolation of alkynes to construct enantiopure carbon chirality center-containing molecules and axially chiral amino sulfide vinyl arenes and the electrophilic aromatic halogenation to produce P-chirogenic compounds can be accomplished. In these reactions, a bifunctional binding mode is proposed in the catalytic cycles, in which an acid-derived anion-binding interaction might exist and account for the high enantioselectivities of the reactions.In this Account, we demonstrate our achievements in asymmetric electrophilic reactions and share our thoughts on catalyst design, our understanding of asymmetric electrophilic reactions, and our perspectives in the field of chiral chalcogenide-catalyzed asymmetric electrophilic reactions. We hope that the experience we share will promote the design and development of other novel organocatalysts and new challenging reactions.
Collapse
Affiliation(s)
- Lihao Liao
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Xiaodan Zhao
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| |
Collapse
|
35
|
Schäfer M, Stünkel T, Daniliuc CG, Gilmour R. Regio- and Enantioselective Intermolecular Aminofluorination of Alkenes via Iodine(I)/Iodine(III) Catalysis. Angew Chem Int Ed Engl 2022; 61:e202205508. [PMID: 35583965 PMCID: PMC9400885 DOI: 10.1002/anie.202205508] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Indexed: 12/12/2022]
Abstract
The regio- and enantio-selective, intermolecular vicinal fluoroamination of α-trifluoromethyl styrenes has been achieved by enantioselective II /IIII catalysis. Leveraging C2 -symmetric resorcinol-based aryl iodide catalysts, it has been possible to intercept the transient iodonium intermediate using simple nitriles, which function as both the solvent and nucleophile. In situ Ritter reaction provides direct access to the corresponding amides (up to 89 % yield, e.r. 93 : 7). This main group catalysis paradigm inverts the intrinsic regioselectivity of the uncatalyzed process, thereby providing facile access to tertiary, benzylic stereocenters bearing both CF3 and F groups. Privileged phenethylamine pharmacophores can be generated in which there is complete local partial charge inversion (CF3δ- /Fδ- versus CH3δ+ /Hδ+ ). Crystallographic analyses of representative β-fluoroamide products reveal highly pre-organized conformations that manifest the stereoelectronic gauche effect.
Collapse
Affiliation(s)
- Michael Schäfer
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| | - Timo Stünkel
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| | - Constantin G. Daniliuc
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| | - Ryan Gilmour
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| |
Collapse
|
36
|
Singh FV, Dohi T, Kumar R. Editorial: Metal-free oxidative transformations in organic synthesis. Front Chem 2022; 10:956779. [PMID: 36003623 PMCID: PMC9393742 DOI: 10.3389/fchem.2022.956779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Fateh Veer Singh
- Chemistry Division, School of Advanced Sciences, Vellore Institute of Technology (VIT), Chennai Campus, Chennai, Tamil Nadu, India
- *Correspondence: Fateh Veer Singh, ; Toshifumi Dohi, ; Ravi Kumar,
| | - Toshifumi Dohi
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
- *Correspondence: Fateh Veer Singh, ; Toshifumi Dohi, ; Ravi Kumar,
| | - Ravi Kumar
- Department of Chemistry, J.C. Bose University of Science and Technology, YMCA, Faridabad, Haryana, India
- *Correspondence: Fateh Veer Singh, ; Toshifumi Dohi, ; Ravi Kumar,
| |
Collapse
|
37
|
Häfliger J, Sokolova OO, Lenz M, Daniliuc CG, Gilmour R. Stereocontrolled Synthesis of Fluorinated Isochromans via Iodine(I)/Iodine(III) Catalysis. Angew Chem Int Ed Engl 2022; 61:e202205277. [PMID: 35536157 PMCID: PMC9401867 DOI: 10.1002/anie.202205277] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Indexed: 12/19/2022]
Abstract
The success of saturated, fluorinated heterocycles in contemporary drug discovery provides a stimulus for creative endeavor in main group catalysis. Motivated by the ubiquity of isochromans across the bioactive small molecule spectrum, the prominence of the anomeric effect in regulating conformation, and the metabolic lability of the benzylic position, iodine(I)/iodine(III) catalysis has been leveraged for the stereocontrolled generation of selectively fluorinated analogs. To augment the current arsenal of fluorocyclization reactions involving carboxylic acid derivatives, the reaction of readily accessible 2-vinyl benzaldehydes is disclosed (up to >95 : 05 d.r. and 97 : 03 e.r.). Key stereoelectronic interactions manifest themselves in the X-ray crystal structures of the products, thereby validating the [CH2 -CHF] fragment as a stereoelectronic mimic of the [O-CH(OR)] acetal motif.
Collapse
Affiliation(s)
- Joel Häfliger
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| | - Olga O. Sokolova
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| | - Madina Lenz
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| | - Constantin G. Daniliuc
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| | - Ryan Gilmour
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| |
Collapse
|
38
|
Khan N, Itaya K, Wirth T. Chiral Iodotriptycenes: Synthesis and Catalytic Applications. ChemistryOpen 2022; 11:e202200145. [PMID: 35822927 PMCID: PMC9278095 DOI: 10.1002/open.202200145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 06/27/2022] [Indexed: 02/05/2023] Open
Abstract
New iodotriptycenes, including some chiral derivatives, have been synthesised, and their catalytic potential towards oxidative transformations has been investigated. The enantioselectivities observed in the products using chiral iodotriptycene catalysts are low, probably owing to the large distances between the coordinating groups and the iodine moieties in these compounds.
Collapse
Affiliation(s)
- Nasim Khan
- School of ChemistryCardiff UniversityPark Place, Main BuildingCF10 3ATCardiffUK
| | - Katsunori Itaya
- School of ChemistryCardiff UniversityPark Place, Main BuildingCF10 3ATCardiffUK
| | - Thomas Wirth
- School of ChemistryCardiff UniversityPark Place, Main BuildingCF10 3ATCardiffUK
| |
Collapse
|
39
|
Cyclopropene activation via I(I)/I(III) catalysis: Proof of principle and application in direct tetrafluorination. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
40
|
Segura-Quezada LA, Torres-Carbajal KR, Juárez-Ornelas KA, Alonso-Castro AJ, Ortiz-Alvarado R, Dohi T, Solorio-Alvarado CR. Iodine(III) reagents for oxidative aromatic halogenation. Org Biomol Chem 2022; 20:5009-5034. [PMID: 35703407 DOI: 10.1039/d2ob00741j] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Iodine(III) reagents have attracted chemical relvance in organic synthesis by their use as safe, non-toxic, green and easy to handle reagents in different transformations. These characteristics make them important alternatives to procedures involving hazardous and harsh reaction conditions. Their versatility as oxidants has been exploited in the functionalization of different aromatic cores, which allow the introduction of several groups. Metal-free arylation using iodine(III) reagents is by far one of the most described topics in the literature; however, other highly relevant non-aromatic groups have been also introduced. Herein, we summarize the most representative developed procedures for the functionalization of aryls and heteroaryls by introducing halogens, using different iodine(III) reagents.
Collapse
Affiliation(s)
- Luis A Segura-Quezada
- Universidad de Guanajuato, Departamento de Química, División de Ciencias Naturales y Exactas, Campus Guanajuato, Cerro de la Venada S/N, 36040, Guanajuato, Gto., Mexico.
| | - Karina R Torres-Carbajal
- Universidad de Guanajuato, Departamento de Química, División de Ciencias Naturales y Exactas, Campus Guanajuato, Cerro de la Venada S/N, 36040, Guanajuato, Gto., Mexico.
| | - Kevin A Juárez-Ornelas
- Universidad de Guanajuato, Departamento de Química, División de Ciencias Naturales y Exactas, Campus Guanajuato, Cerro de la Venada S/N, 36040, Guanajuato, Gto., Mexico.
| | - Angel J Alonso-Castro
- Universidad de Guanajuato, Departamento de Química, División de Ciencias Naturales y Exactas, Campus Guanajuato, Cerro de la Venada S/N, 36040, Guanajuato, Gto., Mexico.
| | - Rafael Ortiz-Alvarado
- Universidad Michoacana de San Nicolás de Hidalgo, Facultad de Químico Farmacobiología, Tzintzuntzan 173, col. Matamoros, Morelia, Mich., Mexico.
| | - Toshifumi Dohi
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu Shiga, 525-8577, Japan.
| | - César R Solorio-Alvarado
- Universidad de Guanajuato, Departamento de Química, División de Ciencias Naturales y Exactas, Campus Guanajuato, Cerro de la Venada S/N, 36040, Guanajuato, Gto., Mexico.
| |
Collapse
|
41
|
Payne JL, Deng Z, Flach AL, Johnston JN. Enantioselective iodolactonization to prepare ε-lactone rings using hypervalent iodine. Chem Sci 2022; 13:7318-7324. [PMID: 35799806 PMCID: PMC9214890 DOI: 10.1039/d2sc01587k] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/25/2022] [Indexed: 01/03/2023] Open
Abstract
Despite the rapid growth of enantioselective halolactonization reactions in recent years, most are effective only when forming smaller (6,5,4-membered) rings. Seven-membered ε-lactones, are rarely formed with high selectivity, and never without conformational bias. We describe the first highly enantioselective 7-exo-trig iodolactonizations of conformationally unbiased ε-unsaturated carboxylic acids, effected by an unusual combination of a bifunctional BAM catalyst, I2, and I(iii) reagent (PhI(OAc)2:PIDA). We describe the first highly enantioselective 7-exo-trig iodolactonizations of conformationally unbiased ε-unsaturated carboxylic acids, effected by an unusual combination of a bifunctional BAM catalyst, I2, and I(iii) reagent (PhI(OAc)2:PIDA).![]()
Collapse
Affiliation(s)
- Jenna L Payne
- Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University Nashville Tennessee 37235-1822 USA
| | - Zihang Deng
- Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University Nashville Tennessee 37235-1822 USA
| | - Andrew L Flach
- Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University Nashville Tennessee 37235-1822 USA
| | - Jeffrey N Johnston
- Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University Nashville Tennessee 37235-1822 USA
| |
Collapse
|
42
|
Golub TP, Abazid AH, Nachtsheim BJ, Merten C. Structure Elucidation of
In Situ
Generated Chiral Hypervalent Iodine Complexes via Vibrational Circular Dichroism (VCD). Angew Chem Int Ed Engl 2022; 61:e202204624. [PMID: 35570718 PMCID: PMC10084129 DOI: 10.1002/anie.202204624] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Indexed: 12/23/2022]
Abstract
The structure of in situ generated chiral aryl-λ3 -iodanes obtained under oxidative reaction conditions was not yet observable with experimental techniques and their proposed structures are purely based on DFT calculations. Herein, we establish vibrational circular dichroism (VCD) spectroscopy as an experimental technique to verify DFT-calculated chiral iodane structures. Based on a chiral triazole-substituted iodoarene catalyst, we were able to elucidate a yet undescribed cationic chiral iodane as the most populated intermediate under oxidative conditions with a significant intramolecular N-I-interaction and no significant interactions with tosylate or m-chlorobenzoic acid as potential anionic ligands. Instead, aggregation of these substrates was found, which resulted in the formation of a non-coordinating anionic hydrogen bonded complex. The importance of VCD as a crucial experimental observable is further highlighted by the fact that our initial structural proposal, that was purely based on DFT calculations, could be falsified.
Collapse
Affiliation(s)
- Tino P. Golub
- Ruhr Universität Bochum Fakultät für Chemie und Biochemie, Organische Chemie II Universitätsstraße 150 44801 Bochum Germany
| | - Ayham H. Abazid
- Universität Bremen Fachbereich 2—Biologie und Chemie, Institut für Organische und Analytische Chemie Germany
| | - Boris J. Nachtsheim
- Universität Bremen Fachbereich 2—Biologie und Chemie, Institut für Organische und Analytische Chemie Germany
| | - Christian Merten
- Ruhr Universität Bochum Fakultät für Chemie und Biochemie, Organische Chemie II Universitätsstraße 150 44801 Bochum Germany
| |
Collapse
|
43
|
Golub TP, Abazid AH, Nachtsheim BJ, Merten C. Strukturaufklärung eines chiralen
in situ
erzeugten hypervalentem Iod‐Komplex mittels VCD‐Spektroskopie. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tino P. Golub
- Ruhr Universität Bochum Fakultät für Chemie und Biochemie, Organische Chemie II Universitätsstraße 150 44801 Bochum Deutschland
| | - Ayham H. Abazid
- Universität Bremen Fachbereich 2 – Biologie und Chemie, Institut für Organische und Analytische Chemie (Deutschland)
| | - Boris J. Nachtsheim
- Universität Bremen Fachbereich 2 – Biologie und Chemie, Institut für Organische und Analytische Chemie (Deutschland)
| | - Christian Merten
- Ruhr Universität Bochum Fakultät für Chemie und Biochemie, Organische Chemie II Universitätsstraße 150 44801 Bochum Deutschland
| |
Collapse
|
44
|
Mironova IA, Nenajdenko VG, Postnikov PS, Saito A, Yusubov MS, Yoshimura A. Efficient Catalytic Synthesis of Condensed Isoxazole Derivatives via Intramolecular Oxidative Cycloaddition of Aldoximes. Molecules 2022; 27:3860. [PMID: 35744982 PMCID: PMC9229713 DOI: 10.3390/molecules27123860] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 01/28/2023] Open
Abstract
The intramolecular oxidative cycloaddition reaction of alkyne- or alkene-tethered aldoximes was catalyzed efficiently by hypervalent iodine(III) species to afford the corresponding polycyclic isoxazole derivatives in up to a 94% yield. The structure of the prepared products was confirmed by various methods, including X-ray crystallography. Mechanistic study demonstrated the crucial role of hydroxy(aryl)iodonium tosylate as a precatalyst, which is generated from 2-iodobenzoic acid and m-chloroperoxybenzoic acid in the presence of a catalytic amount of p-toluenesulfonic acid.
Collapse
Affiliation(s)
- Irina A. Mironova
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia; (I.A.M.); (P.S.P.)
| | | | - Pavel S. Postnikov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia; (I.A.M.); (P.S.P.)
| | - Akio Saito
- Division of Applied Chemistry, Institute of Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan;
| | - Mekhman S. Yusubov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia; (I.A.M.); (P.S.P.)
| | - Akira Yoshimura
- Faculty of Pharmaceutical Sciences, Aomori University, 2-3-1 Kobata, Aomori 030-0943, Japan
| |
Collapse
|
45
|
Häfliger J, Sokolova OO, Lenz M, Daniliuc CG, Gilmour R. Stereokontrollierte Synthese von fluorierten Isochromanen durch Iod(I)/Iod(III)‐Katalyse. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Joel Häfliger
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 36 48149 Münster Deutschland
| | - Olga O. Sokolova
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 36 48149 Münster Deutschland
| | - Madina Lenz
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 36 48149 Münster Deutschland
| | - Constantin G. Daniliuc
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 36 48149 Münster Deutschland
| | - Ryan Gilmour
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 36 48149 Münster Deutschland
| |
Collapse
|
46
|
Song X, Li YX, Zhou L, Liu N, Wu ZQ. Controlled Synthesis of One-Handed Helical Polymers Carrying Achiral Organoiodine Pendants for Enantioselective Synthesis of Quaternary All-Carbon Stereogenic Centers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Xue Song
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui, China
| | - Yan-Xiang Li
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui, China
| | - Li Zhou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui, China
| | - Na Liu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui, China
| | - Zong-Quan Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
47
|
Xie D, Xu X, Long S, Tang XY, Wang L. Synthesis of (2-(Quinolin-2-yl)phenyl)carbamates by a One-Pot Friedel-Crafts Reaction/Oxidative Umpolung Aza-Grob Fragmentation Sequence. J Org Chem 2022; 87:7852-7863. [PMID: 35611951 DOI: 10.1021/acs.joc.2c00502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Utilizing the easily available isatin-based propargyl amines prepared from isatins, terminal alkynes, and anilines, (2-(quinolin-2-yl)phenyl)carbamates were prepared by a one-pot reaction in sequence, combining the gold-catalyzed Friedel-Crafts cyclization, oxidative umpolung aza-Grob fragmentation, and nucleophilic addition. In this process, gold-catalyzed cyclization of isatin-based propargyl amines gave 1'H-spiro[indoline-3,2'-quinolin]-2-ones, which were oxidized in situ by hypervalent iodine via the aza-Grob fragmentation to afford isocyano intermediates 2-(2-isocyanatophenyl)quinolines. Followed by the nucleophilic addition with alcohol solvents, (2-(quinolin-2-yl)phenyl)carbamates were synthesized. This procedure features easy operation, a wide substrate scope, and mild conditions.
Collapse
Affiliation(s)
- Dong Xie
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 216 1st Road Optics Valley, East Lake New Technology Development District, Wuhan, Hubei 430205, P. R. China.,School of Chemistry and Chemical Engineering and Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, P. R. China
| | - Xin Xu
- School of Chemistry and Chemical Engineering and Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, P. R. China
| | - Sihui Long
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 216 1st Road Optics Valley, East Lake New Technology Development District, Wuhan, Hubei 430205, P. R. China
| | - Xiang-Ying Tang
- School of Chemistry and Chemical Engineering and Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, P. R. China
| | - Long Wang
- School of Chemistry and Chemical Engineering and Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, P. R. China
| |
Collapse
|
48
|
Schäfer M, Stünkel T, Daniliuc CG, Gilmour R. Regio‐ and Enantioselective Intermolecular Aminofluorination of Alkenes via Iodine(I)/Iodine(III) Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Michael Schäfer
- WWU Münster: Westfalische Wilhelms-Universitat Munster Organisch Chemisches Institut GERMANY
| | - Timo Stünkel
- WWU Münster: Westfalische Wilhelms-Universitat Munster Organisch Chemisches Institut GERMANY
| | - Constantin G. Daniliuc
- WWU Münster: Westfalische Wilhelms-Universitat Munster Organisch Chemisches Institut GERMANY
| | - Ryan Gilmour
- Westfaelische Wilhelms-Universitaet Muenster Organic Chemistry Institute Corrensstrasse 40 48149 Muenster GERMANY
| |
Collapse
|
49
|
I2/PhI(OAc)2-assisted oxidative C-H amination protocols toward metal-free pragmatic synthesis of pyrrolo[2,3-b]indoles. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.05.083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Zhang H, Wirth T. Oxidation of BINOLs by Hypervalent Iodine Reagents: Facile Synthesis of Xanthenes and Lactones. Chemistry 2022; 28:e202200181. [PMID: 35225370 PMCID: PMC9311707 DOI: 10.1002/chem.202200181] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Indexed: 12/13/2022]
Abstract
Xanthene derivatives have broad applications in medicines, fluorescent probes, dyes, food additives, etc. Therefore, much attention was focused on developing the synthetic methods to prepare these compounds. Binaphthyl‐based xanthene derivatives were prepared through the oxidation of BINOLs promoted by the hypervalent iodine reagent iodosylbenzene (PhIO). Nine‐membered lactones were obtained through a similar oxidative reaction when iodoxybenzene (PhIO2) was used. Additionally, one‐pot reactions of BINOLs, PhIO and nucleophiles such as alcohols and amines were also investigated to provide alkoxylated products and amides in good to excellent yields.
Collapse
Affiliation(s)
- Huaiyuan Zhang
- School of Chemistry, Cardiff University, Park Place, Main Building, Cardiff, CF10 3AT, UK.,Lanzhou Petrochemical University of Vocational Technology, Lanzhou, 730060, P. R. China
| | - Thomas Wirth
- School of Chemistry, Cardiff University, Park Place, Main Building, Cardiff, CF10 3AT, UK
| |
Collapse
|