1
|
Guillerm V. Porous metal-organic polyhedra with a gecko's grip. Nat Chem 2025; 17:634-635. [PMID: 40275038 DOI: 10.1038/s41557-025-01811-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Affiliation(s)
- Vincent Guillerm
- Functional Materials Design, Discovery and Development Research Group (FMD3), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.
| |
Collapse
|
2
|
Ippili S, Jella V, Jyothi SJ, Kment S, Zboril R, Yoon SG, Jayaramulu K. Covalent Graphene-Metal-Organic Polyhedra Hybrids: Triboelectric Nanogenerators for Next Generation of Wearable E-Skin Technologies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2503772. [PMID: 40304171 DOI: 10.1002/smll.202503772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/18/2025] [Indexed: 05/02/2025]
Abstract
The development of stretchable energy-harvesting devices that convert mechanical stimuli into electrical energy is crucial for advancing self-powered electronic skin (e-skin) technologies. Triboelectric nanogenerators (TENGs) show promise but suffer from low stretchability, limited conductivity, and poor mechanical durability. Here, we report a new generation of TENGs designed via the molecular chemistry of metal-organic polyhedra (MOPs) covalently bonded to functionalized 2D nitrogen-doped graphene sheets (NG@MOP). The resulting NG@MOP hybrids, featuring aromatic regions and surface amine groups, link to anionic nickel-based MOPs, [Ni8(HImDC)12]8-, through amide bonds. This hybrid exhibits a large surface area, hierarchical micro-mesoporous channels, and structural defects, improving mechanical resilience. Incorporating NG@MOP into a polyurethane matrix produces a highly stretchable, biocompatible film withstanding over 500% strain. The composite delivers excellent triboelectric output, generating 417 V and 10.8 µA at 5 wt % loading. Applied as a wearable e-skin, the device maintains functionality under extreme deformation, demonstrating a strain sensitivity of 13 mV per degree of motion. It efficiently detects subtle body motions such as bending and stretching, showing strong potential for wearable motion sensing and real-time health monitoring.
Collapse
Affiliation(s)
- Swathi Ippili
- Department of Materials Science and Engineering, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Venkatraju Jella
- Department of Materials Science and Engineering, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Sudabathulua Jeevana Jyothi
- Hybrid Porous Materials Lab, Department of Chemistry, Indian Institute of Technology Jammu, Jammu & Kashmir, 181221, India
| | - Stepan Kment
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc, 783 71, Czech Republic
- Nanotechnology Centre, Centre for Energy and Environmental Technologies, VSB - Technical University of Ostrava, 17. Listopadu, Ostrava-Poruba, 708 00, Czech Republic
| | - Radek Zboril
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc, 783 71, Czech Republic
- Nanotechnology Centre, Centre for Energy and Environmental Technologies, VSB - Technical University of Ostrava, 17. Listopadu, Ostrava-Poruba, 708 00, Czech Republic
| | - Soon-Gil Yoon
- Department of Materials Science and Engineering, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Kolleboyina Jayaramulu
- Hybrid Porous Materials Lab, Department of Chemistry, Indian Institute of Technology Jammu, Jammu & Kashmir, 181221, India
| |
Collapse
|
3
|
Skalla RX, Montone CM, Pink M, Walters OK, Bloch ED. Role of Solvent Decomposition in the Synthesis and Composition of Porous Zirconium-Based Coordination Cages. Inorg Chem 2025; 64:6452-6459. [PMID: 40146624 DOI: 10.1021/acs.inorgchem.4c04982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Porous zirconium-based coordination cages are promising materials for applications in gas adsorption, catalysis, and molecular separation due to their tunability and stability. However, their synthesis is often complicated by the formation of competing phases, including insoluble or poorly soluble byproducts that impact purity and composition. Moreover, product composition and solubility can vary widely due to factors such as humidity, seasonal fluctuations, and lab-to-lab variations, highlighting the inherent lack of robustness in these syntheses. In this work, we investigate how solvothermal synthesis conditions, particularly temperature and solvent decomposition, influence the formation and composition of these cages. We show that elevated temperatures accelerate solvent breakdown, leading to the incorporation of formate and acetate byproducts that alter the final cage structures and contribute to the formation of insoluble zirconium-based, amorphous solids. By systematically varying the reaction conditions, we optimized the composition of the isolated cage products, achieving improved phase purity. By optimizing synthetic parameters, we achieve control over cage formation and particle morphology while mitigating the effects of solvent decomposition. Our findings provide insights into the balance between ligand coordination and solvent effects, enabling the development of strategies to enhance the purity, porosity, and functionality of these molecular cages.
Collapse
Affiliation(s)
- Rebecca X Skalla
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Christine M Montone
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Maren Pink
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Olivia K Walters
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Eric D Bloch
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
4
|
Liu Y, Xue B, Chen J, Cai J, Yin P. Topological Supramolecular Complexation of Metal-Organic Polyhedra for Tunable Interconnected Hierarchical Microporosity in Amorphous Form. Angew Chem Int Ed Engl 2025; 64:e202424238. [PMID: 39873333 DOI: 10.1002/anie.202424238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 01/30/2025]
Abstract
The precise engineering of microporosity is challenging due to the interference at the sub-nm scale from unexpected structural flexibility and molecular packing. Herein, the concept of topological supramolecular complexation is proposed for the feasible fabrication of hierarchical microporosity with broad tunability in amorphous form. The 2.5 nm metal-organic polyhedra (MOP) are complexed with quadridentate ligands through hydrogen and coordination bonding while the mismatch between the MOPs' cuboctahedron and ligands' tetrahedron topology leads to frustrated packing with extrinsic microporosity. Amorphous supramolecular frameworks can be obtained that integrate the intrinsic microporosity of the MOPs with the extrinsic porosity from the frustrated packing. The topologies, sizes and flexibility of ligands as well as ligand/MOP ratios are systemically varied, and the pore size distribution can be precisely adjusted. The hierarchical structures ranging from molecular packing to the morphologies of meso-scale assemblies are probed using ultra-small, small- and wide-angle X-ray scattering, enabling the quantitative evaluation of the micropores interconnectivity for the understanding of gas permeation performance. Gas separation membranes with permselectivity surpassing the Robeson upper bound can be designed. The findings not only give insight into the microscopic mechanism of supramolecular frustrated packing from topological design, but also pave new avenues for the cost-effective fabrications of microporous frameworks.
Collapse
Affiliation(s)
- Yuan Liu
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Binghui Xue
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Jiadong Chen
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Jinling Cai
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Panchao Yin
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, South China University of Technology, Guangzhou, 510641, P. R. China
| |
Collapse
|
5
|
Burke DW, Yamashita M, Wang Z, Kuzumoto M, Urayama K, Saito K, Furukawa S. Mechanically tunable porous gels constructed via the dual coordination/covalent polymerization of coumarin-functionalized rhodium-organic cuboctahedra. Chem Sci 2025:d5sc00535c. [PMID: 40242850 PMCID: PMC11997701 DOI: 10.1039/d5sc00535c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 04/02/2025] [Indexed: 04/18/2025] Open
Abstract
Polymer-based soft materials constructed from defined molecular pores, such as metal-organic polyhedra (MOPs), promise to merge the outstanding and diverse mechanical properties of conventional nonporous polymers with atomically-precise molecular recognition capabilities. Thus far, soft MOP networks have been constructed primarily using rigid, labile coordination bonds or dynamic covalent bonds, providing static networks without intrinsic mechanisms to optimize their response to mechanical stimuli. Here, we report the construction of flexible, doubly crosslinked MOP gels via mutually compatible coordination and covalent polymerization techniques. Our method employs dirhodium paddlewheel-based MOPs bearing both open metal sites, which enable their coordination-driven assembly, and photodimerizable coumarin side chains for covalent polymerization (Coumarin-RhMOPs). Incubation of Coumarin-RhMOPs with ditopic linkers enabled their coordination-driven polymerization into porous colloidal gels. Site-selective irradiation of coordination-linked Coumarin-RhMOP gels afforded doubly crosslinked gels with improved strain tolerance and higher stiffness. Selective dissociation of coordination-crosslinkers provided highly deformable covalent Coumarin-RhMOP gels. The postsynthetic addition of ditopic ligands to covalent gels enabled the reversible modulation of their mechanical properties. These findings highlight the possibility of incorporating multiple responsive crosslinks in porous MOP networks to rationally tune their responses to mechanical stress, paving the way to their practical implementation as next-generation chemical separators, catalysts, and drug delivery vehicles.
Collapse
Affiliation(s)
- David W Burke
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Yoshida, Sakyo-ku Kyoto 606-8501 Japan
| | - Masataka Yamashita
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Zaoming Wang
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Yoshida, Sakyo-ku Kyoto 606-8501 Japan
| | - Mako Kuzumoto
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Kenji Urayama
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Kei Saito
- Graduate School of Advanced Integrated Studies in Human Survivability (GSAIS), Kyoto University Sakyo-ku Kyoto 606-8306 Japan
| | - Shuhei Furukawa
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Yoshida, Sakyo-ku Kyoto 606-8501 Japan
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| |
Collapse
|
6
|
Thoonen S, Walker SE, Marshall DL, Fulloon TM, Brandon S, McKay AI, Paterson MJ, Mullen KM, Crowley JD, Tuck KL, Turner DR. Single-Step Synthesis of a Heterometallic [Cu 2PdL 4] 2+ Hybrid Metal-Organic Coordination Cage. Angew Chem Int Ed Engl 2025:e202506064. [PMID: 40167504 DOI: 10.1002/anie.202506064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 03/26/2025] [Accepted: 03/31/2025] [Indexed: 04/02/2025]
Abstract
Traditional methods of assembling low-symmetry heterometallic cage architectures are limited to stepwise construction and combinations of inert and labile metal ions, affording complex, anisotropic cage structures by sacrificing synthetic ease. Herein, a heterometallic [Cu2PdL4]2+ lantern-type cage has been assembled in a single self-assembly step through the use of a heteroditopic ligand with two different metal-binding groups. The resultant cage complex is a fusion of two common lantern-type cage motifs-carboxylate-based metal-organic Cu4L4 cages and pyridyl-based Pd2L4 coordination cages. Evidence for heterometallic cage formation in solution was provided by 1H and diffusion-ordered NMR spectroscopy and electrospray ionization mass spectrometry (ESIMS) data, whereas circular dichroism (CD) spectra confirmed the helical nature of the assembly. The heterometallic cage was then exploited in binding heterotopic guests. It is envisioned that the simple design strategy presented herein will ease the assembly of other structurally complex, low-symmetry cage architectures.
Collapse
Affiliation(s)
- Shannon Thoonen
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia
| | - Samuel E Walker
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia
| | - David L Marshall
- Centre for Materials Science (CFMS), Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- Central Analytical Research Facility (CARF), Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
| | - Therese M Fulloon
- Centre for Materials Science (CFMS), Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
| | - Samuel Brandon
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia
| | - Alasdair I McKay
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia
| | - Martin J Paterson
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Kathleen M Mullen
- Centre for Materials Science (CFMS), Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
| | - James D Crowley
- Department of Chemistry, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Kellie L Tuck
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia
| | - David R Turner
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
7
|
Percástegui EG, Sánchez-González E, de Jesús Valencia-Loza S, Cruz-Nava S, Jancik V, Martínez-Otero D. Counterions Determine if Metal-Organic Cages Convert SO 2 to Sulfate or Reversibly Adsorb It. Angew Chem Int Ed Engl 2025; 64:e202421169. [PMID: 39585724 DOI: 10.1002/anie.202421169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/14/2024] [Accepted: 11/25/2024] [Indexed: 11/26/2024]
Abstract
The continuous emission of harmful gases into the atmosphere damages the environment, air quality, and public health worldwide. To mitigate their impact, materials that capture and chemically inactivate gases are required; however, integrating and precisely controlling both abilities within a single material remains challenging. Herein, we demonstrate for the first time that switching between SO2-physisorption and chemisorption is possible for porous materials by using different counterions, as illustrated with a series of Pd6L8 Metal-Organic Cages (MOCs). Pd-MOCs bearing BF4 -, PF6 -, or SO4 2- expressed reversible adsorption (up to 3.6 mmol g-1), cyclability, and SO2/CO2 selectivity. NO3 - promoted conversion of SO2 to sulfate, as corroborated with M6L8 cages built on Co(II), Cu(II), and Zn(II) ions. Noteworthy, the nitrate derivative of Pd6L8 captures 6.0 mmol g-1 of SO2, cleanly transforms it to SO4 2- within its cavity in 94 % yield at room temperature, it is quantitatively regenerated, and tolerates humid SO2; such qualities are unprecedented for SO2 adsorbents. The deliberate use of counterions for modulating adsorption could be applied to charged MOFs, COFs, or POCs, potentially leading to the development of new reactivity or catalysis pathways for advanced applications against contaminant gases.
Collapse
Affiliation(s)
- Edmundo G Percástegui
- Instituto de Química, Universidad Nacional Autónoma de México Ciudad Universitaria, Ciudad de México, 04510, México
- Centro Conjunto de Investigación en Química Sustentable, UAEM-UNAM Carretera Toluca-Atlacomulco Km 14.5, C.P., 50200, Toluca, Estado de México, México
| | - Elí Sánchez-González
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Del Coyoacán, 04510 México D.F., México
| | - Sergio de Jesús Valencia-Loza
- Instituto de Química, Universidad Nacional Autónoma de México Ciudad Universitaria, Ciudad de México, 04510, México
- Centro Conjunto de Investigación en Química Sustentable, UAEM-UNAM Carretera Toluca-Atlacomulco Km 14.5, C.P., 50200, Toluca, Estado de México, México
| | - Sofía Cruz-Nava
- Instituto de Química, Universidad Nacional Autónoma de México Ciudad Universitaria, Ciudad de México, 04510, México
- Centro Conjunto de Investigación en Química Sustentable, UAEM-UNAM Carretera Toluca-Atlacomulco Km 14.5, C.P., 50200, Toluca, Estado de México, México
| | - Vojtech Jancik
- Instituto de Química, Universidad Nacional Autónoma de México Ciudad Universitaria, Ciudad de México, 04510, México
- Centro Conjunto de Investigación en Química Sustentable, UAEM-UNAM Carretera Toluca-Atlacomulco Km 14.5, C.P., 50200, Toluca, Estado de México, México
| | - Diego Martínez-Otero
- Instituto de Química, Universidad Nacional Autónoma de México Ciudad Universitaria, Ciudad de México, 04510, México
- Centro Conjunto de Investigación en Química Sustentable, UAEM-UNAM Carretera Toluca-Atlacomulco Km 14.5, C.P., 50200, Toluca, Estado de México, México
| |
Collapse
|
8
|
Le PH, Liu A, Zasada LB, Geary J, Kamin AA, Rollins DS, Nguyen HA, Hill AM, Liu Y, Xiao DJ. Nitrogen-Rich Conjugated Macrocycles: Synthesis, Conductivity, and Application in Electrochemical CO 2 Capture. Angew Chem Int Ed Engl 2025; 64:e202421822. [PMID: 39637287 DOI: 10.1002/anie.202421822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 12/07/2024]
Abstract
Here we report a series of nitrogen-rich conjugated macrocycles that mimic the structure and function of semiconducting 2D metal-organic and covalent organic frameworks while providing greater solution processability and surface tunability. Using a new tetraaminotriphenylene building block that is compatible with both coordination chemistry and dynamic covalent chemistry reactions, we have synthesized two distinct macrocyclic cores containing Ni-N and phenazine-based linkages, respectively. The fully conjugated macrocycle cores support strong interlayer stacking and accessible nanochannels. For the metal-organic macrocycles, good out-of-plane charge transport is preserved, with pressed pellet conductivities of 10-3 S/cm for the nickel variants. Finally, using electrochemically mediated CO2 capture as an example, we illustrate how colloidal phenazine-based organic macrocycles improve electrical contact and active site electrochemical accessibility relative to bulk covalent organic framework powders. Together, these results highlight how simple macrocycles can enable new synthetic directions as well as new applications by combining the properties of crystalline porous frameworks, the processability of nanomaterials, and the precision of molecular synthesis.
Collapse
Affiliation(s)
- Phuong H Le
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Andong Liu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Leo B Zasada
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Jackson Geary
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Ashlyn A Kamin
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Devin S Rollins
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Hao A Nguyen
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Audrey M Hill
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Yayuan Liu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Dianne J Xiao
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| |
Collapse
|
9
|
Janczak J, Lisowski J. Paramagnetic Cage-Type Co(II) Complexes of Chiral Macrocycles: Enantio- and Size-Selective Binding of Guest Molecules. Inorg Chem 2025; 64:4236-4249. [PMID: 39988821 PMCID: PMC11898176 DOI: 10.1021/acs.inorgchem.4c03956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/23/2025] [Accepted: 02/12/2025] [Indexed: 02/25/2025]
Abstract
Two enantiomers of the cage-type complex, [Co3LR2] and [Co3LS2] of a large hexaazatriphenolic [3 + 3] macrocyclic imine L, have been synthesized and characterized on the basis of NMR, CD, and ESI MS spectra. The X-ray crystal structures of [Co3L2] crystalline forms reveal two macrocycles of cone shape stitched together by three Co(II) ions, forming a barrel-shaped molecule with a central void. Because of the limited size of the [Co3L2] cavity and the enantiopure nature of these enantiomeric complexes, both size-selective and enantioselective binding of guest molecules are observed. In the case of chiral guests, the interaction with paramagnetic Co(II) centers leads to an effective NMR enantiodifferentiation of the signals of guest molecules, even at host:guest ratios as low as 1:200. The tight binding of prochiral guest molecules such as ethanol and isopropanol within the chiral cavity results in the splitting of enantiotopic methylene and methyl signals. The dc magnetic data for [Co3L2] are in accord with the presence of high-spin Co(II) ions, and the ac susceptibility data of this complex indicate field-induced single molecule magnet (SMM) behavior. In contrast to the reaction with Co(II), the reaction of the macrocyclic ligand H3L with Ni(II) or Cu(II) salts results in the contraction of this [3 + 3] macrocycle and the formation of complexes of a smaller [2 + 2] macrocycle.
Collapse
Affiliation(s)
- Jan Janczak
- Institute
of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2 str., Wrocław 50-422, Poland
| | - Jerzy Lisowski
- Department
of Chemistry, University of Wrocław, 14 F. Joliot-Curie, Wrocław 50-383, Poland
| |
Collapse
|
10
|
Jiang Z, Chen Z, Yu X, Lu S, Xu W, Yu B, Stern CL, Li SY, Zhao Y, Liu X, Han Y, Chen S, Cai K, Shen D, Ma K, Li X, Chen AXY. Engineering Helical Chirality in Metal-Coordinated Cyclodextrin Nanochannels. J Am Chem Soc 2025; 147:7325-7335. [PMID: 39964363 DOI: 10.1021/jacs.4c14123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Helicates are a defining element of DNAs and proteins, with functions that are critical to a variety of biological processes. Cyclodextrins are promising candidates for forging multiple-stranded helicates with well-defined helicity, but a lack of available tools has precluded the construction of artificial helical nanochannels with a controllable geometry and helicity from these widely available chiral building blocks. Herein, we disclose a family of Ag6L2 helical nanochannels that can be readily assembled from α-cyclodextrin-derived ligands through coordination between pyridinyl groups and Ag+ cations. We discovered that the nanochannels exhibit either an M or a P helicity when the Ag+ cations adopt a tetrahedral coordination geometry while losing most of their helicity when the Ag+ cations are linearly coordinated. Both the geometry and helicity of the nanochannels can be precisely controlled by simply changing the number of methyl groups at the ortho positions of the pyridinyl ligands. The tetracoordinated Ag+ cations interconnect the helical nanochannels into an infinite two-dimensional coordinative network characterized by hexagonal tessellation. Theoretical calculations, which reveal lower energies of the helical conformations observed in crystals compared with those of their inverted counterparts, support the experimental results.
Collapse
Affiliation(s)
- Zhiyuan Jiang
- Department of Chemistry, The University of Hong Kong, Hong Kong, Hong Kong SAR 999077, China
| | - Zhi Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Xiujun Yu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Shuai Lu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Wenmin Xu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Bo Yu
- Research Institute for Intelligent Wearable Systems, School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 999077, China
| | - Charlotte L Stern
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Shu-Yi Li
- Department of Chemistry, The University of Hong Kong, Hong Kong, Hong Kong SAR 999077, China
| | - Yue Zhao
- Department of Chemistry, The University of Hong Kong, Hong Kong, Hong Kong SAR 999077, China
| | - Xinzhi Liu
- Department of Chemistry, The University of Hong Kong, Hong Kong, Hong Kong SAR 999077, China
| | - Yeqiang Han
- Department of Chemistry, The University of Hong Kong, Hong Kong, Hong Kong SAR 999077, China
| | - Shuqi Chen
- Department of Chemistry, The University of Hong Kong, Hong Kong, Hong Kong SAR 999077, China
| | - Kang Cai
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Dengke Shen
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Kaikai Ma
- Research Institute for Intelligent Wearable Systems, School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 999077, China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Aspen X-Y Chen
- Department of Chemistry, The University of Hong Kong, Hong Kong, Hong Kong SAR 999077, China
| |
Collapse
|
11
|
Li J, Kou M, Zhou S, Dong F, Huang X, Tang X, Tang Y, Liu W. Regulation of lanthanide supramolecular nanoreactors via a bimetallic cluster cutting strategy to boost aza-Darzens reactions. Nat Commun 2025; 16:2169. [PMID: 40038263 DOI: 10.1038/s41467-024-54950-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 11/25/2024] [Indexed: 03/06/2025] Open
Abstract
Supramolecular nanoreactor as artificial mimetic enzyme is attracting a growing interest due to fine-tuned cavity and host-guest molecular recognition. Here, we design three 3d-4f metallo-supramolecular nanocages with different cavity sizes and active sites (Zn2Er4L14, Zn4Er6L26, and Zn2Er8L38) based on a "bimetallic cluster cutting" strategy. Three nanocages exhibit a differential catalysis for the three-component aza-Darzens reaction without another additive, and only Zn2Er8L38 with the largest cavity and the most lanthanides centers has excellent catalytic conversion for monosubstituted and disubstituted N-aryl aziridine products. The host-guest relationship investigations confirm that Zn2Er8L38 significantly outperforms Zn2Er4L14 with the smaller cavity and Zn4Er6L26 with the fewer Lewis acidic sites in multi-component reaction is mainly attributed to the synergy of inherent confinement effect and multiple Lewis acidic sites in nanocage. The "bimetallic cluster cutting" strategy for the construction of 3d-4f nanocages with large windows may represent a potential approach to develop supramolecular nanoreactor with high catalytic efficiency.
Collapse
Affiliation(s)
- Jingzhe Li
- MOE Frontiers Science Center for Rare Isotopes, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Engineering Research Center of Rare Earth Functional Materials, Ministry of Education, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Manchang Kou
- MOE Frontiers Science Center for Rare Isotopes, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Engineering Research Center of Rare Earth Functional Materials, Ministry of Education, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Shengbin Zhou
- MOE Frontiers Science Center for Rare Isotopes, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Engineering Research Center of Rare Earth Functional Materials, Ministry of Education, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Fan Dong
- MOE Frontiers Science Center for Rare Isotopes, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Engineering Research Center of Rare Earth Functional Materials, Ministry of Education, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Xiaoyu Huang
- MOE Frontiers Science Center for Rare Isotopes, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Engineering Research Center of Rare Earth Functional Materials, Ministry of Education, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Xiaoliang Tang
- MOE Frontiers Science Center for Rare Isotopes, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Engineering Research Center of Rare Earth Functional Materials, Ministry of Education, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China.
- Academy of Plateau Science and Sustainability, People's Government of Qinghai Province & Beijing Normal University, College of Chemistry and Chemical Engineering, Qinghai Normal University, Xining, China.
| | - Yu Tang
- MOE Frontiers Science Center for Rare Isotopes, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Engineering Research Center of Rare Earth Functional Materials, Ministry of Education, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China.
| | - Weisheng Liu
- MOE Frontiers Science Center for Rare Isotopes, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Engineering Research Center of Rare Earth Functional Materials, Ministry of Education, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China.
- Academy of Plateau Science and Sustainability, People's Government of Qinghai Province & Beijing Normal University, College of Chemistry and Chemical Engineering, Qinghai Normal University, Xining, China.
| |
Collapse
|
12
|
Qiu F, Zhang X, Wang W, Su K, Yuan D. Phenol[4]arenes: Excellent Macrocyclic Precursors for Constructing Chiral Porous Organic Cages. J Am Chem Soc 2025. [PMID: 40025876 DOI: 10.1021/jacs.4c16508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
The development of new chiral building blocks for constructing complex chiral architectures, such as macrocycles and cages, is both crucial and challenging. Although concave-shaped calixarenes have been established as versatile building blocks for the synthesis of cage compounds, there are no reports on cages constructed from chiral calix[4]arene derivatives. Herein, we present a straightforward and effective method for gram-scale synthesis of a new member of chiral calix[4]arene macrocycle enantiomers, namely, phenol[4]arene (PC[4]A). As a proof of concept, we functionalized these enantiomers into tetraformylphenol[4]arene (PC[4]ACHO) derivatives via the Duff reaction to construct chiral porous organic cages (CPOCs) using polyamine synthons. Specifically, we employ two fluorescent amine synthons, bis(4-aminophenyl)phenylamine and tris(4-aminophenyl)amine, to assemble with PC[4]ACHO enantiomers, resulting in [2 + 4] lantern-shaped and [6 + 8] truncated octahedral CPOCs, respectively. These structures have been unambiguously characterized by single-crystal X-ray diffraction and circular dichroism (CD) spectroscopy. Notably, the [6 + 8] truncated CPOCs exhibit internal diameters of approximately 3.1 nm, a cavity volume of around 5300 Å3, and high specific surface areas of up to 1300 m2 g-1 after desolvation, making them among the largest CPOCs reported. Additionally, investigations into their chiral sensing performance demonstrate that these PC[4]A-based CPOCs enable the enantioselective recognition of amino acids and their derivatives. This work strongly suggests that PC[4]A can serve as an excellent building block for the rational design of chiral materials with practical applications.
Collapse
Affiliation(s)
- Fenglei Qiu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Xinting Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou 350002, China
| | - Wenjing Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Kongzhao Su
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Daqiang Yuan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Majumder D, Fajal S, Shirolkar MM, Torris A, Banyla Y, Biswas K, Rasaily S, Ghosh SK. Nano-Springe Enriched Hierarchical Porous MOP/COF Hybrid Aerogel: Efficient Recovery of Gold from Electronic Waste. Angew Chem Int Ed Engl 2025; 64:e202419830. [PMID: 39578998 DOI: 10.1002/anie.202419830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 11/24/2024]
Abstract
Extraction of gold from secondary resources such as electronic waste (e-waste) has become crucial in recent times to compensate for the gradual scarcity of the noble metal in natural mines. However, designing and synthesizing a suitable material for highly efficient gold recovery is still a great challenge. Herein, we have strategically designed rapid fabrication of an ionic crystalline hybrid aerogel by covalent threading of an amino-functionalized metal-organic polyhedra with an imine-linked chemically stable covalent organic framework at ambient condition. The hierarchically porous ultra-light aerogel featuring imine-rich backbone, high surface area, and cationic sites have shown fast removal, high uptake capacity (2349 mg/g), and excellent selectivity towards gold sequestration. Besides, the aerogel can extract ultra-trace gold-ions from different terrestrial water bodies, aiming towards safe drinking water. This study demonstrates the great potential of the composite materials based on a novel approach to designing a hybrid porous material for efficient gold recovery from complex water matrices.
Collapse
Affiliation(s)
- Dipanjan Majumder
- Department of Chemistry, and Centre for Water Research, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, 411008, Pune, India
| | - Sahel Fajal
- Department of Chemistry, and Centre for Water Research, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, 411008, Pune, India
| | - Mandar M Shirolkar
- Advanced Bio-Agro Tech Pvt. Ltd, Norel Nutrient Bio-Agro Tech Pvt. Ltd, Baner, 411045, Pune, India
| | - Arun Torris
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, 411008, Pune, India
| | - Yashasvi Banyla
- Department of Chemistry, and Centre for Water Research, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, 411008, Pune, India
| | - Kishalay Biswas
- Department of Chemistry, and Centre for Water Research, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, 411008, Pune, India
| | - Sagarmani Rasaily
- Department of Chemistry, and Centre for Water Research, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, 411008, Pune, India
| | - Sujit K Ghosh
- Department of Chemistry, and Centre for Water Research, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, 411008, Pune, India
| |
Collapse
|
14
|
Zhang L, Zheng L, Song Y, Huang J, Ning H, Wang L, Ma J, Jie K. Molecular-Squeeze Triggers Guest Desorption from Sponge-Like Macrocycle Crystals. Angew Chem Int Ed Engl 2025; 64:e202420048. [PMID: 39625827 DOI: 10.1002/anie.202420048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Indexed: 12/14/2024]
Abstract
Desorption in conventional porous sorbents often employ external forces including inert gas blowing, heating, vacuum treatment to trigger guest release. We here report an unprecedented molecular-squeeze triggered guest release behavior from sponge-like macrocycle crystals. The crystals function as typical sponge to include guest molecules within their microscopic voids that are adaptively formed, thus acting as adsorbents for toluene/pyridine separations. Intriguingly, vaporized ethyl acetate (EA) molecules trigger the guest release from the crystals without entering the pores or voids of the crystals to replace the guests. Instead, they work as external forces applied directly onto the crystals themselves, ''squeezing" the materials to close the voids through supramolecular interactions between EA and macrocycles on the crystal surface and release the guest molecules. Various experimental techniques as well as molecular dynamics simulations reveal the mechanism of the molecular-squeeze induced guest release procedure. The EA-regenerated crystals can be recycled multiple times without the loss of separation performance. Compared with conventional guest release procedure, this method is manipulated in a mild condition, showing the potential in saving cost and energy.
Collapse
Affiliation(s)
- Linnan Zhang
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Lifeng Zheng
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yingying Song
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Jingwei Huang
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Hailong Ning
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Leyong Wang
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Jing Ma
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Kecheng Jie
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
- Jiangsu Key Laboratory of Advanced Organic Materials, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
15
|
Yadav AK, Gładysiak A, Wolpert EH, Ganose AM, Samel-Garloff B, Koley D, Jelfs KE, Stylianou KC. Solvatomorphic diversity dictates the stability and solubility of metal-organic polyhedra. Chem Sci 2025; 16:2589-2599. [PMID: 39759940 PMCID: PMC11697376 DOI: 10.1039/d4sc05037a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 12/10/2024] [Indexed: 01/07/2025] Open
Abstract
The reaction between molybdenum(ii) acetate and 5-aminoisophthalic acid (H2Iso-NH2) afforded [Mo12O12(μ2-O)12(Iso-NH2)12]12-, a novel molybdenum(v) metal-organic polyhedron (MOP) with a triangular antiprismatic shape stabilized by intramolecular N-H⋯O hydrogen bonds. The synthesis conditions, particularly the choice of solvent and reaction time, led to the precipitation of the Mo(v)-MOP in five distinct crystalline forms. These forms vary in their packing arrangements, co-crystallized solvent molecules, and counter-cations, with three phases containing dimethylammonium (dma+) and the other two containing diethylammonium (dea+). Each solvatomorph exhibits unique physical properties, including differences in porosity, and stability. These properties were discerned through empirical observations and supported by density functional theory calculations. Remarkably, the solubility of these MOP solvatomorphs in water was determined for the first time, with values of 4.30(2) g L-1 for a (dma)12[Mo(v)-MOP] phase, and 10.25(7) g L-1 and 14.41(10) g L-1 for two (dea)12[Mo(v)-MOP] phases. Additionally, aqueous solutions of the Mo(v)-MOP were found to conduct electricity as weak electrolytes, showcasing their potential for applications in fields requiring partially ionized species.
Collapse
Affiliation(s)
- Ankit K Yadav
- Materials Discovery Laboratory (MaD Lab), Department of Chemistry, Oregon State University Corvallis OR 97331 USA
| | - Andrzej Gładysiak
- Materials Discovery Laboratory (MaD Lab), Department of Chemistry, Oregon State University Corvallis OR 97331 USA
| | - Emma H Wolpert
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London White City Campus, 82 Wood Lane W12 0BZ UK
| | - Alex M Ganose
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London White City Campus, 82 Wood Lane W12 0BZ UK
| | | | - Dipankar Koley
- Department of Chemistry, Oregon State University Corvallis OR 97331 USA
| | - Kim E Jelfs
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London White City Campus, 82 Wood Lane W12 0BZ UK
| | - Kyriakos C Stylianou
- Materials Discovery Laboratory (MaD Lab), Department of Chemistry, Oregon State University Corvallis OR 97331 USA
| |
Collapse
|
16
|
Yang Z, Peh SB, Xi S, Lu Y, Liu Q, Zhao D. Packing Engineering of Zirconium Metal-Organic Cages in Mixed Matrix Membranes for CO 2/CH 4 Separation. Angew Chem Int Ed Engl 2025; 64:e202418098. [PMID: 39776029 DOI: 10.1002/anie.202418098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/02/2025] [Accepted: 01/07/2025] [Indexed: 01/11/2025]
Abstract
Metal-organic cages (MOCs) have been considered as emerging zero-dimensional (0D) porous fillers to generate molecularly homogeneous MOC-based membrane materials. However, the discontinuous pore connectivity and low filler concentrations limit the improvement of membrane separation performance. Herein, we propose the dimension augmentation of MOCs in membranes using three-dimensional (3D) supramolecular MOC networks as filler materials in mixed matrix membranes (MMMs). We further explore the packing engineering of MOC networks to produce distinct polymorphs (α and β phases) for tailoring membrane performance. Synchrotron X-ray absorption and positron annihilation lifetime spectroscopy were employed to differentiate distinct MOC polymorphous networks within membranes. Gas permeation tests revealed that the corresponding MMMs showed superior CO2/CH4 separation performance, exceeding the Robeson upper bound. Our proposed approach is expected to enrich the repertoire of reticular chemistry pertaining to molecular-based networks.
Collapse
Affiliation(s)
- Ziqi Yang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Shing Bo Peh
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Shibo Xi
- Institute of Sustainability for Chemicals, Energy and Environment, Agency for Science, Technology and Research, Jurong Island, 627833, Singapore
| | - Yanqiu Lu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Qixing Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Dan Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
17
|
Khariushin IV, Ovsyannikov AS, Baudron SA, Ward JS, Kiesilä A, Rissanen K, Kalenius E, Chessé M, Nowicka B, Solovieva SE, Antipin IS, Bulach V, Ferlay S. Face-controlled chirality induction in octahedral thiacalixarene-based porous coordination cages. NANOSCALE 2025; 17:1980-1989. [PMID: 39651803 DOI: 10.1039/d4nr03622k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Nanosized chiral octahedral M32 coordination cages were prepared via self-assembly of sulfonylcalix[4]arene tetranuclear M(II) clusters (M = Co or Ni) with enantiomerically enriched linkers based on tris(dipyrrinato)cobalt(III) complexes, appended with peripheral carboxylic groups. Two pairs of enantiomers of cages were obtained and unambiguously characterized from a structural point of view, using single crystal X-ray diffraction. Chiral-HPLC was used to evidence the enantiomers. In the solid state, the compounds present intrinsic and extrinsic porosity: the intrinsic porosity is linked with the size of the cages, which present an inner diameter of ca. 19 Å. The obtained solid-state supramolecular architectures demonstrated good performances as adsorbents for water and 2-butanol guest molecules.
Collapse
Affiliation(s)
- Ivan V Khariushin
- Université de Strasbourg, CNRS, CMC UMR 7140, F-67000 Strasbourg, France.
| | - Alexander S Ovsyannikov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzova 8, Kazan 420088, Russian Federation
| | - Stéphane A Baudron
- Université de Strasbourg, CNRS, CMC UMR 7140, F-67000 Strasbourg, France.
| | - Jas S Ward
- University of Jyvaskyla, Department of Chemistry, 40014 Jyväskylä, Finland
| | - Anniina Kiesilä
- University of Jyvaskyla, Department of Chemistry, 40014 Jyväskylä, Finland
| | - Kari Rissanen
- University of Jyvaskyla, Department of Chemistry, 40014 Jyväskylä, Finland
| | - Elina Kalenius
- University of Jyvaskyla, Department of Chemistry, 40014 Jyväskylä, Finland
| | - Matthieu Chessé
- LIMA UMR 7042, Université de Strasbourg et CNRS et UHA, European School of Chemistry, Polymers and Materials (ECPM), 25 Rue Becquerel, F-67087 Strasbourg, France
| | - Beata Nowicka
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | | | - Igor S Antipin
- Kazan Federal University, Kremlevskaya 18, Kazan 420008, Russian Federation
| | - Véronique Bulach
- Université de Strasbourg, CNRS, CMC UMR 7140, F-67000 Strasbourg, France.
| | - Sylvie Ferlay
- Université de Strasbourg, CNRS, CMC UMR 7140, F-67000 Strasbourg, France.
| |
Collapse
|
18
|
Hoq J, Dworzak MR, Dissanayake D, Skalla RX, Yamamoto N, Yap GPA, Bloch ED. Post-synthetic modification of amine-functionalized permanently porous coordination cages. Chem Commun (Camb) 2025; 61:1641-1644. [PMID: 39757833 DOI: 10.1039/d4cc04370g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
This manuscript explores the post-synthetic modification (PSM) of amine-functionalized porous coordination cages, specifically focusing on the formation of imine bonds through reactions with aldehydes. Targeting various cage topologies, including zirconium-, magnesium-, and molybdenum-based structures, we demonstrate the tunability of cage solubility and porosity through selective functionalization where the proximity of amine groups on the parent cage impacts the extent of modification. The work highlights the reversible nature of imine formation, offering potential applications in solubility switching and mixed-metal solid synthesis.
Collapse
Affiliation(s)
- Jahidul Hoq
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA.
| | - Michael R Dworzak
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - Duleeka Dissanayake
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA.
| | - Rebecca X Skalla
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA.
| | - Nobuyuki Yamamoto
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA.
| | - Glenn P A Yap
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - Eric D Bloch
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA.
| |
Collapse
|
19
|
Cué-Sampedro R, Sánchez-Fernández JA. Functional Post-Synthetic Chemistry of Metal-Organic Cages According to Molecular Architecture and Specific Geometry of Origin. Molecules 2025; 30:462. [PMID: 39942567 PMCID: PMC11820633 DOI: 10.3390/molecules30030462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 02/16/2025] Open
Abstract
Metal-organic cages (MOCs) are discrete supramolecular entities consisting of metal nodes and organic connectors or linkers; MOCs are noted for their high porosity and processability. Chemically, they can be post-synthetically modified (PSM) and new functional groups can be introduced, presenting attractive qualities, and it is expected that their new properties will differ from those of the original compound. This is why they are highly regarded in the fields of biology and chemistry. The present review deals with the current PSM strategies used for MOCs, including covalent, coordination, and noncovalent methods and their structural benefits. The main emphasis of this review is to show to what extent and under what circumstances a MOC can be designed to obtain a tailored geometric architecture. Although sometimes unclear when examining supramolecular systems, particularizing the design of and systematic approaches to the development and characterization of families of MOCs provides new insights into structure-function relationships, which will guide future developments.
Collapse
Affiliation(s)
- Rodrigo Cué-Sampedro
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico
| | - José Antonio Sánchez-Fernández
- Procesos de Polimerización, Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna No. 140, Saltillo 25294, Mexico
| |
Collapse
|
20
|
Wang J, Wei H, Guan J, Müllen K, Yin M. Perylene- and Perylene Diimide-based Framework Materials Constructed through Metal Coordination. Chemistry 2025; 31:e202403234. [PMID: 39513320 DOI: 10.1002/chem.202403234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/15/2024]
Abstract
Metal-organic frameworks (MOFs) are a class of materials composed of coordinative interactions between metal ions and organic linkers, encompassing two-dimensional (2D), and three-dimensional (3D) architectures. Metal-organic cages (MOCs), a special case of these species, are discrete molecular "capsules" with zero-dimensional (0D) structures. Over the last two decades, MOFs and MOCs composed of organic perylene (P) and perylene diimide (PDI) linkers have gained much attention due to their versatile properties, which can be further enhanced after incorporation into frameworks. This minireview highlights recent progress in the construction and application of P/PDI-based coordination framework materials. The text offers an overview of the synthesis of P/PDI organic linkers, proceeds to their integration into coordination frameworks of different dimensionalities - 2D and 3D MOFs, and 0D MOCs, and then explores potential applications. These include sensing, photocatalysis, electrochemical devices and photothermal conversion and focus on the apparent structure-property relationships. Finally, the challenges and future prospects of P/PDI-derived coordination frameworks will be addressed.
Collapse
Affiliation(s)
- Junxiao Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029 (P. R., China
| | - Haoxuan Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029 (P. R., China
| | - Jun Guan
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029 (P. R., China
| | - Klaus Müllen
- Max Planck Institute for Polymer Research, Mainz, 55128, Germany
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029 (P. R., China
| |
Collapse
|
21
|
Liu J, Zhang R, Xie X, Wang J, Jin F, Wang Z, Wang T, Cheng P, Lu J, Zhang Z. Hypercrosslinked Metal-Organic Polyhedra Electrolyte with High Transference Number and Fast Conduction of Li Ions. Angew Chem Int Ed Engl 2025; 64:e202414211. [PMID: 39578700 DOI: 10.1002/anie.202414211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 11/17/2024] [Accepted: 11/18/2024] [Indexed: 11/24/2024]
Abstract
Solid-state electrolytes (SSEs) with high Li-ion transference numbers and fast ionic conductivity are urgently needed for technological innovations in lithium-metal batteries. To promote the dissociation of ion pairs and overcome the mechanical brittleness and interface defects caused by traditional fillers in polymeric electrolytes, we designed and fabricated a cationic hypercrosslinking metal-organic polyhedra (HCMOPs) polymer as SSE. Benefiting a three-component synergistic effect: cationic MOPs, branched polyethyleneimine macromonomer and polyelectrolyte units, the Li-HCMOP electrolyte possesses a high Li-ion conductivity, a high Li-ion transference number and a low activation energy. The LiFePO4/Li battery exhibits high capacity with superior rate performance and cycling stability. Moreover, soluble MOPs serve as high crosslinking nodes to provide excellent mechanical strength for electrolytes and good compatibility with polymers. This work highlights an effective idea of high-performance MOP-based solid-state electrolytes applied in LMBs.
Collapse
Affiliation(s)
- Jinjin Liu
- Frontiers Science Centre for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
- School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Runhao Zhang
- Frontiers Science Centre for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xintai Xie
- Chemical Defense Institute, Beijing, 100191, China
| | - Juan Wang
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
| | - Fazheng Jin
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Material Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Zhifang Wang
- Frontiers Science Centre for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Tonghai Wang
- Frontiers Science Centre for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Peng Cheng
- Frontiers Science Centre for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
- Chemical Defense Institute, Beijing, 100191, China
| | - Jianhao Lu
- Chemical Defense Institute, Beijing, 100191, China
| | - Zhenjie Zhang
- Frontiers Science Centre for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin, 300071, China
| |
Collapse
|
22
|
Morey MN, Montone CM, Dworzak MR, Yap GPA, Bloch ED. Tunable synthesis of heteroleptic zirconium-based porous coordination cages. Chem Sci 2025; 16:816-823. [PMID: 39640028 PMCID: PMC11616777 DOI: 10.1039/d4sc06023g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024] Open
Abstract
Zirconium-based porous coordination cages have been widely studied and have shown to be potentially useful for many applications as a result of their tunability and stability, likely as a result of their status as a molecular equivalent to the small 8 Å tetrahedral pores of UiO-66 (Zr6(μ3-O)4(μ2-OH)4(C8O4H4)6). Functional groups attached to these molecular materials endow them with a range of tunable properties. While so-called multivariate MOFs containing multiple types of functional groups on different bridging ligands within a structure are common, incorporating multiple functional moieties in permanently microporous molecular materials has proved challenging. By applying a mixed-ligand, or heteroleptic, synthesis strategy to cage formation, we have designed a straight-forward, one-pot synthesis of 10 Å zirconium-based molecular cages in a basket-shaped, or Zr12L6, geometry containing 3 : 3 ratios of combinations of two types of functional moieties from 11 different ligand options. Additionally, using more sterically hindered ligands, such as 5-benzyloxybenzene dicarboxylate, we show that ligand size governs the resulting cage geometry. This method allows for multiple functional groups to be incorporated in molecular cages and the ratio of moieties incorporated can be easily controlled. With this strategy in hand, we show that ligands for which zirconium cage syntheses have been elusive, such as 2,5-dihydroxybenzene dicarboxylate, have now been successfully incorporated into porous structures.
Collapse
Affiliation(s)
- Merissa N Morey
- Department of Chemistry, Indiana University Bloomington IN 47405 USA
| | | | - Michael R Dworzak
- Department of Chemistry & Biochemistry, University of Delaware Newark DE 19716 USA
| | - Glenn P A Yap
- Department of Chemistry & Biochemistry, University of Delaware Newark DE 19716 USA
| | - Eric D Bloch
- Department of Chemistry, Indiana University Bloomington IN 47405 USA
| |
Collapse
|
23
|
Tarzia A, Shan W, Posligua V, Cox CJT, Male L, Egleston BD, Greenaway RL, Jelfs KE, Lewis JEM. A Combined Experimental and Computational Exploration of Heteroleptic cis-Pd 2L 2L' 2 Coordination Cages through Geometric Complementarity. Chemistry 2025; 31:e202403336. [PMID: 39462213 DOI: 10.1002/chem.202403336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 10/29/2024]
Abstract
Heteroleptic (mixed-ligand) coordination cages are of interest as host systems with more structurally and functionally complex cavities than homoleptic architectures. The design of heteroleptic cages, however, is far from trivial. In this work, we experimentally probed the self-assembly of Pd(II) ions with binary ligand combinations in a combinatorial fashion to search for new cis-Pd2L2L'2 heteroleptic cages. A hierarchy of computational analyses was then applied to these systems with the aim of elucidating key factors for rationalising self-assembly outcomes. Simple and inexpensive geometric analyses were shown to be effective in identifying complementary ligand pairs. Preliminary results demonstrated the viability of relatively rapid semi-empirical calculations for predicting the topology of thermodynamically favoured assemblies with rigid ligands, whilst more flexible systems proved challenging. Stemming from this, key challenges were identified for future work developing effective computational forecasting tools for self-assembled metallo-supramolecular systems.
Collapse
Affiliation(s)
- Andrew Tarzia
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy
| | - Wentao Shan
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London, W12 0BZ, UK
| | - Victor Posligua
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London, W12 0BZ, UK
| | - Cameron J T Cox
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Louise Male
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Benjamin D Egleston
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London, W12 0BZ, UK
| | - Rebecca L Greenaway
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London, W12 0BZ, UK
| | - Kim E Jelfs
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London, W12 0BZ, UK
| | - James E M Lewis
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
24
|
Guillerm V, Jiang H, Alezi D, Alsadun N, Eddaoudi M. From Elementary to Advanced Design of Functional Metal-Organic Frameworks: A User Guide to Deciphering the Reticular Chemistry Toolbox. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2414153. [PMID: 39703110 DOI: 10.1002/adma.202414153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/27/2024] [Indexed: 12/21/2024]
Abstract
Here, the fundamental requirements are described for understanding and using topology tools in the design of porous materials, emphasizing the relationships between nets, metal-organic framework (MOF) structures, nodes, and building blocks. Common design approaches are discussed, highlighting prerequisites for the rational design of MOFs, such as those with simple pcu topology through the molecular building block approach, or axial-to-axial pillaring. The importance of highly connected nets and building units is emphasized for achieving structural predictability. The geometrical requirements are detailed for designing highly connected MOFs using more elaborate strategies: MOFs with rht topology through the supermolecular building block approach, tbo topology through the supermolecular building layer approach, and sph topology through a merged net approach The potential for innovation through deviations from default nets, such as introducing a geometry mismatch is addressed, which can lead to novel materials with unique zeolitic structures. Examples include MOFs with sodalite (sod) topology, developed through cantellation or mixed-ligand approaches inspired by ancestral architectural methods, utilizing centring structure-directing agents. Key insights for researchers are provided to facilitate the application and expansion of design strategies to new chemical systems. The only limit is imagination, along with some chemical, physical, and thermodynamical principles, of course.
Collapse
Affiliation(s)
- Vincent Guillerm
- King Abdullah University of Science and Technology (KAUST), Division of Physical Sciences and Engineering, Functional Materials Design, Discovery and Development Research Group (FMD3), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Hao Jiang
- King Abdullah University of Science and Technology (KAUST), Division of Physical Sciences and Engineering, Functional Materials Design, Discovery and Development Research Group (FMD3), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Dalal Alezi
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Kingdom of Saudi Arabia
| | - Norah Alsadun
- Department of Chemistry, College of Science, King Faisal University (KFU), Al-Ahsa, 31982-400, Kingdom of Saudi Arabia
| | - Mohamed Eddaoudi
- King Abdullah University of Science and Technology (KAUST), Division of Physical Sciences and Engineering, Functional Materials Design, Discovery and Development Research Group (FMD3), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
25
|
Tashiro S, Yamada Y, Kringe LA, Okajima Y, Shionoya M. Intricate Low-Symmetry Ag 6L4 Capsules Formed by Anion-Templated Self-Assembly of the Stereoisomers of an Unsymmetric Ligand. J Am Chem Soc 2024; 146:34501-34509. [PMID: 39616534 DOI: 10.1021/jacs.4c11583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Metal-organic cages and capsules exhibit space-specific functions based on their discrete hollow structures. To acquire enzyme-like asymmetric or intricate structures, they have been modified by desymmetrization with two or more different ligands. There is a need to establish new strategies that can desymmetrize structures in a simple way using only one type of ligand, which is different from the mixed-ligand approach. In this study, a strategy was developed to form interconvertible stereoisomers using the unsymmetric macrocyclic ligand benzimidazole[3]arene. Single-crystal X-ray diffraction analysis revealed that the isomers assembled with silver tetrafluoroborate afforded a conformationally heteroleptic Ag6L4 capsule with an intricate structure. The six Ag ions in the capsule were desymmetrized, resulting in significantly different coordination geometries. Remarkably, the capsule encapsulates a single tetrafluoroborate anion via multipoint C-H···F-B hydrogen bonds in both the solid and solution states, suggesting that anions of appropriate size and shape can act as a template for the capsule formation. These results demonstrate that the use of isomerizable and unsymmetric ligands is the effectiveness of constructing highly dissymmetric supramolecular structures from a single ligand.
Collapse
Affiliation(s)
- Shohei Tashiro
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yoshihiko Yamada
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Lea Antonia Kringe
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yoshiki Okajima
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mitsuhiko Shionoya
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
26
|
Wang Z, Huang D, Liu Y, Lin H, Zhang Z, Ablez A, Zhuang T, Du K, Li J, Huang X. Vacancy Effect on the Luminescent and Water Responsive Properties of Vacancy-Ordered Double Perovskite Derivatives. Angew Chem Int Ed Engl 2024; 63:e202412346. [PMID: 39136171 DOI: 10.1002/anie.202412346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Indexed: 11/01/2024]
Abstract
Vacancy-ordered perovskites and derivatives represent an important subclass of hybrid metal halides with promise in applications including light emitting devices and photovoltaics. Understanding the vacancy-property relationship is crucial for designing related task-specific materials, yet research in this field remains sporadic. For the first time, we use the Connolly surface to quantitatively calculate the volume of vacancy (V□, □=vacancy) in vacancy-ordered double perovskite derivatives (VDPDs). A relationship between void fraction and the structure, photoluminescent properties and humidity stability was established based on zero-dimensional (0-D) [N(alkyl)4]2Sb□Cl5□'-type VDPDs. Compared with the more commonly studied A2M(IV)X6□-type double perovskite (A=cation, M=metal ion, X=halide), [N(alkyl)4]2Sb□Cl5□' features double vacancy sites. Our results demonstrate an inverse relationship between the photoluminescent quantum yield and V□ in 0-D VDPDs. Additionally, structural transformation from A2SbCl5 to A3Sb2Cl9 was first reported, during which the novel 'gate-opening' gas adsorption phenomenon was observed in VDPDs for the first time, as evidenced by 'S'-shaped sorption isotherms for water vapor, indicating a cation-controlled water-vapor response behavior. A mixed-cation strategy was developed to modulate the humidity stability of VDPDs. Characterized by controllable water-responsive behavior and unique 'on-off-on' luminescent switching, A2M(III)□X5□'-type materials show great promise for multi-level information anti-counterfeiting applications.
Collapse
Affiliation(s)
- Zeping Wang
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Shenzhen, Guangdong, 518055, P. R. China
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Road, Piscataway, NJ 08854, USA
| | - Dandan Huang
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- College of Chemistry, FuZhou University, Fuzhou, Fujian, 350007, P. R. China
| | - Yi Liu
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- College of Chemistry, FuZhou University, Fuzhou, Fujian, 350007, P. R. China
| | - Haowei Lin
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- College of Chemistry, FuZhou University, Fuzhou, Fujian, 350007, P. R. China
| | - Zhizhuan Zhang
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Abdusalam Ablez
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- College of Chemistry, FuZhou University, Fuzhou, Fujian, 350007, P. R. China
| | - Tinghui Zhuang
- College of Chemistry, FuZhou University, Fuzhou, Fujian, 350007, P. R. China
| | - Kezhao Du
- College of Chemistry and Materials Science Fujian Provincial Key Laboratory of Polymer Materials & Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou, Fujian, 350007, P. R. China
| | - Jing Li
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Road, Piscataway, NJ 08854, USA
| | - Xiaoying Huang
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| |
Collapse
|
27
|
Korathotage K, Yamamoto N, Bloch ED. Selective Gas Adsorption in Permanently Microporous Coordination Cages with Exposed Metal Sites. Inorg Chem 2024; 63:23698-23704. [PMID: 39625468 DOI: 10.1021/acs.inorgchem.4c03846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Porous coordination cages (PCCs), molecular analogs of metal-organic frameworks, offer modular platforms for studying the adsorption properties of small molecules, with coordinatively unsaturated metal centers playing a pivotal role in tuning these behaviors. In this work, we present the synthesis, activation, and detailed gas adsorption studies of second-row transition metal-based M24L24 cuboctahedral cages, specifically Mo24(bdc)24, Rh24(bdc)24, and [Ru24(bdc)24]Cl12. These materials represent rare examples of Mo-, Rh-, and Ru-based hybrid porous solids. The synthesis and activation of these cages were optimized to maximize porosity, yielding BET surface areas of up to 832 m2/g. Gas adsorption studies with CO2 and CO reveal distinctive uptake behaviors linked to the metal cations, with Mo24(bdc)24 demonstrating the highest gravimetric CO2 uptake (2.12 mmol/g at 298 K) and [Ru24(bdc)24]Cl12 exhibiting the strongest CO binding (-75 kJ/mol). Additionally, we explore the selective adsorption of unsaturated hydrocarbons, such as ethylene and propylene, revealing strong binding interactions at low pressures as a result of strong metal-hydrocarbon interactions based on pi-backbonding interactions.
Collapse
Affiliation(s)
- Kaushalya Korathotage
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Nobuyuki Yamamoto
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Eric D Bloch
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
28
|
Moreno-Alcántar G, Drexler M, Casini A. Assembling a new generation of radiopharmaceuticals with supramolecular theranostics. Nat Rev Chem 2024; 8:893-914. [PMID: 39468298 DOI: 10.1038/s41570-024-00657-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2024] [Indexed: 10/30/2024]
Abstract
Supramolecular chemistry has been used to tackle some of the major challenges in modern science, including cancer therapy and diagnosis. Supramolecular platforms provide synthetic flexibility, rapid generation through self-assembly, facile labelling, unique topologies, tunable reversibility of the enabling noncovalent interactions, and opportunities for host-guest chemistry and mechanical bonding. In this Review, we summarize recent advances in the design and radiopharmaceutical application of discrete self-assembled coordination complexes and mechanically interlocked molecules - namely, metallacages and rotaxanes, respectively - as well as in situ-forming supramolecular aggregates, specifically pinpointing their potential as next-generation radiotheranostic agents. The outlook of such supramolecular constructs for potential applications in the clinic is discussed.
Collapse
Affiliation(s)
- Guillermo Moreno-Alcántar
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Garching bei München, Germany
| | - Marike Drexler
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Garching bei München, Germany
| | - Angela Casini
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Garching bei München, Germany.
- Munich Data Science Institute (MDSI), Technical University of Munich, Garching bei München, Germany.
| |
Collapse
|
29
|
Xue W, Benchimol E, Walther A, Ouyang N, Holstein JJ, Ronson TK, Openy J, Zhou Y, Wu K, Chowdhury R, Clever GH, Nitschke JR. Interplay of Stereochemistry and Charge Governs Guest Binding in Flexible Zn II4L 4 Cages. J Am Chem Soc 2024; 146:32730-32737. [PMID: 39541177 PMCID: PMC11613429 DOI: 10.1021/jacs.4c12320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/21/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Here, we report the synthesis of a family of chiral ZnII4L4 tetrahedral cages by subcomponent self-assembly. These cages contain a flexible trialdehyde subcomponent that allows them to adopt stereochemically distinct configurations. The incorporation of enantiopure 1-phenylethylamine produced Δ4 and Λ4 enantiopure cages, in contrast to the racemates that resulted from the incorporation of achiral 4-methoxyaniline. The stereochemistry of these ZnII4L4 tetrahedra was characterized by X-ray crystallography and chiroptical spectroscopy. Upon binding the enantiopure natural product podocarpic acid, the ZnII stereocenters of the enantiopure Δ4-ZnII4L4 cage retained their Δ handedness. In contrast, the metal stereocenters of the enantiomeric Λ4-ZnII4L4 cage underwent inversion to a Δ configuration upon encapsulation of the same guest. Insights gained about the stereochemical communication between host and guest enabled the design of a process for acid/base-responsive guest uptake and release, which could be followed by chiroptical spectroscopy.
Collapse
Affiliation(s)
- Weichao Xue
- Key
Laboratory of Green Chemistry & Technology of Ministry of Education,
College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
- Fakultät
für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Strasse 6, Dortmund 44227, Germany
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
| | - Elie Benchimol
- Fakultät
für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Strasse 6, Dortmund 44227, Germany
| | - Alexandre Walther
- Fakultät
für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Strasse 6, Dortmund 44227, Germany
| | - Nianfeng Ouyang
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
| | - Julian J. Holstein
- Fakultät
für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Strasse 6, Dortmund 44227, Germany
| | - Tanya K. Ronson
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
| | - Joseph Openy
- Fakultät
für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Strasse 6, Dortmund 44227, Germany
| | - Yujuan Zhou
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
| | - Kai Wu
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
| | | | - Guido H. Clever
- Fakultät
für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Strasse 6, Dortmund 44227, Germany
| | - Jonathan R. Nitschke
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
| |
Collapse
|
30
|
Tsoukatos S, Maibam A, Babarao R, Bloch WM. Topological control in paddlewheel metal-organic cages via ligand length variation. Chem Commun (Camb) 2024; 60:13183-13186. [PMID: 39354805 DOI: 10.1039/d4cc03769c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Varying the length of phenanthrene-derived ligands switches the selective assembly of MIInLn metal-organic cages (MOCs, n = 6 or 8) between tetrahedral, square, or triangular architectures. The limit of this approach is explored for both Cu2 and Rh2 paddlewheel MOCs, and supported by solution, solid-state and computational analysis.
Collapse
Affiliation(s)
- Steven Tsoukatos
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia, 5042, Australia.
| | - Ashakiran Maibam
- School of Science, Centre for Advanced Materials and Industrial Chemistry (CAMIC), RMIT University, Melbourne, 3001 Victoria, Australia
| | - Ravichandar Babarao
- School of Science, Centre for Advanced Materials and Industrial Chemistry (CAMIC), RMIT University, Melbourne, 3001 Victoria, Australia
- CSIRO, Clayton 3168, Victoria, Australia
| | - Witold M Bloch
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia, 5042, Australia.
| |
Collapse
|
31
|
Sebastian SS, Lee H, Badarukhiya S, Christoffels RK, Gebauer JM, Ruschewitz U. UoC-10: Exploring the Packings of Chiral Copper(II) Paddle-Wheel Based Metal-Organic Cages (MOCs). Chemistry 2024; 30:e202402334. [PMID: 39162328 DOI: 10.1002/chem.202402334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/21/2024]
Abstract
The fluorination of the central ring of 1,3,5-benzene-tris-(meta-benzoate) (referred to as BTMB) leads to a twisted tritopic linker which reacts with copper(II) ions to assemble into octahedral (pseudospherical) metal-organic cages (MOCs) with paddle-wheel units at their vertices. In this work, the different sphere packings of these MOCs are explored in detail together with their material properties, which closely resemble those of copper-based metal-organic frameworks (MOFs). Theoretical investigations of the linkers are carried out to analyze the energetic barrier imposed by the fluorine substituents to form the observed atropisomers.
Collapse
Affiliation(s)
- Sean S Sebastian
- Department of Chemistry, Institute of Inorganic and Materials Chemistry, University of Cologne, Greinstr. 6, Cologne, 50939, Germany
| | - Hyunsong Lee
- Department of Chemistry, Institute of Inorganic and Materials Chemistry, University of Cologne, Greinstr. 6, Cologne, 50939, Germany
| | - Satish Badarukhiya
- Department of Chemistry, Institute of Inorganic and Materials Chemistry, University of Cologne, Greinstr. 6, Cologne, 50939, Germany
| | - Ronja K Christoffels
- Department of Chemistry, Institute of Inorganic and Materials Chemistry, University of Cologne, Greinstr. 6, Cologne, 50939, Germany
| | - Jan M Gebauer
- Department of Chemistry, Institute for Biochemistry, University of Cologne, Zülpicher Str. 47, Cologne, 50939, Germany
| | - Uwe Ruschewitz
- Department of Chemistry, Institute of Inorganic and Materials Chemistry, University of Cologne, Greinstr. 6, Cologne, 50939, Germany
| |
Collapse
|
32
|
Dong J, Gai D, Cha G, Pan Q, Liu J, Zou X, Zhu G. Synthesis of highly soluble zirconium organic cages by iodine substitution toward a CO 2/N 2 separation membrane. Chem Sci 2024:d4sc05080k. [PMID: 39479167 PMCID: PMC11515938 DOI: 10.1039/d4sc05080k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/17/2024] [Indexed: 11/02/2024] Open
Abstract
Metal organic cages (MOCs) show promise as fillers in mixed-matrix membranes (MMMs) for gas separation; highly soluble MOCs are desirable for fabrication of high-compatibility membranes. Herein, we report an iodine substitution strategy to substantially increase the MOC solubility. The synthesized MOC of ZrT-NH2-I possesses over 10-fold higher solubility than the parent ZrT-NH2 in organic solvents whilst retaining the original molecular structure and permanent porosity. Such enhanced solubility allows for the effective integration of ZrT-NH2-I with an amidoxime polymer of intrinsic microporosity (PIM-PAO), resulting in a compatible MMM with a uniform distribution of MOC. The ZrT-NH2-I@PIM-PAO MMM demonstrates a CO2 permeability of 1377 barrer and a CO2/N2 gas selectivity of 45 which is 45 times that of the membrane made from ZrT-NH2. The permeability-selectivity performance not only surpasses the 2008 upper bound, but also exceeds those of currently available MMMs.
Collapse
Affiliation(s)
- Junchao Dong
- Faculty of Chemistry, Northeast Normal University Changchun 130024 China
| | - Dongxu Gai
- Faculty of Chemistry, Northeast Normal University Changchun 130024 China
| | - Guocai Cha
- College of Chemistry, Jilin University Changchun 130012 China
| | - Qinhe Pan
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, School of Chemistry and Chemical Engineering, Hainan University Haikou 570228 China
| | - Jia Liu
- College of Chemistry, Jilin University Changchun 130012 China
| | - Xiaoqin Zou
- Faculty of Chemistry, Northeast Normal University Changchun 130024 China
| | - Guangshan Zhu
- Faculty of Chemistry, Northeast Normal University Changchun 130024 China
| |
Collapse
|
33
|
Silva HA, Whitehead BS, Hastings CD, Tiwari CK, Brennessel WW, Barnett BR. Installation of Copper(I) and Silver(I) Sites into TREN-Based Porous Organic Cages via Postsynthetic Metalation. Organometallics 2024; 43:2599-2607. [PMID: 39483129 PMCID: PMC11523223 DOI: 10.1021/acs.organomet.4c00247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/08/2024] [Accepted: 09/02/2024] [Indexed: 11/03/2024]
Abstract
Porous organic cages (POCs) and metal-organic polyhedra (MOPs) function as zero-dimensional porous materials, able to mimic many functions of insoluble framework materials while offering processability advantages. A popular approach to access tailored metal-based motifs in extended network materials is postsynthetic metalation, which allows metal installation to be decoupled from framework assembly. Surprisingly, this approach has only sparingly been reported for molecular porous materials. In this report, we demonstrate postsynthetic metalation of tetrahedral [4 + 4] POCs assembled from tris(2-aminoethyl)amine (TREN) and 1,3,5-tris(4-formylphenyl)benzene. The trigonally symmetric TREN motif is a common chelator in coordination chemistry and, in the POCs explored herein, readily binds copper(I) and silver(I) to form cationic cages bearing discrete mononuclear coordination fragments. Metalation retains cage porosity, allowing us to compare the sorption properties of the parent organic and metalated cages. Interestingly, introduction of copper(I) facilitates activated oxygen chemisorption, demonstrating how targeted metalation can be exploited to tune the sorption characteristics of porous molecular materials.
Collapse
Affiliation(s)
- Hope A. Silva
- Department
of Chemistry, University of Rochester, Rochester, New York 14627-0001, United
States
| | - Bevan S. Whitehead
- Department
of Chemistry, University of Rochester, Rochester, New York 14627-0001, United
States
| | - Christopher D. Hastings
- Department
of Chemistry, University of Rochester, Rochester, New York 14627-0001, United
States
| | - Chandan Kumar Tiwari
- Department
of Chemistry, University of Rochester, Rochester, New York 14627-0001, United
States
| | - William W. Brennessel
- Department
of Chemistry, University of Rochester, Rochester, New York 14627-0001, United
States
| | - Brandon R. Barnett
- Department
of Chemistry, University of Rochester, Rochester, New York 14627-0001, United
States
| |
Collapse
|
34
|
Xue B, Lai Y, Cai L, Liu Y, Yin JF, Yin P. Emergent Research Trends on the Structural Relaxation Dynamics of Molecular Clusters: From Structure-Property Relationship to New Function Prediction. Acc Chem Res 2024; 57:3057-3067. [PMID: 39360563 DOI: 10.1021/acs.accounts.4c00479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
ConspectusMolecular clusters (MCs) are monodispersed, precisely defined ensembles of atom collections featured with shape-persistent architectures that can deliver certain functions independently. Their molecular compositions and surface functionalities can be tailored feasibly in a predefined manner, and they can be applied as basic structural units to be engineered into materials with desirable hierarchical structures and enriched functions. The chemical systems also offer great opportunities for the design and fabrication of soft structural materials without the chain topologies of polymers. The bulks of MC assemblies demonstrate viscoelasticity that is used to be considered as the unique feature of polymers, while the MC systems are distinct from polymers since their elasticities are resilient even at temperatures 100 K above their glass transition temperatures. The understanding of their anomalous viscoelasticity and the extended studies of general structure-property relationships are desired for the development of new chemical systems for emergent functions and the possibilities to resolve the intrinsic trade-offs of traditional materials.Meanwhile, general macroscopic functions or properties of materials are related to the transportation of mass, momentum, and/or energy, and they are basically realized or directed by the motions of structural units at different length scales. Structural relaxation dynamics research is critical in quantifying motions ranging from fast bond deformation, bond break/formation, and diffusion of ions and particles to the cooperative motions of structure units. Due to the advancement of measurement technology for relaxation dynamics (e.g., quasi-elastic scattering and broadband dielectric spectroscopy), the structural relaxation dynamics of MC materials have been probed for the first time, and their multiple relaxation modes across several temporal scales were systematically studied to bridge the correlation between molecular structures and macroscopic functions. The fingerprint information from dynamics studies, e.g., the temperature dependence of relaxation time and certain property, e.g., ion conductivity, was proposed to quantify the structure-property relationship, and the microscopic mechanism on the mechanical properties, ion conduction, and gas absorption and separation of MC materials can be fully understood.In this Account, to elucidate the uniqueness of MC materials, especially in comparison with polymers, four topics are mainly summarized: structural features, relaxation dynamics characterization techniques, relaxation dynamics characteristics, and quantified understanding of the structure-property relationship. The capability for new function prediction from relaxation dynamics studies is also introduced, and the typical example in impact resistant materials is provided. The Account aims to prove the significance of relaxation dynamics characterization for material innovation, while it also confirms the potential of MCs for functional material fabrications.
Collapse
Affiliation(s)
- Binghui Xue
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, South China University of Technology, Guangzhou 510640, P. R. China
| | - Yuyan Lai
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, South China University of Technology, Guangzhou 510640, P. R. China
| | - Linkun Cai
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, South China University of Technology, Guangzhou 510640, P. R. China
| | - Yuan Liu
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, South China University of Technology, Guangzhou 510640, P. R. China
| | - Jia-Fu Yin
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, South China University of Technology, Guangzhou 510640, P. R. China
| | - Panchao Yin
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
35
|
Kanzaki Y, Minami R, Ota K, Adachi J, Hori Y, Ohtani R, Le Ouay B, Ohba M. Enhancing Performances of Enzyme/Metal-Organic Polyhedra Composites by Mixed-Protein Co-Immobilization. ACS APPLIED MATERIALS & INTERFACES 2024; 16:54423-54434. [PMID: 39315760 DOI: 10.1021/acsami.4c10146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Protein immobilization using water-soluble ionic metal-organic polyhedra (MOPs) acting as porous spacers has recently been demonstrated as a potent strategy for the preparation of biocatalysts. In this article, we describe a mixed-protein approach to achieve biocomposites with adjustable enzyme contents and excellent immobilization efficiencies, in a systematic and well-controlled manner. Self-assembly of either cationic or anionic MOPs with bovine serum albumin or egg white lysozyme combined with enzymes (alkaline phosphatase, laccase or cytochrome c) led to solid-state catalysts with a high retention of enzyme activity. Furthermore, for all these systems, the dilution of enzymes within the solid-state composite led to noticeably improved catalytic performances, with both higher specific activity and affinity for substrate.
Collapse
Affiliation(s)
- Yuri Kanzaki
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Ryosuke Minami
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Koshiro Ota
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Junya Adachi
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Yuichiro Hori
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Ryo Ohtani
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Benjamin Le Ouay
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Masaaki Ohba
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
36
|
Mandal W, Fajal S, Majumder D, Sengupta A, Let S, Urkude RR, Shirolkar MM, Torris A, Ghosh SK. A nanotrap infused ultrathin hybrid composite material for rapid and highly selective entrapment of 99TcO 4. Chem Sci 2024:d4sc04010d. [PMID: 39430929 PMCID: PMC11485004 DOI: 10.1039/d4sc04010d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/05/2024] [Indexed: 10/22/2024] Open
Abstract
99Tc is one of the potentially toxic radioactive substances owing to its long half-life and a high degree of environmental mobility. Hence, the sequestration of 99Tc from radioactive waste has become enormously important and a contemporary research priority. However, selective extraction of this species in its stable oxoanionic form (99TcO4 -) is very challenging on account of bottlenecks such as low charge density, less hydrophilic nature, etc. Herein, an ultrathin hybrid composite material has been strategically designed and fabricated by covalent anchoring of a chemically stable amino functionalized nanosized cationic metal-organic polyhedron with a positively charged robust ionic covalent organic framework. The resulting thin-layer-based hybrid composite presented multiple exfoliated exposed interactive sites, including a Zr(iv)-secondary building unit, amine and triaminoguanidine functional groups, which can selectively interact with TcO4 - oxoanions through a synergistic combination of electrostatic, H-bonding and various other supramolecular interactions. Thus synthesized function-tailored composite, by virtue of its multiple unique characteristics, manifested an ultrafast and very selective, high distribution coefficient (∼106 mL g-1), as well as recyclable entrapment of TcO4 - oxoanions from the complex mixture of superfluous (∼5000-fold) other interfering anions in both high and ultra-trace concentrations along with simulated nuclear waste and from different water systems. Dynamic flow-through experiments were conducted with the membrane of the hybrid material in simulated wastewater, which reduced the concentration of ReO4 - (surrogate of radioactive TcO4 -) to below the WHO permissible level with rapid sequestration kinetics and excellent selectivity over excessive competing anions.
Collapse
Affiliation(s)
- Writakshi Mandal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune Dr Homi Bhaba Road, Pashan Pune 411 008 India
| | - Sahel Fajal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune Dr Homi Bhaba Road, Pashan Pune 411 008 India
| | - Dipanjan Majumder
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune Dr Homi Bhaba Road, Pashan Pune 411 008 India
| | - Arijit Sengupta
- Radiochemistry Division, Bhabha Atomic Research Centre Mumbai 400085 India
- Homi Bhabha National Institute Mumbai 400094 India
| | - Sumanta Let
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune Dr Homi Bhaba Road, Pashan Pune 411 008 India
| | - Rajashri R Urkude
- Beamline Development and Application Section Bhabha Atomic Research Centre Mumbai 400085 India
| | - Mandar M Shirolkar
- Advanced Bio-Agro Tech Pvt. Ltd Baner Pune 411045 India
- Norel Nutrient Bio-Agro Tech Pvt. Ltd Baner 411045 India
| | - Arun Torris
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory Dr Homi Bhabha Road Pune 411008 India
| | - Sujit K Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune Dr Homi Bhaba Road, Pashan Pune 411 008 India
- Centre for Water Research (CWR), Indian Institute of Science Education and Research (IISER) Pune Dr Homi Bhabha Road, Pashan Pune 411 008 India
| |
Collapse
|
37
|
Ruiz-Relaño S, Nam D, Albalad J, Cortés-Martínez A, Juanhuix J, Imaz I, Maspoch D. Synthesis of Metal-Organic Cages via Orthogonal Bond Cleavage in 3D Metal-Organic Frameworks. J Am Chem Soc 2024; 146:26603-26608. [PMID: 39311525 PMCID: PMC11450890 DOI: 10.1021/jacs.4c09431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 10/03/2024]
Abstract
Herein we address the question of whether a supramolecular finite metal-organic structure such as a cage or metal-organic polyhedron (MOP) can be synthesized via controlled cleavage of a three-dimensional (3D) metal-organic structure. To demonstrate this, we report the synthesis of a Cu(II)-based cuboctahedral MOP through orthogonal olefinic bond cleavage of the cavities of a 3D, Cu(II)-based, metal-organic framework (MOF). Additionally, we demonstrate that controlling the ozonolysis conditions used for the cleavage enables Clip-off Chemistry synthesis of two cuboctahedral MOPs that differ by their external functionalization: one in which all 24 external groups represent a mixture of aldehydes, carboxylic acids, acetals and esters, and one in which all are aldehydes.
Collapse
Affiliation(s)
- Sara Ruiz-Relaño
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona, Spain
- Departament
de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Dongsik Nam
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona, Spain
- Departament
de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Jorge Albalad
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona, Spain
- Departament
de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Alba Cortés-Martínez
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona, Spain
- Departament
de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Judith Juanhuix
- Alba
Synchrotron Light Facility, Cerdanyola
del Vallès, 08290 Barcelona, Spain
| | - Inhar Imaz
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona, Spain
- Departament
de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Daniel Maspoch
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona, Spain
- Departament
de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, Campus UAB, Bellaterra, 08193 Barcelona, Spain
- ICREA, Passeig Lluis Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
38
|
Liu Y, Xue B, Chen J, Lai Y, Cai L, Yin P. Supramolecular Complexation Reinforced Polymer Frustrated Packing: Controllable Dual Porosity for Improved Permselectivity of Coordination Nanocage Mixed Matrix Membranes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400605. [PMID: 38794874 DOI: 10.1002/smll.202400605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/13/2024] [Indexed: 05/26/2024]
Abstract
The developments of mixed matrix membranes (MMMs) are severely hindered by the complex inter-phase interaction and the resulting poor utilization of inorganics' microporosity. Herein, a dual porosity framework is constructed in MMMs to enhance the accessibility of inorganics' microporosity to external gas molecules for the effective application of microporosity for gas separation. Nanocomposite organogels are first prepared from the supramolecular complexation of rigid polymers and 2 nm microporous coordination nanocages (CNCs). The network structures can be maintained with microporous features after solvent removal originated from the rigid nature of polymers, and the strong coordination and hydrogen bond between the two components. Moreover, the strong supramolecular attraction reinforces the frustrated packing of the rigid polymers on CNC surface, leading to polymer networks' extrinsic pores and the interconnection of CNCs' micro-cavities for the fast gas transportation. The gas permeabilities of the MMMs are 869 times for H2 and 1099 times for CO2 higher than those of pure polymers. The open metal sites from nanocage also contribute to the enhanced gas selectivity and the overall performance surpasses 2008 H2/CO2 Robeson upper bound. The supramolecular complexation reinforced packing frustration strategy offers a simple and practical solution to achieve improved gas permselectivity in MMMs.
Collapse
Affiliation(s)
- Yuan Liu
- State Key Laboratory of Luminescent Materials and Devices & School of Molecular Science and Engineering, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou, 510640, China
| | - Binghui Xue
- State Key Laboratory of Luminescent Materials and Devices & School of Molecular Science and Engineering, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou, 510640, China
| | - Jiadong Chen
- State Key Laboratory of Luminescent Materials and Devices & School of Molecular Science and Engineering, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou, 510640, China
| | - Yuyan Lai
- State Key Laboratory of Luminescent Materials and Devices & School of Molecular Science and Engineering, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou, 510640, China
| | - Linkun Cai
- State Key Laboratory of Luminescent Materials and Devices & School of Molecular Science and Engineering, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou, 510640, China
| | - Panchao Yin
- State Key Laboratory of Luminescent Materials and Devices & School of Molecular Science and Engineering, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
39
|
Meng Y, Lin X, Huang J, Zhang L. Recent Advances in Carborane-Based Crystalline Porous Materials. Molecules 2024; 29:3916. [PMID: 39202996 PMCID: PMC11357283 DOI: 10.3390/molecules29163916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/11/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
The field of carborane research has witnessed continuous development, leading to the construction and development of a diverse range of crystalline porous materials for various applications. Moreover, innovative synthetic approaches are expanding in this field. Since the first report of carborane-based crystalline porous materials (CCPMs) in 2007, the synthesis of carborane ligands, particularly through innovative methods, has consistently posed a significant challenge in discovering new structures of CCPMs. This paper provides a comprehensive summary of recent advances in various synthetic approaches for CCPMs, along with their applications in different domains. The primary challenges and future opportunities are expected to stimulate further multidisciplinary development in the field of CCPMs.
Collapse
Affiliation(s)
- Yuxuan Meng
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLo-FE), Fuzhou 350017, China; (Y.M.); (X.L.); (J.H.)
| | - Xi Lin
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLo-FE), Fuzhou 350017, China; (Y.M.); (X.L.); (J.H.)
| | - Jinyi Huang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLo-FE), Fuzhou 350017, China; (Y.M.); (X.L.); (J.H.)
| | - Liangliang Zhang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLo-FE), Fuzhou 350017, China; (Y.M.); (X.L.); (J.H.)
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi’an 710072, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| |
Collapse
|
40
|
Chen S, Zheng X, Zhu P, Li Y, Zhuang Z, Wu H, Zhu J, Xiao C, Chen M, Wang P, Wang D, He YL. Copper Atom Pairs Stabilize *OCCO Dipole Toward Highly Selective CO 2 Electroreduction to C 2H 4. Angew Chem Int Ed Engl 2024:e202411591. [PMID: 39136330 DOI: 10.1002/anie.202411591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Indexed: 10/30/2024]
Abstract
Deeply electrolytic reduction of carbon dioxide (CO2) to high-value ethylene (C2H4) is very attractive. However, the sluggish kinetics of C-C coupling seriously results in the low selectivity of CO2 electroreduction to C2H4. Herein, we report a copper-based polyhedron (Cu2) that features uniformly distributed and atomically precise bi-Cu units, which can stabilize *OCCO dipole to facilitate the C-C coupling for high selective C2H4 production. The C2H4 faradaic efficiency (FE) reaches 51 % with a current density of 469.4 mA cm-2, much superior to the Cu single site catalyst (Cu SAC) (~0 %). Moreover, the Cu2 catalyst has a higher turnover frequency (TOF, ~520 h-1) compared to Cu nanoparticles (~9.42 h-1) and Cu SAC (~0.87 h-1). In situ characterizations and theoretical calculations revealed that the unique Cu2 structural configuration could optimize the dipole moments and stabilize the *OCCO adsorbate to promote the generation of C2H4.
Collapse
Affiliation(s)
- Shenghua Chen
- School of Chemistry, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xiaobo Zheng
- Institute for Superconducting and Electronic Materials, Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Peng Zhu
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yapeng Li
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Zechao Zhuang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Hangjuan Wu
- School of Chemistry, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Jiexin Zhu
- School of Chemistry, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Chunhui Xiao
- School of Chemistry, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Mingzhao Chen
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 511436, P. R. China
| | - Pingshan Wang
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 511436, P. R. China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Ya-Ling He
- School of Chemistry, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
41
|
Tang X, Pang J, Dong J, Liu Y, Bu XH, Cui Y. Supramolecular Assembly Frameworks (SAFs): Shaping the Future of Functional Materials. Angew Chem Int Ed Engl 2024; 63:e202406956. [PMID: 38713527 DOI: 10.1002/anie.202406956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/06/2024] [Accepted: 05/06/2024] [Indexed: 05/09/2024]
Abstract
Supramolecular assembly frameworks (SAFs) represent a new category of porous materials, utilizing non-covalent interactions, setting them apart from metal-organic frameworks (MOFs) and covalent organic frameworks (COFs). This category includes but is not restricted to hydrogen-bonded organic frameworks and supramolecular organic frameworks. SAFs stand out for their outstanding porosity, crystallinity, and stability, alongside unique dissolution-recrystallization dynamics that enable significant structural and functional modifications. Crucially, their non-covalent assembly strategies allow for a balanced manipulation of porosity, symmetry, crystallinity, and dimensions, facilitating the creation of advanced crystalline porous materials unattainable through conventional covalent or coordination bond synthesis. Despite their considerable promise in overcoming several limitations inherent to MOFs and COFs, particularly in terms of solution-processability, SAFs have received relatively little attention in recent literature. This Minireview aims to shed light on standout SAFs, exploring their design principles, synthesis strategies, and characterization methods. It emphasizes their distinctive features and the broad spectrum of potential applications across various domains, aiming to catalyze further development and practical application within the scientific community.
Collapse
Affiliation(s)
- Xianhui Tang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jiandong Pang
- School of Materials Science and Engineering, TKL of Metal and Molecule-Based Material Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Jinqiao Dong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yan Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xian-He Bu
- School of Materials Science and Engineering, TKL of Metal and Molecule-Based Material Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Yong Cui
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
42
|
Ju WT, Fu YM, Wang HN, Liu JR, Qu JX, Lian M, Liu T, Meng X, Su ZM. Room-Temperature Synthesis of Covalently Bridged MOP@TpPa-CH 3 Composite Photocatalysts for Artificial Photosynthesis. Inorg Chem 2024; 63:15090-15097. [PMID: 39087570 DOI: 10.1021/acs.inorgchem.4c02112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
The conversion of CO2 into useful chemicals via photocatalysts is a promising strategy for resolving the environmental problems caused by the addition of CO2. Herein, a series of composite photocatalysts MOP@TpPa-CH3 based on MOP-NH2 and TpPa-CH3 through covalent bridging have been prepared via a facile room-temperature evaporation method and employed for photocatalytic CO2 reduction. The photocatalytic performances of MOP@TpPa-CH3 are greater than those of TpPa-CH3 and MOP-NH2, where the CO generation rate of MOP@TpPa-CH3 under 10% CO2 still reaches 119.25 μmol g-1 h-1, which is 2.18 times higher than that under pure CO2 (54.74 μmol g-1 h-1). To investigate the structural factors affecting the photocatalytic activity, MOP@TBPa-CH3 without C═O groups is synthesized, and the photoreduction performance is also evaluated. The controlling experimental results demonstrate that the excellent photoreduction CO2 performance of MOP@TpPa-CH3 in a 10% CO2 atmosphere is due to the presence of C═O groups in TpPa-CH3. This work offers a new design and construction strategy for novel MOP@COF composites.
Collapse
Affiliation(s)
- Wen-Tao Ju
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, China
| | - Yao-Mei Fu
- Shandong Engineering Research Center of Green and High-value Marine Fine Chemical, Weifang University of Science and Technology, Shouguang 262700, China
| | - Hai-Ning Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, China
| | - Jun-Rui Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, China
| | - Jian-Xin Qu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, China
| | - Meng Lian
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, China
| | - Teng Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, China
| | - Xing Meng
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, China
| | - Zhong-Min Su
- Shandong Engineering Research Center of Green and High-value Marine Fine Chemical, Weifang University of Science and Technology, Shouguang 262700, China
- Jilin University, Institute of Theoretical Chemistry, State Key Laboratory of Supramolecular Structure and Materials, Changchun 130021, China
| |
Collapse
|
43
|
Liu ZK, Ji XY, Yu M, Li YX, Hu JS, Zhao YM, Yao ZS, Tao J. Proton-Induced Reversible Spin-State Switching in Octanuclear Fe III Spin-Crossover Metal-Organic Cages. J Am Chem Soc 2024; 146:22036-22046. [PMID: 39041064 DOI: 10.1021/jacs.4c07469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Responsive spin-crossover (SCO) metal-organic cages (MOCs) are emerging dynamic platforms with potential for advanced applications in magnetic sensing and molecular switching. Among these, FeIII-based MOCs are particularly noteworthy for their air stability, yet they remain largely unexplored. Herein, we report the synthesis of two novel FeIII MOCs using a bis-bidentate ligand approach, which exhibit SCO activity above room temperature. These represent the first SCO-active FeIII cages and feature an atypical {FeN6}-type coordination sphere, uncommon for FeIII SCO compounds. Our study reveals that these MOCs are sensitive to acid/base variations, enabling reversible magnetic switching in solution. The presence of multiple active proton sites within these SCO-MOCs facilitates multisite, multilevel proton-induced spin-state modulation. This behavior is observed at room temperature through 1H NMR spectroscopy, capturing the subtle proton-induced spin-state transitions triggered by pH changes. Further insights from extended X-ray absorption fine structure (EXAFS) and theoretical analyses indicate that these magnetic alterations primarily result from the protonation and deprotonation processes at the NH active sites on the ligands. These processes induce changes in the secondary coordination sphere, thereby modulating the magnetic properties of the cages. The capability of these FeIII MOCs to integrate magnetic responses with environmental stimuli underscores their potential as finely tunable magnetic sensors and highlights their versatility as molecular switches. This work paves the way for the development of SCO-active materials with tailored properties for applications in sensing and molecular switching.
Collapse
Affiliation(s)
- Zhi-Kun Liu
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Xue-Yang Ji
- School of Materials Science and Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, P. R. China
| | - Meng Yu
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Yu-Xia Li
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Jie-Sheng Hu
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Yu-Meng Zhao
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Zi-Shuo Yao
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Jun Tao
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, P. R. China
| |
Collapse
|
44
|
Guo S, Zhan WW, Yang FL, Zhou J, Duan YH, Zhang D, Yang Y. Enantiopure trigonal bipyramidal coordination cages templated by in situ self-organized D 2h-symmetric anions. Nat Commun 2024; 15:5628. [PMID: 38965215 PMCID: PMC11224320 DOI: 10.1038/s41467-024-49964-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/26/2024] [Indexed: 07/06/2024] Open
Abstract
The control of a molecule's geometry, chirality, and physical properties has long been a challenging pursuit. Our study introduces a dependable method for assembling D3-symmetric trigonal bipyramidal coordination cages. Specifically, D2h-symmetric anions, like oxalate and chloranilic anions, self-organize around a metal ion to form chiral-at-metal anionic complexes, which template the formation of D3-symmetric trigonal bipyramidal coordination cages. The chirality of the trigonal bipyramid is determined by the point chirality of chiral amines used in forming the ligands. Additionally, these cages exhibit chiral selectivity for the included chiral-at-metal anionic template. Our method is broadly applicable to various ligand systems, enabling the construction of larger cages when larger D2h-symmetric anions, like chloranilic anions, are employed. Furthermore, we successfully produce enantiopure trigonal bipyramidal cages with anthracene-containing backbones using this approach, which would be otherwise infeasible. These cages exhibit circularly polarized luminescence, which is modulable through the reversible photo-oxygenation of the anthracenes.
Collapse
Affiliation(s)
- Shan Guo
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Wen-Wen Zhan
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Feng-Lei Yang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Jie Zhou
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Yu-Hao Duan
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Dawei Zhang
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.
| | - Yang Yang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.
| |
Collapse
|
45
|
Hoq J, Bloch ED. Solvent-free mechanochemistry for the preparation of mixed-ligand cuboctahedral porous coordination cages. Chem Commun (Camb) 2024; 60:6945-6948. [PMID: 38887799 DOI: 10.1039/d4cc01936a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
This study investigates post-synthetic ligand exchange in a series of copper(II) and chromium(II) cuboctahedral cages of the formula M24(R-bdc)24 through solvent-free mechanochemistry for the preparation of mixed-ligand cages. While solvent-based ligand exchange does not proceed when the cages are insoluble or when they are dissolved in non-coordinating solvents, solvent-free mechanochemistry can be used to prepare a number of mixed-ligand cages featuring a variety of functional groups regardless of cage solubility. We further extend this strategy to intercage ligand exchange reactions where the solid-state reaction of cages proceeds in just ten minutes while corresponding solvent-based reactions require more than one week of reaction time. The results highlight mechanochemically-facilitated ligand exchange as an exceptionally facile and efficient method for the production of mixed-ligand cuboctahedral cages.
Collapse
Affiliation(s)
- Jahidul Hoq
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA.
| | - Eric D Bloch
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA.
| |
Collapse
|
46
|
Yang N, Wang ST, Li CS, Zhang J, Zhang MY, Fang WH. Designing External Pores of Aluminum Oxo Polyhedrons for Efficient Iodine Capture. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311083. [PMID: 38268236 DOI: 10.1002/smll.202311083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/10/2024] [Indexed: 01/26/2024]
Abstract
Although metal-organic polyhedra (MOPs) expansion has been studied to date, it is still a rare occurrence for their porous intermolecular assembly for iodine capture. The major limitation is the lack of programmable and controllable methods for effectively constructing and utilizing the exterior cavities. Herein, the goal of programmable porous intermolecular assembly is realized in the first family of aluminum oxo polyhedrons (AlOPs) using ligands with directional H-bonding donor/acceptor pairs and auxiliary alcohols as structural regulation sites. The approach has the advantage of avoiding the use of expensive edge-directed ditopic and face-directed tritopic ligands in the general synthesis strategy of MOPs. Combining theoretical calculations and experiments, the intrinsic relationship is revealed between alcohol ligands and the growth mechanism of AlOPs. The maximum I2 uptake based on the mass gain during sorption corresponds to 2.35 g g-1, representing the highest reported I2 sorption by an MOP. In addition, it can be easily regenerated and maintained the iodine sorption capacity, revealing its further potential application. This method of constructing stable and programmable porous materials will provide a new way to solve problems such as radionuclide capture.
Collapse
Affiliation(s)
- Ning Yang
- State Key Laboratory of Structural Chemistry, Chinese Academy of Sciences, Fujian Institute of Research on the Structure of Matter, Fuzhou, Fujian, 350002, P. R. China
- Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - San-Tai Wang
- State Key Laboratory of Structural Chemistry, Chinese Academy of Sciences, Fujian Institute of Research on the Structure of Matter, Fuzhou, Fujian, 350002, P. R. China
| | - Chun-Sen Li
- State Key Laboratory of Structural Chemistry, Chinese Academy of Sciences, Fujian Institute of Research on the Structure of Matter, Fuzhou, Fujian, 350002, P. R. China
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, Fujian, 361005, P. R. China
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Chinese Academy of Sciences, Fujian Institute of Research on the Structure of Matter, Fuzhou, Fujian, 350002, P. R. China
| | - Min-Yi Zhang
- State Key Laboratory of Structural Chemistry, Chinese Academy of Sciences, Fujian Institute of Research on the Structure of Matter, Fuzhou, Fujian, 350002, P. R. China
| | - Wei-Hui Fang
- State Key Laboratory of Structural Chemistry, Chinese Academy of Sciences, Fujian Institute of Research on the Structure of Matter, Fuzhou, Fujian, 350002, P. R. China
- Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
47
|
He D, Ji H, Liu T, Yang M, Clowes R, Little MA, Liu M, Cooper AI. Self-Assembly of Chiral Porous Metal-Organic Polyhedra from Trianglsalen Macrocycles. J Am Chem Soc 2024; 146:17438-17445. [PMID: 38860872 PMCID: PMC11212058 DOI: 10.1021/jacs.4c04928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/12/2024]
Abstract
Metal-organic polyhedra (MOPs) can exhibit tunable porosity and functionality, suggesting potential for applications such as molecular separations. MOPs are typically constructed by the bottom-up multicomponent self-assembly of organic ligands and metal ions, and the final functionality can be hard to program. Here, we used trianglsalen macrocycles as preorganized building blocks to assemble octahedral-shaped MOPs. The resultant MOPs inherit most of the preorganized properties of the macrocyclic ligands, including their well-defined cavities and chirality. As a result, the porosity in the MOPs could be tuned by modifying the structure of the macrocycle building blocks. Using this strategy, we could systematically enlarge the size of the MOPs from 26.3 to 32.1 Å by increasing the macrocycle size. The family of MOPs shows experimental surface areas of up to 820 m2/g, and they are stable in water. One of these MOPs can efficiently separate the rare gases Xe from Kr because the prefabricated macrocyclic windows of MOPs can be modified to sit at the Xe/Kr size cutoff range.
Collapse
Affiliation(s)
- Donglin He
- Materials
Innovation Factory and Department of Chemistry, University of Liverpool, 51 Oxford Street, Liverpool L7 3NY, U.K.
| | - Heng Ji
- ZJU-Hangzhou
Global Scientific and Technological Innovation Center, Hangzhou 311215, China
- Department
of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Tao Liu
- Materials
Innovation Factory and Department of Chemistry, University of Liverpool, 51 Oxford Street, Liverpool L7 3NY, U.K.
- Leverhulme
Research Centre for Functional Materials Design, University of Liverpool, 51 Oxford Street, Liverpool L7 3NY, U.K.
| | - Miao Yang
- ZJU-Hangzhou
Global Scientific and Technological Innovation Center, Hangzhou 311215, China
- Department
of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Rob Clowes
- Materials
Innovation Factory and Department of Chemistry, University of Liverpool, 51 Oxford Street, Liverpool L7 3NY, U.K.
| | - Marc A. Little
- Institute
of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K.
| | - Ming Liu
- ZJU-Hangzhou
Global Scientific and Technological Innovation Center, Hangzhou 311215, China
- Department
of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Andrew I. Cooper
- Materials
Innovation Factory and Department of Chemistry, University of Liverpool, 51 Oxford Street, Liverpool L7 3NY, U.K.
- Leverhulme
Research Centre for Functional Materials Design, University of Liverpool, 51 Oxford Street, Liverpool L7 3NY, U.K.
| |
Collapse
|
48
|
O'Nolan D, Sitaula P, Bellamy T, Chatterton L, Amato K, Todd Ennis J, Harrison S, Soukri M, Blough B. Coalescence of Porous Coordination Cages into Crystalline and Amorphous Bulk Solids. Inorg Chem 2024; 63:11700-11707. [PMID: 38863221 DOI: 10.1021/acs.inorgchem.4c01044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Discrete porous coordination cages are attractive as a solution processable material whose porosity is not predicated on a network structure. Here, we leverage the peripheral functionalization of these cage structures to obtain 12 novel, solution processable, porous coordination cages that afford crystalline and amorphous single-phase millimeter-scale monolithic bulk structures (six of each) upon solidification. These structures are based upon prototypal metal-organic polyhedra [Cu24(5-x-isophthalate)24] (where x = NH2, OH), wherein meta-substitution of linker ligands with acyl chloride or isocyanate moieties afforded amide and urethane functional groups, respectively. These porous cage structures were obtainable via direct synthesis between a metal salt and a ligand as well as postsynthetic modification of the cage and formed monoliths following centrifugation and drying of the product. We rationalize their self-assembly as colloidal packing of nanoscale cuboctahedral cages through weak interactions between their hydrophobic alkyl/aromatic surfaces. In general, amorphous solids were obtained via rapid precipitation from the mother liquor upon methanol addition, while crystalline solids could be obtained only following further chloroform and pyridine additions. The structure of the materials is confirmed via gas sorption and spectroscopic methods, while powder X-ray diffraction and transmission electron microscopy are used to determine the nature of these bulk solids.
Collapse
Affiliation(s)
- Daniel O'Nolan
- Technology Advancement and Commercialization, RTI International, 3040 East Cornwallis Rd, Research Triangle Park, North Carolina 27709, United States
| | - Paban Sitaula
- Technology Advancement and Commercialization, RTI International, 3040 East Cornwallis Rd, Research Triangle Park, North Carolina 27709, United States
| | - Timothy Bellamy
- Technology Advancement and Commercialization, RTI International, 3040 East Cornwallis Rd, Research Triangle Park, North Carolina 27709, United States
| | - Lindsey Chatterton
- Technology Advancement and Commercialization, RTI International, 3040 East Cornwallis Rd, Research Triangle Park, North Carolina 27709, United States
| | - Kelly Amato
- Discovery Sciences, RTI International, 3040 East Cornwallis Rd, Research Triangle Park, North Carolina 27709, United States
| | - J Todd Ennis
- Discovery Sciences, RTI International, 3040 East Cornwallis Rd, Research Triangle Park, North Carolina 27709, United States
| | - Sara Harrison
- Discovery Sciences, RTI International, 3040 East Cornwallis Rd, Research Triangle Park, North Carolina 27709, United States
| | - Mustapha Soukri
- Technology Advancement and Commercialization, RTI International, 3040 East Cornwallis Rd, Research Triangle Park, North Carolina 27709, United States
| | - Bruce Blough
- Discovery Sciences, RTI International, 3040 East Cornwallis Rd, Research Triangle Park, North Carolina 27709, United States
| |
Collapse
|
49
|
Hu C, Severin K. Nanogels with Metal-Organic Cages as Functional Crosslinks. Angew Chem Int Ed Engl 2024; 63:e202403834. [PMID: 38579118 DOI: 10.1002/anie.202403834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/25/2024] [Accepted: 04/03/2024] [Indexed: 04/07/2024]
Abstract
A dinuclear metal-organic cage with four acrylate side chains was prepared by self-assembly. Precipitation polymerization of the cage with N-isopropylacrylamide yielded a thermoresponsive nanogel. The host properties of the cage were retained within the gel matrix, endowing the nanogel with the capability to serve as a sorbent for chloride ions in water. Moreover, a heteroleptic cage with the drug abiraterone as co-ligand was integrated into a nanogel. The addition of chloride ions induced a structural rearrangement of the metal-ligand assembly, resulting in the gradual release of abiraterone.
Collapse
Affiliation(s)
- Chaolei Hu
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Kay Severin
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| |
Collapse
|
50
|
Lee B, Go B, Jung B, Park J. Unlocking High Porosity: Post-Synthetic Solvothermal Treatment of Cu-Paddlewheel Based Metal-Organic Cages. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308393. [PMID: 38150648 DOI: 10.1002/smll.202308393] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Indexed: 12/29/2023]
Abstract
Metal-organic cages (MOCs) have garnered significant attention due to their unique discrete structures, intrinsic porosity, designability, and tailorability. However, weak inter-cage interactions, such as van der Waals forces and hydrogen bonding can cause solid-state MOCs to lose structural integrity during desolvation, leading to the loss of porosity. In this work, a novel strategy to retain the permanent porosity of Cu-paddlewheel-based MOCs, enabling their use as heterogeneous catalysts is presented. Post-synthetic solvothermal treatments in non-coordinating solvents, mesitylene, and p-xylene, effectively preserve the packing structures of solvent-evacuated MOCs while preventing cage agglomeration. The resulting MOCs exhibit an exceptional N2 sorption capacity, with a high surface area (SBET = 1934 m2 g-1 for MOP-23), which is among the highest reported for porous MOCs. Intriguingly, while the solvothermal treatment reduced Cu(II) to Cu(I) in the Cu-paddlewheel clusters, the MOCs with mixed-valenced Cu(I)/Cu(II) maintained their crystallinity and permanent porosity. The catalytic activities of these MOCs are successfully examined in copper(I)-catalyzed hydrative amide synthesis, highlighting the prospect of MOCs as versatile reaction platforms.
Collapse
Affiliation(s)
- Byeongchan Lee
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Dalseong-gun, Daegu, 42988, Republic of Korea
| | - Bogyeong Go
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Dalseong-gun, Daegu, 42988, Republic of Korea
| | - Byunghyuck Jung
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Dalseong-gun, Daegu, 42988, Republic of Korea
| | - Jinhee Park
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Dalseong-gun, Daegu, 42988, Republic of Korea
| |
Collapse
|